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Abstract

Using the techniques of reverse mathematics, we analyze the log-
ical strength of statements similar to trichotomy and dichotomy for
sequences of reals. Capitalizing on the connection between sequential
statements and constructivity, we find computable restrictions of the
statements for sequences and constructive restrictions of the original
principles.

1 Axiom systems and encoding reals

We will examine several statements about real numbers and sequences of real
numbers in the framework of reverse mathematics and in some formalizations
of weak constructive analysis. From reverse mathematics, we will concentrate
on the axiom systems RCA0, WKL0, and ACA0, which are described in detail
by Simpson [8]. Very roughly, RCA0 is a subsystem of second order arith-
metic incorporating ordered semi-ring axioms, a restricted form of induction,
and comprehension for ∆0

1 definable sets. The axiom system WKL0 appends
König’s tree lemma restricted to 0–1 trees, and the system ACA0 appends
a comprehension scheme for arithmetically definable sets. ACA0 is strictly
stronger than WKL0, and WKL0 is strictly stronger than RCA0.

We will also make use of several formalizations of subsystems of con-
structive analysis, all variations of E-HAω, which is intuitionistic arithmetic
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(Heyting arithmetic) in all finite types with an extensionality scheme. Unlike
the reverse mathematics systems which use classical logic, these constructive
systems omit the law of the excluded middle. For example, we will use ex-

tensions of Ê–HA
ω
� , a form of Heyting arithmetic with primitive recursion

restricted to type 0 objects, and induction restricted to quantifier free for-
mulas. We will often append choice axioms. For example, we will use full
choice:

AC : ∀x∃yA(x, y)→ ∃Y ∀xA(x, Y (x))

where x and y may be of any finite type. We will also use quantifier free
choice, QF–AC0,0, which is defined by the same scheme but where x and y
are restricted to natural number variables and A is restricted to quantifier free
formulas. These systems and many others are treated in detail by Kohlenbach
[7]; a short summary appears in the paper of Hirst and Mummert [5].

Both Simpson [8] (following Definition II.4.4) and Kohlenbach [7] (in sec-
tion 4.1) encode real numbers as rapidly converging sequences of rational
numbers. In particular, Simpson defines a real number as a Cauchy sequence
of rationals α = 〈α(k)〉k∈N satisfying ∀k∀i(|α(k)− α(k+ i)| ≤ 2−k). Kohlen-
bach’s reals are required to converge slightly more quickly. For rational num-
bers, equality and inequality can be expressed using quantifier free formulas
of arithmetic. The situation for reals is more complicated. Two reals α and
β are said to be equal if ∀k(|α(k)− β(k)| ≤ 2−k+1). Since α(k) and β(k) are
rationals, this formalization of equality contains only the leading universal
quantifier. Because we consider both classical and intuitionistic systems, we
need to be especially careful in defining inequality for reals. For reals α and
β, we say α < β (or β > α) if ∃k(β(k)−α(k) > 2−k+1). We say that β ≤ α if

¬(α < β), which is equivalent to ∀k(β(k)−α(k) ≤ 2−k+1) over Ê–HA
ω
� . Note

that β ≤ α is not defined as a disjunction. These definitions are equivalent
over RCA0 to those following Definition II.4.4 of Simpson [8]: his α < β is
our ¬¬(α < β). We say α is positive if α > 0 and negative if α < 0. Here
0 can be the sequence of zeros, or equivalently any real that is equal to that
real. We say α is non-positive if α is not positive, which is equivalent over

Ê–HA
ω
� to α ≤ 0. Similarly, α is non-negative means 0 ≤ α. Summarizing,

we have the following:

• α is a real means ∀k∀i(|α(k)− α(k + i)| ≤ 2−k).

• α = β means ∀k(|α(k)− β(k)| ≤ 2−k+1).
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• α < β means ∃k(β(k)− α(k) > 2−k+1).

• β ≤ α means ¬(α < β), or equivalently, ∀k(β(k)− α(k) ≤ 2−k+1).

• α is positive means α > 0, or equivalently, ∃k(α(k) > 2−k+1).

• α is negative means α < 0, or equivalently, ∃k(α(k) < −2−k+1).

• α is non-positive means ¬(α > 0), which is equivalent to α ≤ 0, which
is equivalent to ∀k(α(k) ≤ 2−k+1).

• α is non-negative means ¬(α < 0), which is equivalent to α ≥ 0, which
is equivalent to ∀k(α(k) ≥ −2−k+1).

2 Reverse mathematics

The principle of dichotomy for reals asserts that ∀α(α ≥ 0 ∨ α ≤ 0). Since
RCA0 includes the law of the excluded middle, it proves dichotomy for indi-
vidual reals. However, dichotomy for a sequence of reals requires the use of
weak König’s lemma, as shown by the following theorem.

Theorem 1. (RCA0) The following are equivalent:

1. WKL0.

2. If 〈αi〉i∈N is a sequence of reals, then there is a set I ⊂ N such that for
all i, i ∈ I implies αi ≤ 0 and i /∈ I implies αi ≥ 0.

Proof. Working in RCA0, item 2 is easily deduced from Σ0
1–separation, which

is provable in WKL0 as shown in Lemma IV.4.4 of Simpson [8].
The same lemma of Simpson shows that WKL0 is equivalent to the sep-

aration of ranges of injections with disjoint ranges. We use this to deduce
WKL0 from item 2. Let f : N → N and g : N → N be one-to-one functions
such that ∀i∀j(f(i) 6= g(j)). Write f [s] for the finite set {f(0), . . . , f(s−1)}.
Note that RCA0 suffices to find the finite set f [s] and, since f is an injection,
to calculate f−1(i) given that i ∈ f [s]. Define the sequence 〈αi〉i∈N by

αi(s) =


2−f

−1(i) when i ∈ f [s],

−2−g
−1(i) when i ∈ g[s],

0 otherwise.
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It is clear that 〈αi〉i∈N is a sequence of real numbers. Moreover, we know
that αi > 0 if and only if i is in the range of f , and αi < 0 if and only if i
is in the range of g. If I ⊂ N satisfies item 2, then I contains the range of g
and excludes the range of f .

The main theorems of Hirst and Mummert [5] show that for certain for-
mulas, if the formula is provable in a constructive setting then RCA0 proves
a related formula for sequences. Since the preceding theorem shows that
dichotomy for sequences of reals implies WKL0 (and so is not provable in
RCA0), we may conclude that dichotomy for single reals is not provable in
(an extension of) a constructive axiom system. The axiom system in the
following corollary appends an extensionality scheme, full axiom of choice,
and independence of premise for ∃–free formulas to Heyting arithmetic. It is
a proper extension of a formalization of constructive analysis.

Corollary 2. E-HAω +AC+ IPωef does not prove that if α is a real then α ≥ 0
or α ≤ 0.

Proof. Apply the contrapositive of Theorem 3.6 of Hirst and Mummert [5]
to a formula asserting that for every α there is a natural number n such
that if α is a real then either n = 0 and α ≤ 0, or n = 1 and α ≥ 0. This
formula is in the class Γ1, so the theorem applies. Theorem 1 shows that
RCA0 does not prove the sequential version, so E-HAω + AC + IPωef does not
prove dichotomy.

The non-constructive nature of dichotomy can also be deduced from the
well-known fact that dichotomy for reals is equivalent to Bishop’s lesser lim-
ited principle of omniscience. Discussions of this can be found in Bridges
and Richman [2] and in Bridges and Vı̂ţă [3]. For completeness we present a
version of this fact, formulated in the fashion of a reverse mathematics result.

Theorem 3. (Ê–HA
ω
� + QF–AC0,0) The following are equivalent:

1. LLPO (Lesser limited principle of omniscience) If f : N → {0, 1} is a
function that takes the value 1 at most once, then either ∀n(f(2n) = 0)
or ∀n(f(2n+ 1) = 0).

2. If α is a real number, then α ≥ 0 or α ≤ 0.

Consequently, neither of these statements are provable in E-HAω + AC.
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Proof. We sketch the equivalence working in Ê–HA
ω
� + QF–AC0,0. Assume

LLPO and suppose α is a real. Use QF–AC0,0 to define f as follows. Set the
values of f to 0 as long as |α(n)| ≤ 2−n+1. If we discover a (least) k such
that |α(k)| > 2−k+1, let f(2k) = 1 if α(k) > 0, let f(2k + 1) = 1 if α(k) < 0,
and set all other values of f to 0. Note that if ∀n(f(2n) = 0) then α ≤ 0,
and if ∀n(f(2n+ 1) = 0) then α ≥ 0.

To prove the converse, suppose f : N→ {0, 1} takes the value 1 at most
once. Define α by specifying that

• α(n) = 0 if f(t) = 0 for all t ≤ n,

• α(n) = 2−t if there is an even t ≤ n such that f(t) = 1, and

• α(n) = −2−t if there is an odd t ≤ n such that f(t) = 1.

Note that if α ≥ 0 then ∀n(f(2n+ 1) = 0), and if α ≤ 0 then ∀n(f(2n) = 0).
The last sentence of the theorem is provable by a realizability argument

by applying Corollary 2.

Theorem 1 and Theorem 3 indirectly link weak König’s lemma and LLPO.
Other connections can be found in the work of Ishihara [6] and Brattka and
Gherardi [1].

Following the pattern of our work with dichotomy, we now turn to tri-
chotomy for reals: ∀α(α < 0 ∨ α = 0 ∨ α > 0). Since RCA0 includes the
law of the excluded middle, it proves trichotomy for a single real, as noted in
Section II.4 of Simpson [8]. As shown below, trichotomy for sequences of re-
als is equivalent to arithmetical comprehension, and consequently is strictly
stronger than dichotomy for sequences.

Theorem 4. (RCA0) The following are equivalent:

1. ACA0.

2. If 〈αi〉i∈N is a sequence of reals, then there are sets of natural numbers
L, E, and G such that i ∈ L implies αi < 0, i ∈ E implies αi = 0, and
i ∈ G implies αi > 0.

3. If 〈αi〉i∈N is a sequence of non-negative reals, then there is a set I ⊂ N
such that for all i, i ∈ I implies αi = 0 and i /∈ I implies αi > 0.
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Proof. It is clear that arithmetic comprehension suffices to prove the exis-
tence of the sets L, E, and G in item 2. Since item 3 is a restriction of item
2, we can complete the proof by showing that item 3 implies ACA0.

By Lemma III.1.3 of Simpson [8], we need only show that item 3 suffices
to prove the existence of ranges of injections. Let f : N→ N be one-to-one.
Using the bracket notation from the proof of Theorem 1, define 〈αi〉i∈N by

αi(s) =

{
2−f

−1(i) when i ∈ f [s],

2−s otherwise.

Straightforward arguments show that 〈αi〉i∈N is a sequence of non-negative
real numbers. Moreover, we see that αi > 0 if and only if i is in the range
of f . Thus the range of f exists by applying ∆0

1 comprehension to find the
complement of the set I as provided in item 3.

The next corollary follows immediately by a proof that is almost identical
to that of Corollary 2.

Corollary 5. E-HAω +AC+ IPωef does not prove that if α is a real and α ≥ 0,
then α > 0 or α = 0.

Imitating Theorem 3, we present the following well known relationship
between trichotomy and Bishop’s limited principle of omniscience.

Theorem 6. (Ê–HA
ω
� + QF–AC0,0) The following are equivalent:

1. LPO (limited principle of omniscience) If f : N → {0, 1} then either
∃n(f(n) = 1) or ∀n(f(n) = 0).

2. If α is a real number and α ≥ 0, then either α > 0 or α = 0.

3. If α is a real number, then α < 0, α = 0 , or α > 0.

Consequently, none of these statements are provable in E-HAω + AC.

Proof. We sketch the equivalences, working in Ê–HA
ω
� + QF–AC0,0. First

assume LPO and suppose α ≥ 0. Use QF–AC0,0 to define f by f(n) = 1 if
α(n) > 2−n+1 and f(n) = 0 otherwise. Apply LPO to determine if α > 0 or
α = 0.
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Next, assume item 2 and let α be a real. Define reals ρ and σ by

ρ(n) =

{
α(n) if α(n) ≥ 0,

0 otherwise.
and σ(n) =

{
−α(n) if α(n) ≤ 0,

0 otherwise.

Note that ρ and σ satisfy the convergence rate requirements for reals, and
that both ρ ≥ 0 and σ ≥ 0. Apply item 2 to ρ and σ. If ρ > 0, then α > 0.
If σ > 0, then α < 0. If both ρ = 0 and σ = 0, then α = 0. Thus, item 3
holds.

Finally, assume item 3 and suppose f : N → {0, 1}. Define α as follows.
For each n, let α(n) = 0 if f(t) = 0 for all t ≤ n, and let α(n) = 2−t if t is
the least number less than or equal to n such that f(t) = 1. Then α ≥ 0.
Applying item 3, if α = 0 then ∀n(f(n) = 0) and if α > 0 then ∃n(f(n) = 1).

The final sentence of the theorem may be derived directly from realizabil-
ity arguments, or proved by applying Corollary 5.

3 Restrictions

The goal of this section is to define subclasses of reals for which dichotomy
and trichotomy can be proved constructively. In light of the result of Hirst
and Mummert [5], the corresponding sequential restrictions will be provable
in RCA0. We begin by addressing dichotomy.

Definition 7. Let α be a real number.

• We say that α is upper k–persistent if

∀s(s ≥ k ∧ α(s) ≥ 0→ ∃t(t > s ∧ α(t) ≥ 0)).

• We say that α is lower k–persistent if

∀s(s ≥ k ∧ α(s) ≤ 0→ ∃t(t > s ∧ α(t) ≤ 0)).

• We say that α is k–persistent if it is both upper and lower k–persistent.

Informally, if a rational sequence is k–persistent, after the first k entries,
the tail contains no last non-positive entry and no last non-negative entry.
Every positive real has a tail that consists entirely of positive rationals, so if
the kth entry of a k–persistent real is non-positive, then the real cannot be
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positive. Since the real is not positive, it is non-positive. Similarly, if the kth

entry is non-negative, then the real must be non-negative. Thus, dichotomy
restricted to k–persistent reals is provable in a constructive axiom system.

Theorem 8. (Ê–HA
ω
� ) If α is k–persistent, then either α ≤ 0 or α ≥ 0.

Proof. If α is k–persistent, consider α(k). Since comparisons of α(k) with 0

are quantifier free formulas, Ê–HA
ω
� proves that α(k) ≤ 0 or that α(k) ≥ 0.

Consider the case when α(k) ≤ 0. Suppose that there exists a j such that
α(j)−0 > 2−j+1. Due to the rate of convergence of α, for all t > j, α(t) > 0,
contradicting the k–persistence of α. Thus ¬(0 < α), which is α ≤ 0.
Similarly, in the case that α(k) ≥ 0, we have α ≥ 0.

Restricting item 2 of Theorem 1 to k–persistent reals yields a sequential
statement that is provable in RCA0.

Theorem 9. (RCA0) Fix k ∈ N. If 〈αi〉i∈N is a sequence of k–persistent
reals, then there is a set I ⊂ N such that for all i, i ∈ I implies αi ≤ 0 and
i /∈ I implies αi ≥ 0.

Proof. If 〈αi〉i∈N is a sequence of k–persistent reals, then the set I ⊂ N
defined by I = {i ∈ N | αi(k) ≤ 0} exists by ∆0

1 comprehension and satisfies
the theorem. One could also prove this result by applying Theorem 3.6 of
Hirst and Mummert [5] to Theorem 8.

Next, we present analogous restrictions for trichotomy.

Definition 10. Let α be a real number. We say that α is contractive if for
every s and t > s, either α(s) ≤ α(t) ≤ α(s+ 1) or α(s+ 1) ≤ α(t) ≤ α(s).

Informally, each successive pair of rationals in a contractive real provide
upper and lower bounds for the value of the real. Reals that are k–persistent
and contractive have the added feature that if α(k) and α(k + 1) are not
both positive or both negative, then α = 0. Consequently, trichotomy for
k–persistent contractive reals can be proved constructively.

Theorem 11. (Ê–HA
ω
� ) If α ≥ 0 is k–persistent and contractive, then either

α = 0 or α > 0.
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Proof. Suppose α ≥ 0 is k–persistent and contractive. Note that formulas
involving comparisons of specific rational numbers are quantifier free. Thus

Ê–HA
ω
� proves that either (α(k) ≤ 0∨α(k+1) ≤ 0) or (α(k) > 0∧α(k+1) >

0). In the first case, since α is k–persistent, we know α = 0. In the second
case, α > 0 because α is contractive.

Working in RCA0, we can prove item 3 of Theorem 4 for sequences of
k–persistent contractive reals, as follows.

Theorem 12. (RCA0) If 〈αi〉i∈N is a sequence of non-negative k–persistent
contractive reals, then there is a set I ⊂ N such that for all i, i ∈ I implies
αi = 0 and i /∈ I implies αi > 0.

Proof. Working in RCA0, suppose 〈αi〉i∈N is a sequence of non-negative k–
persistent contractive reals. As above, if αi(k) ≤ 0 or αi(k + 1) ≤ 0, then
αi = 0. Also, if αi(k) > 0 and αi(k + 1) > 0, then αi > 0. Consequently,
the set I defined by I = {i ∈ N | αi(k) ≤ 0 ∨ αi(k + 1) ≤ 0} has the
desired property and exists by ∆0

1 comprehension. (The defining formula is
actually quantifier free.) This result could also be derived from Theorem 11
by applying Theorem 3.6 of Hirst and Mummert [5].

In formulating the definitions for k–persistent and contractive reals, the
authors initially searched for computable restrictions of the sequential state-
ments, and then verified the constructive proofs of the principles for indi-
vidual reals. Thus, working in the reverse mathematics framework can help
indicate potential constructive results. Of course, actual constructive results
immediately yield proofs of computable restrictions of sequential statements,
at least for formulas in Γ1.

4 Variations on persistence

We say that a real is eventually persistent if it is k–persistent for some k.
RCA0 proves that every real is eventually persistent, so Theorem 1 holds with
sequences of eventually persistent reals substituted in item 2. Examination
of the proof of the related computable restriction in Theorem 9 shows that it
does not rely on the assumption that every real in the sequence is k–persistent
for the same k. We only need to know some value for k for each real. This
information can be encoded in an auxiliary function. We say that h : N→ N
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is a modulus of persistence for the sequence of reals 〈αi〉i∈N if for each i, αi
is h(i)–persistent.

Theorem 13. (RCA0) If h is a modulus of persistence for the sequence of
reals 〈αi〉i∈N, then there is a set I ⊂ N such that for all i, i ∈ I implies αi ≤ 0
and i /∈ I implies αi ≥ 0.

Proof. Use the proof of Theorem 9, replacing k by h(i).

In the development of real analysis in reverse mathematics [8], many
results that require WKL0 can be proved in RCA0 for those special cases
where functions have a modulus of uniform continuity. In that setting, the
existence of the modulus is equivalent to WKL0. By contrast, the existence
of moduli of persistence is unexpectedly strong.

Theorem 14. (RCA0) The following are equivalent:

1. ACA0.

2. Every sequence of reals has a modulus of persistence.

Proof. Given a sequence of reals, a modulus of persistence can be easily be
defined by an arithmetical formula using the sequence as a parameter. Thus,
ACA0 proves item 2.

To prove the reversal, we use item 2 to define the range of an injection.
Suppose f : N→ N is one-to-one. Using the bracket notation from the proof
of Theorem 4, define a sequence of reals 〈αi〉i∈N by

αi(n) =

{
2−f

−1(i) if i ∈ f [n]

0 if i /∈ f [n].

Apply item 2 to find a modulus of persistence h for 〈αi〉i∈N. By ∆0
1 com-

prehension, the set X = {i | (∃k ≤ h(i))(f(k) = i)} exists. Clearly, X is a
subset of the range of f . Conversely, if for some k we have f(k) = i, then
for any value j less than k, αi is not lower j–persistent. Thus, k ≤ h(i), and
i will be included in X.

Even though WKL0 is too weak to prove the existence of a modulus of
persistence for a sequence of reals, it does suffice to prove that every sequence
of reals is term-wise equal to a sequence that has a modulus of persistence.
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Theorem 15. (RCA0) The following are equivalent:

1. WKL0.

2. If 〈αi〉i∈N is a sequence of reals, then there is a sequence 〈βi〉i∈N of
0–persistent reals such that for all i ∈ N, αi = βi.

3. If 〈αi〉i∈N is a sequence of reals, then there is a sequence 〈βi〉i∈N of reals
with a modulus of persistence such that for all i ∈ N, αi = βi.

Proof. To show that WKL0 proves item 2, suppose 〈αi〉i∈N is a sequence of
reals. Using WKL0, apply Theorem 1 to find a set I such that for all i, i ∈ I
implies αi ≤ 0 and i /∈ I implies αi ≥ 0. Define βi as follows. If i ∈ I and
j ∈ N, let βi(j) = αi(j+1) if αi(j+1) < 0 and let βi(j) = −2−j−1 otherwise.
If i /∈ I and j ∈ N, let βi(j) = αi(j+ 1) if αi(j+ 1) > 0 and let βi(j) = 2−j−1

otherwise. Straightforward arguments verify that for each i, αi = βi and that
βi is 0–persistent.

Since the constant 0 function is a modulus of persistence of the sequence
〈βi〉i∈N of item 2, clearly item 2 implies item 3. We complete the proof
by deducing WKL0 from item 3, finding a separating set for the ranges of
injections with disjoint ranges. Suppose f and g are one-to-one functions with
disjoint ranges. Construct 〈αi〉i∈N as in the proof of Theorem 1. Apply item
3 to find a term-wise equal sequence of reals with a modulus of persistence,
and then apply Theorem 13 to find the set I. As in the proof of Theorem 1,
I contains the range of g and excludes the range of f .

Our choice of the concept of persistence is by no means unique. For
example, one can prove item 2 of Theorem 1 in RCA0 provided that the
sequence consists only of non-zero reals. Alternatively, one could consider
the following definition. A real α is sticky if

• ∀i((α(i) ≥ 0 ∧ α(i+ 1) ≥ 0)→ α(i+ 2) ≥ 0),

• ∀i((α(i) ≤ 0 ∧ α(i+ 1) ≤ 0)→ α(i+ 2) ≤ 0), and

• ∃i((α(i) ≥ 0 ∧ α(i+ 1) ≥ 0) ∨ (α(i) ≤ 0 ∧ α(i+ 1) ≤ 0)).

Intuitively, if α is sticky and we plot pairs (i, α(i)) for all i, the graph may
alternate above and below the axis for a while, but eventually it will stick
above the axis or below the axis. The preceding results all hold with 0–
persistence or k–persistence replaced by stickiness; we leave these proofs as
exercises for aficionados of sticky things.
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5 Relatively persistent reals

Rather than comparing a real to 0 as in the definition of k–persistent, we can
compare a pair of reals. If α and β are reals, we say that α and β are relatively
k–persistent if α− β is k–persistent. Here α− β is shorthand for α+ (−β),
and addition and unary negation on reals are defined as in Definition II.4.4
of Simpson [8]. Note that RCA0 proves that α− β is k–persistent if and only
if β−α is k–persistent, so the definition does not depend on the order of the
reals. Consider the following result on minima.

Theorem 16. (RCA0) The following are equivalent:

1. WKL0.

2. If 〈〈αji 〉i≤nj
〉j∈N is a sequence of finite sequences of reals, then there is

a function h : N → N such that for every j ∈ N, αjh(j) is a minimum

for 〈αji 〉i≤nj
. That is, αjh(j) ≤ αji for every i ≤ nj.

3. If 〈(αj0, α
j
1)〉j∈N is a sequence of ordered pairs of reals, then there is a

function h : N → 2 such that for every j ∈ N, αjh(j) is a minimum of

(αj0, α
j
1).

4. If 〈αi〉i∈N is a sequence of reals then there is a function h : N→ N such
that for every i ∈ N, αh(i) is a minimum of 〈αj〉j≤i.

Proof. Working in RCA0, to prove that WKL0 implies item 2, construct a
tree T ⊂ N<N as follows. Place the sequence σ of length l in T if and only if
for each j < l there is no witness below l that αjσ(j) is not the minimum of

〈αji 〉i≤nj
. More precisely, σ is in T if and only if for every j < l there is no

i ≤ l and m ≤ nj such that αjσ(j)(i) − 2−i+1 > αjm(i). RCA0 can prove that
T is infinite and that the labels used in level j of the tree are bounded by
nj. Using WKL0, apply Lemma IV.1.4 of Simpson [8] to find an infinite path
through T . The sequence of nodes in the path gives a sequence of values for
a function h that satisfies item 2.

Clearly, item 3 is a special case of 2. To see that item 3 implies WKL0, we
use Theorem 1. let 〈αj〉j∈N be a sequence of reals and consider the sequence
of ordered pairs 〈(βj0, β

j
1)〉j∈N where for all j, βj0 = 0 and βj1 = αj. Apply item

3 and use ∆0
1–comprehension to prove the existence of I = {i ∈ N | h(i) = 1}.

Then I satisfies item 2 of Theorem 1, which is equivalent to WKL0.
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Item 4 is also a special case of item 2, with the finite sequences taken as
initial segments of a single infinite sequence. The proof that item 4 implies
WKL0 is part of Theorem 2 of Hirst [4].

Applying the concept of relatively k–persistent, we can formulate a com-
putable restriction of item 2 of the preceding theorem.

Theorem 17. (RCA0) If 〈〈αji 〉i≤nj
〉j∈N is a sequence of finite sequences of

reals such that each finite sequence is pairwise relatively k–persistent, then
there is a function h : N→ N such that for every j ∈ N, αjh(j) is a minimum

of 〈αji 〉i≤nj
.

Proof. Working in RCA0, use the following process to compute h(j) from
〈αji 〉i≤nj

. Linearly order the elements of 〈αji 〉i≤nj
by starting with αj0. If

αj0, . . . , α
j
i have been linearly ordered, place αji+1 just to the left of the leftmost

αji′ such that αji′(k) − αji+1(k) ≥ 0. (By relative k–persistence, αji′ ≥ αji+1.)

If no such i′ exists, place αji+1 on the extreme right. When all nj elements
have been linearly ordered, let h(j) be the index of the leftmost real.

The process described in the preceding proof can be executed in a weak
constructive setting, proving the following result.

Theorem 18. (Ê–HA
ω
� + QF–AC0,0) Every finite sequence of pairwise rela-

tively k–persistent reals has a minimum.

The finite linear orderings in the proof of Theorem 17 can be thought of as
finite approximations of embeddings of sequences of reals in Q. Consequently,
it is natural to rephrase Theorem 16 as follows.

Theorem 19. (RCA0) The following are equivalent:

1. WKL0.

2. If 〈〈αji 〉i≤nj
〉j∈N is a sequence of finite sequences of reals, then there is

a sequence of embeddings ej : nj + 1→ N such that for all i and i′ less
than or equal to nj, ej(i) ≤ ej(i

′) implies αji ≤ αji′.

3. For every sequence of reals 〈αi〉i∈N there is an embedding e : N → Q
such that for all i and j, e(i) ≤ e(j) implies αi ≤ αj.

13



Proof. To prove that WKL0 proves item 2, use WKL0 and apply Theorem 15
to find 0–persistent forms of all the pairwise differences of the reals from each
finite sequence, acquiring essentially the same information as if each pair was
relatively 0–persistent. Use the construction of Theorem 17 to find the linear
orderings.

To prove that item 2 implies item 3, apply item 2 to the sequence of initial
segments of 〈αi〉i∈N and find linear orderings for each initial segment. Grad-
ually construct e as follows. Suppose e is defined on α0, . . . , αj. To simplify
notation, renumber the indices so that the embedded order matches the order
of the indices. If the finite ordering provided by item 2 on α0, . . . , αj, αj+1 in-
dicates that αj+1 ≤ α0, let e(j+ 1) = e(0)−1. If it indicates that αj ≤ αj+1,
let e(j+1) = e(j)+1. Otherwise, find the least i such that αi ≤ αj+1 ≤ αi+1

or αi+1 ≤ αj+1 ≤ αi, and let e(j + 1) = (e(i) + e(i+ 1))/2.
To show that item 3 implies WKL0, deduce item 2 of Theorem 16 by using

the embedding from item 3 to select minima of initial segments of a sequence
of reals.

Following the pattern of Theorem 17 and Theorem 18, we could use rela-
tive 0–persistence to formulate computable and constructive analogs of item
2 of Theorem 19. If we require that the embeddings of Theorem 19 preserve
equality, the corresponding result acts more like trichotomy and requires
ACA0.

Theorem 20. (RCA0) The following are equivalent:

1. ACA0.

2. If 〈〈αji 〉i≤nj
〉j∈N is a sequence of finite sequences of reals, then there is

a sequence of embeddings ej : nj + 1→ N such that for all i and i′ less
than or equal to nj, ej(i) ≤ ej(i

′) if and only if αji ≤ αji′.

3. For every sequence of reals 〈αi〉i∈N there is an embedding e : N → Q
such that for all i and j, e(i) ≤ e(j) if and only if αi ≤ αj.

Sketch of proof. To show that ACA0 proves item 2, it is easy to show that the
desired sequence of embeddings is arithmetically definable. The proof that
item 2 implies item 3 can be adapted from the similar proof for Theorem 19.
To complete the proof, it suffices to use item 3 to derive item 3 of Theorem 4,
since that statement implies ACA0. Given a sequence of reals 〈αi〉i∈N, define
the sequence 〈βi〉i∈N by β0 = 0 and βi+1 = αi for all i. Applying item 3 to
〈βi〉i∈N, we know that αi = 0 if and only if e(i+ 1) = e(0).

14



As a final exercise, the reader could define the notion of relatively k–
persistent contractive pairs of reals and formulate and prove computable and
constructive restrictions of item 2 of Theorem 20.
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