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Abstract. We analyze Ekeland’s variational principle in the context of reverse mathematics. We
find that that the full variational principle is equivalent to Π1

1-CA0, a strong theory of second-order
arithmetic, while natural restrictions (e.g. to compact spaces or to continuous functions) yield
statements equivalent to weak König’s lemma (WKL0) and to arithmetical comprehension (ACA0).
We also find that the localized version of Ekeland’s variational principle is equivalent to Π1

1-CA0,
even when restricted to continuous functions. This is a rare example of a statement about continuous
functions having great logical strength.

1. Introduction

The field of reverse mathematics, introduced by H. Friedman [10], aims to identify the minimal
foundational assumptions required to prove specific results from several mathematical fields, including
mathematical analysis. There are many advantages to determining these minimal assumptions,
among them aiding in extracting computational content from theorems whose original proofs were
non-constructive. It is also desirable from a methodological perspective to avoid strong set-theoretic
assumptions when possible, and indeed advances in reverse mathematics have shown us that a large
portion of known mathematics can be carried out within a relatively small fragment of second-order
arithmetic [14]. Second-order arithmetic extends the language of Peano arithmetic by adding
variables and quantifiers ranging over sets of natural numbers (see §2); this is sufficient to formalize
many familiar concepts from analysis, including real numbers (and, more generally, points in a
complete separable metric space, also called a Polish space), continuous functions, and open and
closed sets (see §3). One can then ask which axioms are needed to prove (say) the Stone–Weierstrass
theorem in this framework.

Although there are many exceptions, a surprisingly large portion of the theorems analyzed are
equivalent to one of a handful of systems of second-order arithmetic. These axiomatic systems
are always assumed to extend the ‘base theory’ of reverse mathematics, recursive comprehension
(RCA0), and the ones we consider are weak König’s lemma (WKL0), arithmetical comprehension
(ACA0), and Π1

1-comprehension (Π1
1-CA0), listed in strictly increasing order of strength. Each of

RCA0, ACA0 and Π1
1-CA0 include axioms asserting that sets of the form {n ∈ N : ϕ(n)} exist, where

in the case of RCA0, ϕ must express a computable predicate; in the case of ACA0, ϕ may contain
arbitrary quantifiers over natural numbers (but not over sets of natural numbers); and in the case
of Π1

1-CA0, ϕ is of the form ∀Xψ(n,X), where X is a second-order variable and ψ(n,X) contains
no additional second-order quantifiers. Meanwhile, the theory WKL0 asserts that any infinite binary
tree has an infinite branch.

It is known, for example, that the Baire category theorem is provable in RCA0, that the Heine–
Borel theorem is equivalent to WKL0, and that the Stone–Weierstrass theorem is equivalent to ACA0.
As we will see throughout the text, there are many more examples of theorems equivalent to these
theories. On the other hand, statements equivalent to Π1

1-CA0 are much more difficult to come by.
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One example is the Cantor–Bendixson theorem, stating that any closed subset of a Polish space can
be written as the union of a countable set and a perfect set.

From a logical perspective, there is a vast gap in strength between the systems ACA0 and Π1
1-CA0.

ACA0 may be thought of as the second-order analog of the familiar first-order system of Peano
arithmetic (PA). Indeed, ACA0 is conservative over PA, meaning that for every first-order statement
ϕ (i.e., for every ϕ that may contain quantifiers over natural numbers but not over sets of natural
numbers), ϕ is provable in ACA0 if and only if it is provable in PA. Both ACA0 and PA have
proof-theoretic ordinal ε0. In computational terms, ACA0 is characterized by the existence of Turing
jumps. That is, over RCA0, ACA0 is equivalent to the statement “for every set X, the Turing
jump of X is also a set.” Π1

1-CA0, on the other hand, is a squarely impredicative system whose
proof-theoretic ordinal is far above Γ0. In fact, its proof-theoretic ordinal is far above even the
Bachmann–Howard ordinal. In computational terms, Π1

1-CA0 is characterized by the existence
of hyperjumps. That is, over RCA0, Π1

1-CA0 is equivalent to the statement “for every set X, the
hyperjump of X is also a set.” See [14] for analyses of the Heine–Borel, Stone–Weierstrass, and
Cantor–Bendixson theorems and for characterizations of ACA0 and Π1

1-CA0 in terms of jumps and
hyperjumps, and see [13] for an ordinal analysis of Π1

1-CA0.
Our goal in this article is to study Ekeland’s variational principle [5] in the context of reverse

mathematics. This principle states that under certain conditions, lower semi-continuous functions
on complete metric spaces always attain ‘approximate minima,’ which we call critical points. In
his original paper [5] and the survey [6], Ekeland provides many applications of his variational
principle, centered around optimization problems concerning minimal surfaces, partial differential
equations, geodesics, the geometry of Banach spaces, control theory, and more. Ekeland’s variational
principle has been studied extensively, leading to many variants and extensions (see e.g. [1, 11]).
The variational principle can also be used to give an easy proof of Caristi’s fixed point theorem [3],
whose logical strength we analyze in forthcoming work [7–9].

A priori, an analysis of Ekeland’s variational principle in reverse mathematics is a natural and
interesting project. Ekeland’s variational principle is a well-known and important result, and
understanding its computational content could lead to algorithms for approximating critical points,
or at least to determining that no such algorithm exists. From a technical perspective, lower semi-
continuous functions have not yet received much attention in reverse mathematics, and developing
a theory of these functions in second-order arithmetic is an interesting endeavor on its own (see §4).

However, a posteriori the analysis of Ekeland’s variational principle is even more interesting
and quite surprising: as we will see, natural restrictions of the result (e.g. to compact spaces, to
continuous f) yield statements equivalent over RCA0 to each of WKL0, ACA0, and Π1

1-CA0, including
what is, to the best of our knowledge, the first statement about continuous functions stemming from
analysis that is equivalent to Π1

1-CA0.
Before diving into formal systems, let us discuss the variational principle in more detail and

sketch a proof. Let R = R ∪ {±∞}, where we stipulate that sup∅ = −∞ and inf ∅ =∞. If X is a
metric space, recall that a function f : X → R is lower semi-continuous if for every x ∈ X and every
λ < f(x), there is a δ > 0 such that whenever d(x, y) < δ, it follows that f(y) > λ. The notion of
an upper semi-continuous function is defined dually. Clearly, a function that is both upper and
lower semi-continuous is continuous. Additionally, recall the following well-known characterization
of semi-continuity.

Lemma 1.1. Let X be a metric space. A function f : X → R is

(a) lower semi-continuous if and only if {(x, y) ∈ X × R : f(x) ≤ y} is closed;
(b) upper semi-continuous if and only if {(x, y) ∈ X × R : f(x) ≥ y} is closed.

If f : X → R≥0 is continuous but X is not compact, then f may not attain its infimum, and since
every continuous function is also lower semi-continuous, the same holds of lower semi-continuous
functions. Nevertheless, Ekeland’s variational principle states that f has points that are in a sense
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approximate local minima, and we call these points ε-critical points. For the sake of brevity, we will
often refer to lower semi-continuous functions f : X → R≥0 as potentials.

Definition 1.2. Let X be a metric space, let ε > 0, and let f : X → R≥0 be a potential. A point
x∗ ∈ X is an ε-critical point of f if

(∀y ∈ X )[(εd(x∗, y) ≤ f(x∗)− f(y))→ y = x∗].

Ekeland’s variational principle then reads as follows.

Theorem 1.3 (Ekeland [5]). If X is a complete metric space and f : X → R≥0 is any potential,
then for every ε > 0, f has an ε-critical point x∗.

Moreover, for any x0 ∈ X , we can choose x∗ so that

εd(x0, x∗) ≤ f(x0)− f(x∗). (1)

In the literature, it is often assumed that f(x0) ≤ ε + inf(f), in which case (1) is replaced by
d(x0, x∗) ≤ 1. We refer to Theorem 1.3 without (1) as the free variational principle (FVP) and with
(1) as the localized variational principle (LVP); note that Ekeland instead calls these the weak and
strong principles, respectively.

Let us sketch a proof similar to that presented by Du [4], which is based on one given by Brézis and
Browder [2] in a more general order-theoretic setting. Suppose that X is a complete metric space, let
x0 ∈ X , and let f : X → R≥0 be any potential. For ε > 0, define a partial order 4ε on X given by
y 4ε x if and only if εd(x, y) ≤ f(x)− f(y). For x ∈ X , define S(x) = {y ∈ X : y 4ε x}. Then we
construct a sequence (xn : n < ω) by letting xn+1 ∈ S(xn) be such that f(xn+1) < inf f [S(xn)]+2−n.
It is not too hard to check that (xn : n < ω) is Cauchy and hence converges to some x∗ ∈ X , and,
using the fact that f is lower semi-continuous, that f(x∗) ≤ f(xn) for all n < ω. From this it readily
follows that x∗ is ε-critical and satisfies (1); we leave the details to the reader.

As it turns out, there are some issues when attempting to formalize this argument in second-order
arithmetic. The sets S(xn) are closed, and finding infima of lower semi-continuous functions on
closed sets requires Π1

1-CA0 in general. It is easier to formalize the argument when S(xn) is open and
f is continuous, and we can achieve this by replacing S(xn) by a suitable open set. However, this
modification typically causes (1) to fail. In fact, we obtain that the FVP for continuous functions
is equivalent to ACA0 (§7), while the LVP is equivalent to Π1

1-CA0, even when f is assumed to
be continuous (§10). This last result is particularly interesting because it gives an example of a
statement about continuous functions that is equivalent to Π1

1-CA0; typically the mathematics of
continuous functions can be carried out in ACA0 and below.

By tweaking other parameters in the statement, for example taking X to be compact or even to be
a specific space such as the unit interval, we obtain several variants of the variational principle, each
equivalent to one of WKL0, ACA0 or Π1

1-CA0. The equivalence between these theories and variational
principles is established over RCA0, and hinges on known equivalences, e.g. the equivalence between
ACA0 and the fact that every increasing sequence of rationals bounded above has a supremum. The
main reversals are found in §9. A full summary of our main results is found in §11.

2. Subsystems of second-order arithmetic

In this section we review the subsystems of second-order arithmetic we will be working with,
loosely following the presentation of Simpson [14]. Let us first settle conventions regarding syntax.
The language of second-order arithmetic consists of first-order variables intended to range over
natural numbers; second-order variables intended to range over sets of natural numbers; constant
symbols 0 and 1; 2-ary function symbols + and ×; and 2-ary relation symbols =, <, and ∈.
Terms and formulas are built from variables, constant symbols, function symbols, relation symbols,
propositional connectives (¬, ∧, ∨, etc.), and the quantifiers ∀ and ∃. The equality relation symbol
is restricted to first-order objects. Equality for second-order objects is defined via ∈, and we write
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X = Y as an abbreviation for ∀n(n ∈ X ↔ n ∈ Y ). Similarly, we write X ⊆ Y as an abbreviation
for ∀n(n ∈ X → n ∈ Y ).

We use ∆0
0 to denote the class of all formulas, possibly with parameters, where no second-order

quantifiers appear and all first-order quantifiers are bounded; that is, of the form ∀x(x < t → ϕ)
or ∃x(x < t ∧ ϕ). We simultaneously define Σ0

0 = Π0
0 = ∆0

0, and we recursively define Σ0
n+1 to be

the set of all formulas of the form ∃xϕ with ϕ ∈ Π0
n and similarly define Π0

n+1 to be the set of

all formulas of the form ∀xϕ with ϕ ∈ Σ0
n. We denote by Π0

ω the union of all Π0
n; these are the

arithmetical formulas. The classes Σ1
n and Π1

n are defined analogously by counting alternations of
second-order quantifiers and setting Σ1

0 = Π1
0 = ∆1

0 = Π0
ω.

We use Robinson arithmetic Q as our background theory, which essentially consists of the axioms
of PA without induction (see [12, Definition I.1.1]). When added to the basic axioms of Q, the
following schemes axiomatize many of the theories we consider. Below, Γ denotes a class of formulas.

• Γ-CA : ∃X∀x
(
x ∈ X ↔ ϕ(x)

)
, where ϕ ∈ Γ and X is not free in ϕ;

• ∆0
1-CA : ∀x

(
π(x)↔ σ(x)

)
→ ∃X∀x

(
x ∈ X ↔ σ(x)

)
, where σ ∈ Σ0

1, π ∈ Π0
1, and X is not

free in σ;
• IΓ : ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x+ 1)

)
→ ∀x ϕ(x), where ϕ ∈ Γ.

Recursive comprehension, the base theory of second-order arithmetic, is defined as

RCA0 : Q + IΣ0
1 + ∆0

1-CA.

We also define the theory of arithmetical comprehension ACA0 : RCA0 + Σ0
1-CA and the much

stronger theory Π1
1-CA0 : ACA0 + Π1

1-CA. This gives us three of the four important theories that we
consider; the fourth, WKL0, requires formalizing trees in second-order arithmetic.

RCA0 suffices to define a bijective pairing function 〈·, ·〉 : N2 → N that is increasing in both
coordinates, such as 〈x, y〉 = (x+ y)(x+ y + 1)/2. We also use 〈·, ·〉 to denote a pairing function on
sets, which may also be defined in a standard way. With this, a binary relation is a pair of sets
〈A,R〉 with A,R ⊆ N, where the elements of R are of the form 〈n,m〉 with n,m ∈ A. When a
binary relation F is meant to represent a function, we write y = F (x) instead of 〈x, y〉 ∈ F .

RCA0 also suffices to implement the typical codings of finite sequences of natural numbers as
natural numbers (see [14, Section II.2], for example). The set of all finite sequences of natural
numbers is denoted N<N. We write σ v τ if σ is an initial segment of τ , σ @ τ if σ is a proper initial
segment of τ , and define ↓σ = {τ ∈ N<N : τ v σ}. If x : N → N and n ∈ N, we write x�n for the
finite sequence (x(i))i<n. We extend the use of @ by writing σ @ x whenever σ = x�n for some n.

Definition 2.1. A tree is a set T ⊆ N<N such that ∀σ(σ ∈ T → ↓σ ⊆ T ). We say that T is a
binary tree if T ⊆ {0, 1}<N, that is, if all entries appearing in elements of T are either 0 or 1. When
T ⊆ N<N is a tree, we say that an infinite sequence x is a path through T if ∀n(x�n ∈ T ). The
collection of all paths through T is denoted [T ].

Say that a set X ⊆ N is finite if it is bounded above, and say that X is infinite otherwise. With
this, we define the axiom WKL to be the natural formalization of the following theorem.

Theorem 2.2 (König). Every infinite binary tree has an infinite path.

For reference, we list the theories we have defined in increasing order of strength:

RCA0 : Q + IΣ0
1 + ∆0

1-CA;
WKL0 : RCA0 + WKL;
ACA0 : RCA0 + Σ0

1-CA;
Π1

1-CA0 : ACA0 + Π1
1-CA.

The standard reference for second-order arithmetic is Simpson’s [14], and we refer the reader to
it for a complete treatment of all the material mentioned above.
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3. Metric spaces in second-order arithmetic

Part of the appeal of second-order arithmetic as a foundational system for mathematics is that it
suffices to develop a large part of mathematical analysis, particularly when dealing with complete
separable metric spaces. However, this requires some coding machinery. In this section, we review
this machinery and establish notation that will be used throughout.

First, we assume that Q is represented in some standard way using e.g. pairs of natural numbers
and that R is represented by rapidly converging Cauchy sequences of rationals as in [14, Section II.4].
We use the notation Q>0 = {q ∈ Q : q > 0}, and we define Q≥0, R≥0, etc. analogously.

Definition 3.1 (RCA0; see [14, Definition II.5.1]). A (code for a) complete separable metric space

X = X̂ is a non-empty set X ⊆ N together with a sequence of real numbers d : X ×X → R≥0 such

that d(a, a) = 0, d(a, b) = d(b, a) ≥ 0, and d(a, b) + d(b, c) ≥ d(a, c) for all a, b, c ∈ X. A point of X̂

is a sequence x = (xi)i∈N of elements of X such that for all i ≤ j, d(xi, xj) ≤ 2−i. We write x ∈ X̂
to mean that x is a point of X̂. We identify a ∈ X with the sequence (a)i∈N and consider X as a

dense subset of X̂. We set d(x, y) = limn→∞ d(xn, yn), and write x =X y if d(x, y) = 0 (subscripts
will be omitted if there is no confusion).

We use either notation X or X̂ to denote complete separable metric spaces. The symbol X̂
emphasizes that the space is coded by the dense set X (and the metric on X). The following spaces
appear throughout.

(1) The real line, R, with dense set the rational numbers, Q, equipped with the usual metric.
Closed subintervals of R may be represented similarly, where the dense set for [a, b] is
Q ∩ [a, b].

(2) The Baire space, with dense set the set of sequences x ∈ NN that are eventually zero and

d(x, y) = max
(
{0} ∪

{
2−n : x(n) 6= y(n)}

)
.

(3) The Cantor space, which is {0, 1}N (also denoted 2N) seen as a subspace of the Baire space.
(4) C

(
[a, b]

)
with a < b rational numbers. The dense set is given by piecewise linear continuous

functions f : [a, b]→ R with rational breakpoints, each represented by finitely many pairs
〈x, f(x)〉 ∈ Q×Q. The metric is d(f, g) = maxx∈[a,b] |f(x)− g(x)|.1

In the cases of the Baire space and the Cantor space, a sequence that is eventually zero may be
represented via an appropriate finite initial segment and hence as a natural number. If σ is a finite
sequence, then where convenient we identify σ with σa0N, which is the infinite sequence beginning
with σ and is then identically zero. We remark also that the official dense set for C

(
[a, b]

)
in [14] is

the set of polynomial functions f : [a, b]→ Q with rational coefficients, but piecewise linear functions
are more convenient for us. The two presentations are equivalent over RCA0 (see [14, Example
II.10.3 and Lemma IV.2.4]).

Definition 3.2 (RCA0; see [14, Definition II.5.6]). Let X̂ be a complete separable metric space. A
(code for a) rational open ball Br(a) is an ordered pair 〈a, r〉, with a ∈ X and r ∈ Q>0. We define
Br(a) D Bq(b) if d(a, b) + r < q.

A (code for an) open set U in X̂ is a set U ⊆ N × X × Q>0, where a point x ∈ X̂ is said to
belong to U (abbreviated x ∈ U) if it satisfies the Σ0

1 condition ∃n∃a∃r(d(x, a) < r ∧ (n, a, r) ∈ U).

A (code for a) closed set C is the same as a code for its complement X̂ \ C, except we define x ∈ C if

x 6∈ X̂ \ C.

1We emphasize that C
(
[a, b]

)
is the space of uniformly continuous functions f : [a, b] → R that have moduli of

uniform continuity in the sense of [14, Definition IV.2.1]. The statement “every continuous function f : [a, b] → R has
a modulus of uniform continuity” is equivalent to WKL0 over RCA0.
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The intuition behind the above definition is that a code for an open set is an enumeration of
rational open balls. If U ⊆ N × X × Q>0 codes an open set, then the rational open ball Br(a)
appears in the enumeration if there is an n with (n, a, r) ∈ U .

We remark that for X ⊆ R, we may represent basic open sets in the form (a− r, a+ r) rather
than Br(a), and we will often prefer this representation. On occasion we will regard closed balls (or,
more precisely, closures of balls) as metric spaces in their own right, in which case if Br(a) is a ball

in X̂, then Br(a) is the subspace with dense set Br(a) ∩X.
We may also reason about compactness within second-order arithmetic.

Definition 3.3 (RCA0; see [14, Definition III.2.3]). A complete separable metric space X is compact
if there is a sequence of finite sequences ((xi,j : j < ni) : i ∈ N) of points in X such that

(∀z ∈ X )(∀i ∈ N)(∃j < ni)(d(z, xi,j) < 2−i).

We say that X is Heine–Borel compact if for every sequence (Brk(ak) : k ∈ N) of rational open balls
such that (∀x ∈ X )(∃k ∈ N)(x ∈ Brk(ak)), there is an N ∈ N such that (∀x ∈ X )(∃k < N)(x ∈
Brk(ak)).

What we call ‘compact’ might be more properly called ‘uniformly (or effectively) totally bounded,’
but when working with complete separable metric spaces in second-order arithmetic, the convention
is to use ‘compact’ for this notion, and we do not wish to deviate. WKL0 is required to show that
every compact (in the above sense) complete separable metric space is Heine–Borel compact.

Theorem 3.4 (see [14, Theorem IV.1.2 and Theorem IV.1.5]). The following are equivalent over
RCA0.

(1) WKL0.
(2) Every compact complete separable metric space is Heine–Borel compact.
(3) The unit interval [0, 1] is Heine–Borel compact.

Sequential compactness is an even stronger notion. ACA0 is required to show that every compact
space is sequentially compact.

Theorem 3.5 (see [14, Theorem III.2.2 and Theorem III.2.7]). The following are equivalent over
RCA0.

(1) ACA0.
(2) Every infinite sequence of points in a compact complete separable metric space has a conver-

gent subsequence.
(3) Every infinite sequence of points in [0, 1] has a convergent subsequence.
(4) Every increasing (or decreasing) sequence of points in [0, 1] converges.
(5) Every increasing (or decreasing) sequence of rational points in [0, 1] converges.

Note that the equivalence with (5) is not stated explicitly in [14], but it follows from the proof of
Theorem III.2.2 given there. We conclude this section by defining continuous functions between
complete separable metric spaces. The idea is to code a continuous function f : X → Y by an
enumeration of (codes for) pairs of open balls 〈Br(a), Bq(b)〉, where Br(a) ⊆ X and Bq(b) ⊆ Y. If
the pair 〈Br(a), Bq(b)〉 appears in the enumeration, then this means that f maps Br(a) into the
closure of Bq(b).

Definition 3.6 (RCA0; [14, Definition II.6.1]). Let X = X̂ and Y = Ŷ be complete separable metric
spaces. A continuous partial function f : X → Y is coded by a set Φ ⊆ N×X ×Q>0 × Y ×Q>0

that satisfies the properties below. Let us write Br(a)
Φ→ Bs(b) for ∃n

(
(n, a, r, b, s) ∈ Φ

)
. Then, for

all a, a′ ∈ X, all b, b′ ∈ Y , and all r, r′, s, s′ ∈ Q>0, Φ must satisfy:

(cf1) if Br(a)
Φ→ Bs(b) and Br(a)

Φ→ Bs′(b
′), then d(b, b′) ≤ s+ s′;
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(cf2) if Br(a)
Φ→ Bs(b) and Br′(a

′) D Br(a), then Br′(a
′)

Φ→ Bs(b);

(cf3) if Br(a)
Φ→ Bs(b) and Bs(b) D Bs′(b

′), then Br(a)
Φ→ Bs′(b

′).

A point x ∈ X is in the domain of the function f coded by Φ if, for every ε > 0, there are

Br(a)
Φ→ Bs(b) such that d(x, a) < r and s < ε. If x ∈ dom(f), we define the value f(x) to be the

unique point y ∈ Y such that d(y, b) ≤ s for all Br(a)
Φ→ Bs(b) with d(x, a) < r. A continuous

function is a continuous partial function f : X → Y with dom(f) = X . In case Y = R, we often

write Br(a)
Φ→ (u, v) for Br(a)

Φ→ Bs(b) with u = b− s and v = b+ s.

To reason about the values of coded continuous functions, it often helps to think in the following
way. Suppose that Φ codes a continuous function f : X → Y. If x ∈ X and y ∈ Y are such that for

every ε > 0 there are Br(a)
Φ→ Bs(b) with x ∈ Br(a), y ∈ Bs(b), and s < ε, then f(x) = y.

The following lemmas are useful for constructing codes of open sets, closed sets, and continuous
functions.

Lemma 3.7 ([14, Lemma II.5.7]). For a given Σ0
1 formula ϕ(x), the following is provable within

RCA0. Let X = X̂ be a complete separable metric space. If x =X y implies ϕ(x)↔ ϕ(y), then there
exists (a code for) an open set U ⊆ X such that ϕ(x)↔ x ∈ U .

This lemma guarantees that a Σ0
1-definable subset of a complete separable metric space is an

open set, and thus a Π0
1-definable subset is a closed set. Note that this lemma holds uniformly. In

other words, if ϕ(x, i) is a Σ0
1 formula that defines a subset of X for each i ∈ N, then there exists a

sequence of codes for open sets (Ui)i∈N such that ϕ(x, i)↔ x ∈ Ui.
Intuitively, the following lemma states that if a function is uniformly continuous in an effective

way and the values of the function can be computed on a dense set (e.g., if f(x) is provided by
elementary functions, by power series, etc.), then there is a code for the function. This property
also holds restricted to any open set.

Lemma 3.8 (RCA0). Let X = X̂ and Y = Ŷ be complete separable metric spaces, and let U ⊆ X
be an open set. Assume that (〈ai, yi〉 : i ∈ N) is a sequence of points in X ×Y and that h : N→ N is
a function such that

• (ai)i∈N enumerates all points in U ∩X,

• dX (ai, aj) < 2−h(n) implies dY(yi, yj) < 2−n for all i, j, n ∈ N.

Then, there exists (a code for) a continuous function f : U → Y such that f(ai) = yi for all i ∈ N.
(In fact, h is a modulus of uniform continuity for f ; see [14, Definition IV.2.1].)

Proof. Let U be the code for U . Define a code Φ for a continuous partial function f : X → R so

that Br(a)
Φ→ Bs(b) if and only if the quadruple (a, r, b, s) ∈ X ×Q>0 × Y ×Q>0 satisfies

• Br(a) D Br′(a
′) for some (n, a′, r′) ∈ U , and

• Br(a) D B2−h(n)−1(ai) and B2−n(yi) D Bs(b) for some n, i ∈ N.

The code Φ exists because the above conditions can be described by a Σ0
1 formula. It is easy to see

that Φ satisfies (cf2) and (cf3) of Definition 3.6. We show that Φ also satisfies (cf1). Assume

that Br(a)
Φ→ Bs(b) and Br(a)

Φ→ Bs′(b
′), where in each case the second condition is satisfied by

n, ai, yi and m, aj , yj , respectively. Without loss of generality, we may assume that n ≤ m and that

h is non-decreasing. Since a ∈ B2−h(n)−1(ai) ∩ B2−h(m)−1(aj), we have dX (ai, aj) < 2−h(n). Then
dY(yi, yj) < 2−n, and thus yj ∈ B2−n(yi) ⊆ Bs(b). Hence yj ∈ Bs(b) ∩ Bs′(b′), which implies that
dY(b, b′) ≤ s+ s′.

Finally, we check that U = dom(f) and f(ai) = yi. If x /∈ U , then x /∈ dom(f) by the first
condition, thus we have dom(f) ⊆ U . For the converse, assume that x ∈ U and ε > 0. Take
(n′, a′, r′) ∈ U so that x ∈ Br′(a′) and n ∈ N so that 2−n+1 < ε, and then take r ∈ Q>0 so that
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B2r(x) D Br′(a
′) and r < 2−h(n)−1. Pick a point a = ai ∈ U ∩X so that dX (x, a) < r and a point

b ∈ Y so that dY(yi, b) < 2−n, and put s = 2−n+1. Then we have Br(a)
Φ→ Bs(b) and x ∈ Br(a).

Since ε was arbitrary and s < ε, this means that x ∈ dom(f). If x = aj for some j ∈ N in the above,

then i can be always chosen to be equal to j, and thus one can find Br(a)
Φ→ Bs(b) with aj ∈ Br(a),

yj ∈ Bs(b) and s < ε for all ε > 0. This means that f(aj) = yj for all j ∈ N. �

We also remark that continuous partial functions can be patched together, provided they are
mutually compatible.

Lemma 3.9 (RCA0; [15, Lemma 3.31]). Let X = X̂ and Y = Ŷ be complete separable metric
spaces. Assume that (Ui, fi)i∈N is a sequence of pairs of (codes for) open sets Ui ⊆ X and continuous
functions fi : Ui → Y such that fi(x) = fj(x) for any i, j ∈ N and x ∈ Ui ∩ Uj. Then, there exists
(a code for) a continuous function f̄ :

⋃
i∈N Ui → Y such that f̄(x) = fi(x) for all i ∈ N and x ∈ Ui.

Notice that the above lemmas also hold uniformly. For Lemma 3.8, if we are given a sequence
(〈ai,j , yi,j〉i∈N,Uj , hj : j ∈ N), where 〈ai,j , yi,j〉i∈N, Uj and hj satisfy the conditions of Lemma 3.8 for
all j ∈ N, then we may obtain a sequence of continuous functions (fj : Uj → Y)j∈N.

Finally, we consider products of finitely many metric spaces (Xi : i < n). In [14, Example II.5.4],
product spaces are defined via the Euclidean metric, but for our purposes it is more convenient to
use the ‘max’ metric instead.

Definition 3.10 (RCA0; see [14, Example II.5.4]). Let (Xi : i < n) be complete separable metric
spaces coded by dense sets (Xi : i < n) and metrics (di : i < n). The product space X =

∏
i<nXi

is the complete separable metric space coded by the dense set X =
∏
i<nXi and the metric

d : X ×X → R where

d(~a,~b) = max
i<n

di(ai, bi).

Products of metric spaces will be very useful to us. For example, we may use them to define
Banach spaces in the context of second-order arithmetic: these are simply metric spaces X equipped
with a designated element 0 ∈ X and total, continuous functions +: X ×X → X and · : R×X → X
such that if we define ‖x‖ = d(x,0), then (X ,0,+, ·, ‖ · ‖) satisfies the standard definition of a
normed vector space. On occasion we will make free use of the fact that some of the spaces we
consider, such as C

(
[0, 1]

)
, come equipped with a standard Banach space structure.

If X =
∏
i<nXi is the product of the complete separable metric spaces (Xi : i < n), then, officially,

the basic open sets in X are those of the form Br(~a), where ~a ∈
∏
i<nXi and r ∈ Q>0. However,

when working with X , it is often more convenient to think of the basic open sets as being the sets
of the form

∏
i<nBri(ai), where each Bri(ai) is a basic open set in Xi. The following lemma says

that in RCA0 we can uniformly translate between the two styles of basic open sets when coding
open sets. Therefore we may always use the style of open set that is most convenient.

Lemma 3.11 (RCA0). Let (Xi : i < n) be complete separable metric spaces coded by dense sets
(Xi : i < n) and metrics (di : i < n). Let X =

∏
i<nXi and d code X =

∏
i<nXi as in

Definition 3.10.

(i) There is a function f :
∏
i<n(Xi ×Q>0)× N→ X ×Q>0 such that, for every

(a0, r0, . . . , an−1, rn−1) ∈
∏
i<n

(Xi ×Q>0),

f(a0, r0, . . . , an−1, rn−1, ·) enumerates an official code for the unofficial basic open set∏
i<n

Bri(ai) ⊆ X .
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(ii) For every 〈~a, r〉 ∈ X × Q>0, Br(~a) =
∏
i<nBr(ai). Thus the function g : X × Q>0 →∏

i<n(Xi × Q>0) given by g(~a, r) = (a0, r, . . . , an−1, r) translates the code 〈~a, r〉 for the
official basic open set Br(~a) to the code (a0, r, . . . , an−1, r) for the equivalent unofficial basic
open set

∏
i<nBr(ai).

Proof. (i) The function f exists by Lemma 3.7 because the unofficial basic open set
∏
i<nBri(ai) is

Σ0
1 uniformly in (a0, r0, . . . , an−1, rn−1).
(ii) Let ~x ∈ X . Then ~x ∈ Br(~a) if and only if d(~a, ~x) < r if and only if maxi<n di(ai, xi) < r, if

and only if (∀i < n)(di(ai, xi) < r), if and only if ~x ∈
∏
i<nBr(ai). Thus Br(~a) =

∏
i<nBr(ai). �

4. Semi-continuous functions in second-order arithmetic

Although continuous functions have been extensively studied in the context of second-order
arithmetic, lower semi-continuous functions have received less attention. Fortunately, they admit a
natural representation in the spirit of Definition 3.6.

Definition 4.1 (RCA0). Let X = X̂ be a complete separable metric space. A code for a lower
semi-continuous function f : X → R is a set Ψ ⊆ N ×X × Q>0 × Q that satisfies the properties

below. Let us write Br(a)
Ψ
⇁ q for ∃n((n, a, r, q) ∈ Ψ). Then, for all a, a′ ∈ X, all q, q′ ∈ Q, and all

r, r′ ∈ Q>0, Ψ must satisfy:

(lsc1) if Br(a)
Ψ
⇁ q and Br′(a

′) D Br(a), then Br′(a
′)

Ψ
⇁ q, and

(lsc2) if Br(a)
Ψ
⇁ q and q′ < q, then Br(a)

Ψ
⇁ q′.

For x ∈ X and y ∈ R we define f(x) = y if

y = sup{q ∈ Q : (∃〈a, r〉 ∈ X ×Q>0)(Br(a)
Ψ
⇁ q ∧ d(x, a) < r)}.

The relation f thus defined is a lower semi-continuous function if (∀x ∈ X )(∃y ∈ R)(f(x) = y). The
support of f , denoted supp(f), is the collection {x ∈ X : f(x) ∈ R}. We do not assume that supp(f)
exists as any kind of coded set in RCA0. An assertion of the form x ∈ supp(f) is to be taken as an
abbreviation for (∃y ∈ R)(f(x) = y).

If b ∈ Q is such that for every a ∈ X and r ∈ Q>0 there is m ∈ N such that (m, a, r, b) ∈ Ψ, we
say that Ψ is a code of a lower semi-continuous function f : X → R≥b. If b = 0, we call the function
coded by Ψ a potential.

Suppose that X is a complete separable metric space. As with Definition 3.6, the idea behind
Definition 4.1 is that Ψ enumerates pairs 〈Br(a), q〉 with the property that if f is the function
being coded by Ψ, then f maps Br(a) ∩ dom(f) into [q,∞]. One may define upper semi-continuous
partial functions from X to R by appropriately dualizing Definition 4.1, in which case we write

Br(a)
Ψ
⇀ q for the dual of Br(a)

Ψ
⇁ q. We remark that according to our definition, any code for a

lower semi-continuous function defines a function f : X → R, as, recalling that sup∅ = −∞, we see
that every subset of R has a supremum in R. However, this fact is not provable in RCA0. For this
reason, lower semi-continuous functions are defined with the explicit assumption that f is defined
everywhere. See Remark 4.4 for further discussion.

Next we show that RCA0 proves a version of Lemma 1.1, which we take as evidence that
Definition 4.1 is a reasonable definition of semi-continuity for use in RCA0. Indeed, we prove
an RCA0 version of the fact that a function f : X → R is lower semi-continuous if and only if
{〈x, y〉 ∈ X × R : f(x) ≤ y} is closed.

Proposition 4.2 (RCA0). Let X be a complete separable metric space.

(i) If f : X → R is lower semi-continuous, then {〈x, y〉 ∈ X × R : f(x) ≤ y} is closed.
(ii) If C ⊆ X × R is a closed set such that

• for every x ∈ X and y, z ∈ R, if 〈x, y〉 ∈ C and z ≥ y, then 〈x, z〉 ∈ C, and
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• for every x ∈ X , inf{y ∈ R : 〈x, y〉 ∈ C} exists
then there is a lower semi-continuous function f : X → R such that C = {〈x, y〉 ∈ X × R :
f(x) ≤ y}.

Proof. (i) Let f be coded by Φ. Then f(x) > y if and only if there exists (a, r, q) ∈ X ×Q>0 ×Q
such that Br(a)

Φ
⇁ q ∧ d(x, a) < r ∧ y < q. Thus, {〈x, y〉 ∈ X ×R : f(x) > y} is Σ0

1-definable, hence
it is open by Lemma 3.7.
(ii) Let C be a closed set as in the statement of (ii), and let U be the complement of C. Enumerate a

code Φ for a lower semi-continuous function f by enumerating Br(a)
Φ
⇁ q whenever U enumerates

an open set Bs(b) × (u, v) with Br(a) D Bs(b) and q < v. We show that, for every x ∈ X , f(x)
exists and equals inf{z ∈ R : 〈x, z〉 ∈ C} (which exists by the assumptions on C). So let x ∈ X , and
let y = inf{z ∈ R : 〈x, z〉 ∈ C}. We need to show that

y = sup{q ∈ Q : (∃〈a, r〉 ∈ X ×Q>0)(Br(a)
Φ
⇁ q ∧ d(x, a) < r)}.

Suppose that q ∈ Q is such that there is a ball Br(a) ⊆ X with x ∈ Br(a) and Br(a)
Φ
⇁ q. By

the definition of Φ, there is a Bs(b)× (u, v) ⊆ U where Br(a) D Bs(b) and q < v. From this we can
conclude that if z ∈ R is such that 〈x, z〉 ∈ C, then q < z. If not, then by the first assumption on C,
there would be a z such that 〈x, z〉 ∈ C and z ∈ (u, v). This implies that 〈x, z〉 ∈ Bs(b)× (u, v) ⊆ U ,
which contradicts that U is the complement of C. Thus q ≤ y because y = inf{z ∈ R : 〈x, z〉 ∈ C}.

We have shown that y is an upper bound on the q ∈ Q for which there is a Br(a) ⊆ X with

x ∈ Br(a) and Br(a)
Φ
⇁ q. We need to show that y is least. So consider a z < y. Then 〈x, z〉 /∈ C

because y = inf{z ∈ R : 〈x, z〉 ∈ C}. Then there is a Bs(a)× (u, v) enumerated into U that contains

〈x, z〉. Let r < s be such that x ∈ Br(a) D Bs(a), and let q ∈ Q ∩ (z, v). Then Br(a)
Φ
⇁ q by the

definition of Φ. Thus x ∈ Br(a) and Br(a)
Φ
⇁ q, but z < q. So z is not an upper bound on the

q ∈ Q for which there is a Br(a) ⊆ X with x ∈ Br(a) and Br(a)
Φ
⇁ q. Thus y is indeed the required

supremum.
We have shown that, for all x ∈ X , f(x) = inf{z ∈ R : 〈x, z〉 ∈ C}. It is now easy to see that, for

〈x, y〉 ∈ X × R, f(x) ≤ y if and only if inf{z ∈ R : 〈x, z〉 ∈ C} ≤ y if and only if 〈x, y〉 ∈ C. �

The analogous properties of upper semi-continuous functions can be proved by dualizing Proposi-
tion 4.2.

The next proposition is an RCA0 version of the fact that a function f : X → R is continuous if
and only if it is upper semi-continuous and lower semi-continuous.

Proposition 4.3 (RCA0). Let X be a complete separable metric space.

(i) If f : X → R is continuous, then there are a lower semi-continuous g : X → R and an upper
semi-continuous h : X → R such that (∀x ∈ X )(f(x) = g(x) = h(x)).

(ii) If g : X → R is lower semi-continuous, h : X → R is upper semi-continuous, and (∀x ∈
X )(g(x) = h(x)), then there is a continuous partial f : X → R with dom(f) = supp(g) =
supp(h) such that (∀x ∈ dom(f))(f(x) = g(x) = h(x)).

Proof. (i) Let Φ be a code for a continuous f : X → R. Define a code Γ for a lower semi-continuous

g : X → R by enumerating Br(a)
Γ
⇁ q whenever Bs(b)

Φ→ (u, v) for a Bs(b) with Br(a) D Bs(b) and
a (u, v) with q < u. It is then easy to check that g(x) is defined and equal to f(x) for all x ∈ X .
The upper semi-continuous partial function h : X → R such that (∀x ∈ dom(f))(f(x) = h(x)) is
defined dually.

(ii) Let Γ be a code for a lower semi-continuous g : X → R and let Ψ be a code for an upper semi-
continuous h : X → R such that (∀x ∈ X )(g(x) = h(x)). Define a code Φ for a continuous partial
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function f : X → R by enumerating Br(a)
Φ→ (u, v) whenever there are Bs(b), Bt(c) ⊆ X and p, q ∈ Q

such that Br(a) D Bs(b), Br(a) D Bt(c), [p, q] ⊆ (u, v), Bs(b)
Γ
⇁ p, and Bt(c)

Ψ
⇀ q. It is easy to see

that Φ satisfies (cf2) and (cf3) of Definition 3.6. To see that Φ satisfies (cf1) of Definition 3.6, first

observe that if Br(a)
Φ→ (u, v), then g(a) > u and h(a) < v. However, g(a) = h(a), so their common

value must be finite and in the interval (u, v). Therefore, if Br(a)
Φ→ (u, v) and Br(a)

Φ→ (u′, v′),
then (u, v) and (u′, v′) both contain g(a), and therefore (u, v) and (u′, v′) intersect.

We show that dom(f) = supp(g) = supp(h) and that (∀x ∈ dom(f))(f(x) = g(x) = h(x)). First,
suppose that x /∈ supp(g). Then g(x) = ±∞. Suppose that g(x) = −∞. The only way this can

happen is if there is no Bs(b)
Γ
⇁ p with x ∈ Bs(b). But if there is no Bs(b)

Γ
⇁ p with x ∈ Bs(b),

then there is also no Br(a)
Φ→ (u, v) with x ∈ Br(a). Thus x /∈ dom(f). If instead g(x) =∞, then

also h(x) =∞. In this case, there can be no Bt(c)
Ψ
⇀ q with x ∈ Bt(c), which similarly implies that

x /∈ dom(f).
Now suppose that x ∈ supp(g), and let ε ∈ Q>0. Let (u, v) ⊆ R be such that g(x) ∈ (u, v) and

v − u < ε. By the definition of g(x), there are a Bs(b) ⊆ X and a p ∈ (u, v) such that x ∈ Bs(b)
and Bs(b)

Γ
⇁ p. Likewise, as h(x) = g(x) ∈ (u, v), there are a Bt(c) ⊆ X and a q ∈ (u, v) such that

x ∈ Bt(c) and Bt(c)
Ψ
⇀ q. Notice then that p ≤ g(x) ≤ q. Let Br(a) ⊆ X be such that x ∈ Br(a),

Br(a) D Bs(b), and Br(a) D Bt(c). Then Bs(b), Bt(c), p, and q witness that Br(a)
Φ→ (u, v). Thus

for every ε ∈ Q>0, there are a Br(a) ⊆ X with x ∈ Br(a) and a (u, v) ⊆ R with v − u < ε and
g(x) ∈ (u, v). This means that x ∈ dom(f) and f(x) = g(x) = h(x). �

Remark 4.4. Our definition of the values of lower semi-continuous functions by suprema of rationals
is similar to the definition of Borel measures within RCA0 in [14, Section X.1]. As with Borel
measures, one could understand the values of lower semi-continuous functions in a comparative way
instead of requiring that the defining suprema exist. That is, if f is lower semi-continuous, then it is
still possible to make sense of inequalities like f(x) ≤ r in RCA0 even if the supremum defining f(x)
does not exist. Indeed, in ω-models, the values of lower semi-continuous functions are defined as
(relative) left-c.e. reals. With this perspective, Proposition 4.2 is still true without the existence of
infima. The proof of Proposition 4.3 shows that a code Ψ for a partial continuous function g : X → R
can be considered as a pair of codes (Ψ−,Ψ+) for lower and upper semi-continuous functions by

putting Br(a)
Ψ−
⇁ u and Br(a)

Ψ+
⇀ v if Br(a)

Ψ→ (u, v), and then x ∈ dom(g) if and only if the values
at x defined by Ψ− and Ψ+ coincide. If the values coincide in a comparative sense, then it exists as
a real number within RCA0. Similar modifications may be available for other theorems presented
here.

5. Honestly-coded potentials

Recall that we refer to lower semi-continuous functions f : X → R≥0 as potentials. According
to Definition 4.1, for X a complete separable metric space, Φ a code for a lower semi-continuous
function f : X → R, Br(a) ⊆ X , and q ∈ Q, we know that f(x) ≥ q for all x ∈ Br(a) if it is the case

that Br(a)
Φ
⇁ q. We call a code Φ for f honest if it contains all of the information of this sort. That

is, if the ‘if’ is an ‘if and only if.’

Definition 5.1 (RCA0). Let X be a complete separable metric space and let f : X → R be lower

semi-continuous. A code Φ for f is called honest if, for every Br(a) ⊆ X and every q ∈ Q, Br(a)
Φ
⇁ q

if and only if (∀x ∈ Br(a))(f(x) ≥ q). If f has an honest code, then we say that f is honestly-coded.

Notice that if f : X → R is lower semi-continuous and Φ ⊆ N×X ×Q>0×Q is any set such that,

for every Br(a) ⊆ X and every q ∈ Q, Br(a)
Φ
⇁ q if and only if (∀x ∈ Br(a))(f(x) ≥ q), then Φ is

automatically a code (and hence an honest code) for f as in Definition 4.1.
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Every lower semi-continuous function admits an honest code, although such a code cannot always
be constructed in a weak theory.

Lemma 5.2. Let X be a complete separable metric space.

(i) (WKL0) If X is compact and f : X → R is lower semi-continuous, then there is a code

Φ for f such that, for every Br(a) ⊆ X and every q ∈ Q, Br(a)
Φ
⇁ q if and only if

(∀x ∈ Br(a))(f(x) > q).
(ii) (ACA0) If X is compact and f : X → R is lower semi-continuous, then f has an honest code.

(iii) (ACA0) If f : X → R is continuous, then there is an honestly-coded lower semi-continuous
g : X → R such that (∀x ∈ X )(g(x) = f(x)).

(iv) (Π1
1-CA0) If f : X → R is lower semi-continuous, then f has an honest code.

Proof. (i) Work in WKL0. For 〈a, r〉 ∈ X ×Q and a sequence (〈bi, si〉 : i < n) of elements of X ×Q,

the assertion that Br(a) ⊆
⋃
i<nBsi(bi) is Σ0

1 uniformly in 〈a, r〉 and (〈bi, si〉 : i < n), essentially by
a uniform version of [14, Theorem IV.1.7].

Let Ψ be a code for f . Define a new code Φ by enumerating Br(a)
Φ
⇁ q whenever there are balls

(Bsi(bi) : i < n) and rationals 〈ti : i < n〉 such that ti > q and Bsi(bi)
Ψ
⇁ ti for each i < n and

Br(a) ⊆
⋃
i<nBsi(bi).

Suppose that Br(a)
Φ
⇁ q. Then Br(a) is covered by balls (Bsi(bi) : i < n) where f(x) > q for all

x ∈ Bsi(bi) and all i < n. Thus f(x) > q for all x ∈ Br(a). Conversely, suppose that f(x) > q for all

x ∈ Br(a). Then any enumeration (Bsi(bi) : i ∈ N) of every ball Bsi(bi) for which there is a ti ∈ Q
with ti > q and Bsi(bi)

Ψ
⇁ ti is an open cover of Br(a) and hence (essentially by [14, Theorem IV.1.6])

has a finite subcover. Thus there are a sequence (Bsi(bi) : i < n) of balls and a sequence 〈ti : i < n〉
of rationals witnessing that Br(a)

Φ
⇁ q.

We have shown that, for every Br(a) ⊆ X and every q ∈ Q, Br(a)
Φ
⇁ q if and only if

(∀x ∈ Br(a))(f(x) > q). Using this fact, it is straightforward to verify that Φ is also a code
for f in the sense of Definition 4.1.

(ii) Work in ACA0. Let Φ be a code for f as in (i). Then, define a code Γ by setting Br(a)
Γ
⇁ q

whenever it is the case that Bs(b)
Φ
⇁ t for every t < q and every Bs(b) ⊆ X with Bs(b) D Br(a).

Suppose that x ∈ Br(a) and Br(a)
Γ
⇁ q. Let Bs(b) be such that x ∈ Bs(b) and Bs(b) D Br(a).

Then Bs(b)
Φ
⇁ t for every t < q, which means that f(x) > t for every t < q. Hence f(x) ≥ q.

Conversely, suppose that f(x) ≥ q for all x ∈ Br(a). If Bs(b) ⊆ X and t ∈ Q satisfy t < q and

Bs(b) D Br(a), then f(x) ≥ q > t for all x ∈ Bs(b) because Bs(b) ⊆ Br(a). Thus Bs(b)
Φ
⇁ t. Hence

Bs(b)
Φ
⇁ t whenever t < q and Bs(b) D Br(a), so Br(a)

Γ
⇁ q.

We have shown that Br(a)
Γ
⇁ q if and only if (∀x ∈ Br(a))(f(x) ≥ q). So Γ is an honest code for f .

(iii) In ACA0, we can define a code Φ by Br(a)
Φ
⇁ q if and only if f(b) ≥ q for all b ∈ Br(a) ∩X.

One readily checks that Φ is an honest code for a lower semi-continuous g that is equal to f .

(iv) In Π1
1-CA0, we can directly define an honest code Φ for f by setting Br(a)

Φ
⇁ q if and only if

(∀x ∈ Br(a))(f(x) ≥ q). �
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6. Continuous envelopes

Honestly-coded lower semi-continuous functions facilitate the calculation of infima, which helps
us approximate lower semi-continuous functions by continuous ones. To be precise, lower semi-
continuous functions bounded below can be written as the increasing limit of continuous functions
using the following construction.

Definition 6.1. Given a potential f on a complete separable metric space X and an α ∈ R>0,
define the lower α-envelope of f by

fα(x) = inf
y∈X

(f(y) + αd(x, y)).

Although not needed for our purposes, it is instructive to observe that if f : X → R≥0 is a
potential, then fn converges pointwise to f as n→∞. What we do need to prove is that continuous
envelopes exist, and this can typically not be done within a weak theory. The construction of
envelopes hinges on the following more general lemma.

Lemma 6.2 (ACA0). Let X and Y be complete separable metric spaces, let h : X × Y → R≥0

be uniformly continuous, and let f : Y → R≥0 be lower semi-continuous and honestly-coded with
non-empty support. Then there is a uniformly continuous function g : X → R≥0 such that

(∀x ∈ X )[g(x) = inf
y∈Y

(h(x, y) + f(y))].

Proof. Let Φ be a code for h, and let Ψ be an honest code for f . We first show that if x ∈ X , then
infy∈Y(h(x, y) + f(y)) indeed exists, which is a consequence of the following Claim.

Claim. Let x ∈ X and q ∈ Q. Then there is a y ∈ Y such that h(x, y) + f(y) < q if and only

if there are Br(〈a, b〉) ⊆ X × Y, (u, v) ⊆ R, and p ∈ Q such that x ∈ Br(a), Br(〈a, b〉)
Φ→ (u, v),

¬(Br(b)
Ψ
⇁ p), and v + p < q.

Proof of Claim. Be aware that Br(〈a, b〉) = Br(a)×Br(b) by Definition 3.10. Suppose that y ∈ Y is
such that h(x, y) + f(y) < q. Let u, v, p ∈ Q be such that h(x, y) ∈ (u, v), p > f(y), and v + p < q.

Then there must be a Br(〈a, b〉) ⊆ X × Y such that 〈x, y〉 ∈ Br(〈a, b〉) and Br(〈a, b〉)
Φ→ (u, v).

Furthermore, since Ψ is a code for f , it must be that ¬(Br(b)
Ψ
⇁ p) because y ∈ Br(b) but f(y) < p.

Thus Br(〈a, b〉), (u, v), and p are as required.
Conversely, suppose that there are such Br(〈a, b〉), (u, v), and p. Because Ψ is honest and

¬(Br(b)
Ψ
⇁ p), there must be a y ∈ Br(b) such that f(y) < p. Also, h(x, y) ≤ v because

〈x, y〉 ∈ Br(a)×Br(b) = Br(〈a, b〉) and Br(〈a, b〉)
Φ→ (u, v). Hence h(x, y) + f(y) < v + p < q. �

Thus, given x ∈ X , let Q be the set of all q ∈ Q for which there are 〈a, b, r〉 ∈ X × Y ×Q and
u, v, p ∈ Q such that Br(〈a, b〉), (u, v), and p witness that there is a y ∈ Y such that h(x, y)+f(y) < q
as in the Claim. The set Q is bounded below by 0 and is non-empty since supp(f) 6= ∅, so inf Q
exists (essentially by [14, Theorem III.2.2]), and, by the Claim, inf Q = infy∈Y(h(x, y) + f(y)).
Henceforth, for each x ∈ X , let αx denote infy∈Y(h(x, y) + f(y)).

We can make the above argument uniformly for all a ∈ X by letting A ⊆ X × Q be the set
of all 〈a, q〉 for which there are r ∈ Q, b ∈ Y , and u, v, p ∈ Q such that Br(〈a, b〉), (u, v), and p
witness that there is a y ∈ Y such that h(a, y) + f(y) < q. Then from A we can define the sequence
(αa : a ∈ X) because, given a sequence of sets of rationals all bounded from below, ACA0 suffices to
produce the corresponding sequence of infima (that is ACA0 proves item 4 of [14, Theorem III.2.2]
uniformly).

Define a code Γ for a continuous partial function g : X → R by defining Br(a)
Γ→ (u, v) if and only

if (∀c ∈ Br(a) ∩X)[αc ∈ (u, v)]. It is easy to see that Γ satisfies the requirements of Definition 3.6.
We need to show that g is indeed uniformly continuous on all of X and that (∀x ∈ X )(g(x) = αx).
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Claim. Let ε, δ ∈ Q>0 be such that

(∀〈x0, y0〉, 〈x1, y1〉 ∈ X × Y)(dX×Y(〈x0, y0〉, 〈x1, y1〉) < δ → |h(x0, y0)− h(x1, y1)| ≤ ε).
Let x0, x1 ∈ X . Then dX (x0, x1) < δ → |αx0 − αx1 | ≤ ε.
Proof of Claim. We show that (∀η ∈ Q>0)(αx1 ≤ αx0 + ε+ η), which implies that αx1 ≤ αx0 + ε.
By a symmetric argument, we also have that αx0 ≤ αx1 + ε, which gives the desired |αx0 − αx1 | ≤ ε.

Thus let η ∈ Q>0. Let y ∈ Y be such that h(x0, y) + f(y) ≤ αx0 + η. Then

αx1 ≤ h(x1, y) + f(y) = (h(x1, y)− h(x0, y)) + (h(x0, y) + f(y)) ≤ ε+ αx0 + η,

where the last inequality is by the choice of y and the fact that dX×Y(〈x0, y〉, 〈x1, y〉) = dX (x0, x1) <
δ. �

Given x ∈ X and ε ∈ Q>0, let δ ∈ Q>0 be such that

(∀〈x0, y0〉, 〈x1, y1〉 ∈ X × Y)(dX×Y(〈x0, y0〉, 〈x1, y1〉) < δ → |h(x0, y0)− h(x1, y1)| ≤ ε/4),

and let a ∈ X be such that x ∈ Bδ(a). Let (u, v) ⊆ R be such that [αa − ε/4, αa + ε/4] ⊆ (u, v) and
v − u < ε. The Claim tells us that if c ∈ Bδ(a) ∩X, then αc ∈ [αa − ε/4, αa + ε/4] ⊆ (u, v), which

means that Bδ(a)
Γ→ (u, v). Likewise, the Claim implies that αx ∈ (u, v). Thus for every x ∈ X

and every ε ∈ Q>0, there are a ball Bδ(a) ⊆ X and a (u, v) ⊆ R such that x ∈ Bδ(a), αx ∈ (u, v),

v − u < ε, and Bδ(a)
Γ→ (u, v). Thus g(x) is defined and equals αx for all x ∈ X . Furthermore, the

Claim clearly implies that g is uniformly continuous. �

Lemma 6.3 (ACA0). Let X be a complete separable metric space, let f : X → R≥0 be lower semi-
continuous and honestly coded with non-empty support, and let α ∈ R≥0. Then there is a uniformly
continuous function fα : X → R≥0 such that, for all x ∈ X ,

fα(x) = inf
y∈X

(f(y) + αd(x, y)).

Proof. This follows from Lemma 6.2 because the function h : X × X → R≥0 given by h(x, y) =
αdX (x, y) is uniformly continuous and bounded below by 0. �

7. Critical points of continuous functions

In this section we formalize Ekeland’s variational principle and show that it has natural restrictions
provable in weak systems. Recall that a potential on a complete separable metric space X is a lower
semi-continuous function f : X → R≥0. Recall also that ε-critical points were defined in Definition
1.2 and that this definition may readily be formalized in RCA0 using coded lower semi-continuous
functions. With this, we are ready to define our formalized version (or, versions) of Ekeland’s
variational principle.

Definition 7.1. Given definable classes X of coded complete separable metric spaces and F of
coded potentials, the (formalized) free variational principle (FVP) for X ∈ X and f ∈ F is the
statement that, if X ∈ X and f : X → R≥0 in F is such that supp(f) 6= ∅, then for every ε > 0
there is an x∗ ∈ supp(f) such that

∀x ∈ supp(f)
((
εd(x∗, x) ≤ f(x∗)− f(x)

)
→ x = x∗

)
.

The localized variational principle (LVP) is defined similarly, except that x0 ∈ supp(f) is given and
x∗ is chosen so that εd(x0, x∗) ≤ f(x0)− f(x∗).

When not mentioned, we assume that X is the class of all coded complete separable metric spaces
and F is the class of all coded potentials. Given c > 0, to indicate that f(x) ≤ c for all x ∈ dom(f),
we will say that f is c-bounded, and if we want to fix the value of ε to c, we call the statement the
free/localized variational principle for ε = c. The free/localized variational principles for ε = c and
f c-bounded will be denoted the c-FVP and the c-LVP, respectively.
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Critical points are sometimes also called pseudo-minima, as they may serve as approximate
minima of functions that do not actually attain their minimum value.

Lemma 7.2 (RCA0). If X is any complete separable metric space and f : X → R≥0 is lower
semi-continuous with non-empty support, then for any x∗ ∈ X , f attains its minimum at x∗ if and
only if x∗ is an ε-critical point of f for all ε > 0.

Proof. It is straightforward to see that if x 6= x∗ and εd(x, x∗) ≤ f(x∗)− f(x) then f(x) < f(x∗),
hence if x∗ is not ε-critical it cannot be a minimum. Conversely, if f does not attain its minimum
at x∗, then we may choose x ∈ X with f(x) < f(x∗). By choosing ε small enough, we obtain
εd(x, x∗) ≤ f(x∗)− f(x). �

The class F will contain either continuous or lower semi-continuous functions. Important special
cases for us are the 1-FVP and the 1-LVP, which on occasion are equivalent to the FVP and LVP,
respectively.

Lemma 7.3 (RCA0). Let X be a class of complete separable metric spaces and F be either the class
of continuous or of lower semi-continuous potentials.

(1) The FVP and the LVP with X ∈ X and f ∈ F are equivalent, respectively, to the FVP and
the LVP with ε = 1, X ∈ X, and f ∈ F.

(2) If X is either the class of all complete separable metric spaces or of all compact metric spaces
then the FVP and the LVP with X ∈ X and f ∈ F bounded are equivalent, respectively, to
the 1-FVP and the 1-LVP with X ∈ X and f ∈ F.

(3) If X is (a) a Banach space, (b) the Baire space, (c) the Cantor space, or (d) a closed
ball in Rn (with any norm), then the FVP and the LVP for X and bounded, lower semi-
continuous potentials are equivalent, respectively, to the 1-FVP and the 1-LVP for X and
lower semi-continuous potentials.

Proof. (1) Replace f by f ′ = f/ε and note that any 1-critical point for f ′ is ε-critical for f .

(2) First replace f by f ′ = f/b, so that f ′ is bounded by 1 and any ε/b-critical point for f ′ is an
ε-critical point for f . As we can no longer freely scale f ′, we instead scale the metric and consider
d′ = εd/b. Then the reader can verify that any 1-critical point for f ′ with respect to d′ is an ε-critical
point for f with respect to d.

(3) The general idea is that in all of these cases, the proof of (2) can be simulated (in a possibly
ad-hoc way) without modifying the space X . For the sake of illustration we sketch the proof in the
case where X is a closed ball in Rn—we give an informal argument and let the reader verify that it
can be carried out in RCA0. The FVP and LVP cases are similar, so we focus on the FVP.

Assume that the 1-FVP holds for X . Without loss of generality we may assume that X = Bρ(0)
for some ρ > 0. Let f be a bounded lower semi-continuous function on X with non-empty domain,
and let ε > 0. Without loss of generality we may assume that f is bounded by 1/2 (adjusting ε if
needed).

Let A ⊆ Bρ(0) ∩Qn be finite and such that every point in Bρ(0) is within distance 1/4 of some
point in A. Let δ > 0 be small enough so that δ < min{ερ, 1/4} and d(a, a′) > 2δ whenever a, a′ ∈ A
are distinct. Define g : X → R≥0 by

g(x) =

{
f
(ρ
δ (x− a)

)
if x ∈ Bδ(a) for some a ∈ A

1 otherwise.

By the 1-FVP, let x∗ be a 1-critical point of g. We claim that x∗ ∈ Bδ(a) for some a ∈ A. If not,
then g(x∗) = 1 by the definition of g. Let a ∈ A minimize d(x∗, a), and note that d(x∗, a) < 1/4 by

our choice of A. Let y0 ∈ supp(f). Then x0 := δ
ρy0 + a ∈ Bδ(a) and g(x0) = f(y0) ≤ 1/2, so that

g(x∗)− g(x0) ≥ 1− 1/2 = 1/4 + 1/4 ≥ d(x0, a) + d(a, x∗) ≥ d(x0, x∗).
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This contradicts that x∗ is a 1-critical point of g. Finally, we claim that y∗ := ρ
δ (x∗ − a) is an

ε-critical point of f . Let y ∈ supp(f) with y 6= x∗ be arbitrary, and let x := δ
ρy + a ∈ Bδ(a). Then

since x∗ is a 1-critical point of g,

g(x∗)− g(x) < d(x∗, x),

which by the definition of g becomes

f(y∗)− f(y) < d

(
δ

ρ
y∗ + a,

δ

ρ
y + a

)
=
δ

ρ
d(y∗, y) < εd(y∗, y),

as needed.
The proof that the 1-LVP implies the bounded LVP is similar, except that it is more convenient to

replace A by the singleton {0}. The proofs of the other items are analogous, with the main difference
being the choice of g. Let us assume that f is bounded by 1. For (3a) we set g(x) = f

(
1
εx
)
. For

items (3b) and (3c) we use the observation that d(σax, σay) = 2−|σ|d(x, y) for every σ, x, and y.
Let n be large enough so that 2−n < ε. For the FVP define g(σay) = f(y), where |σ| = n. That
is, given x, g(x) chops off x�n and applies f to the remaining sequence y. For the LVP, we define
g((0n)ay) = f(y) and g(x) = 1 if x does not begin with n zeroes. We leave to the reader to check
that in each of this cases, any 1-critical point for g induces an ε-critical point for f , satisfying the
localization condition when appropriate. �

With Lemma 7.3 in mind, we often take ε = 1 or, in the bounded case, f bounded by 1, and
we write critical point instead of 1-critical point. Note however that if we fix X beforehand, the
FVP or LVP for X with bounded f are not necessarily equivalent to the 1-FVP or the 1-LVP for
X , respectively, since we may not be able to perform the required scaling transformations without
modifying the space. Claim (3) gives a few examples where such transformations may be performed,
and while the list is by no means meant to be exhaustive, we conjecture that a space X can be
found so that the 1-FVP and the FVP for X are not provably equivalent in RCA0.

Note also that in the cases (3a)-(3c), if the function f is continuous, then so is g. Thus in these
cases, the claim also holds for the respective variational principles restricted to continuous functions.
Our construction for (3d) does not preserve continuity, but it should also be possible to define some
g̃ which is continuous if f was (similar to the 2-envelope of g). Note however that some care would
be required to construct g̃ in RCA0. In any case, the current formulation of the lemma suffices for
our purposes.

Let us now begin our analysis by showing that WKL0 suffices to construct critical points of
continuous functions on compact spaces.

Proposition 7.4 (WKL0). The FVP holds for compact X and continuous f ; in fact, in this setting
f attains its minimum.

Proof. WKL0 proves that every continuous function from a compact complete separable metric space
to R attains a minimum value (see [14, Theorem IV.2.2] for the version of this fact with ‘maximum’
in place of ‘minimum’). Thus let x∗ ∈ X be a point at which f attains its minimum value. Then x∗
is a critical point of f by Lemma 7.2. �

When working over ACA0, we may drop the assumption that X is compact. Our proof is based
on those in [2, 4].

Theorem 7.5 (ACA0). The FVP holds for arbitrary X and continuous f .

Proof. Let X = X̂ be a complete separable metric space with metric d, and in view of Lemma 7.3.1,
assume that ε = 1. First we use ACA0 to collect some information in order to implement the proof.
Define S ⊆ X ×X ×Q>0 by

S = {(a, b, q) ∈ X ×X ×Q>0 : d(a, b) < f(a)− f(b) + q},
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and for a ∈ X and q ∈ Q>0, write S(a, q) for {b ∈ X : (a, b, q) ∈ S}. Define a sequence of reals
(ua,q : a ∈ X ∧ q ∈ Q>0) by ua,q = infb∈S(a,q) f(b) for each a ∈ X and q ∈ Q>0, which always
exists because f is bounded from below and S(a, q) is non-empty (as it contains a). Next, define a
sequence of reals (ra : a ∈ X) by ra = supq∈Q>0

ua,q for each a ∈ X, which always exists because
(∀q ∈ Q>0)(ua,q ≤ f(a)). That the sequences (ua,q : a ∈ X ∧ q ∈ Q>0) and (ra : a ∈ X) can
be defined in ACA0 follows from the appropriately uniformized version of the (1)⇒(4) direction
of [14, Theorem III.2.2] (and the analogous implication with ‘greatest lower bound’ in place of ‘least
upper bound’ in (4)). Observe that (∀a ∈ X)(∀q0, q1 ∈ Q>0)(q0 ≤ q1 → ua,q1 ≤ ua,q0), which means
that (∀a ∈ X)(ra = limq→0+ ua,q). Finally, define a function R : X ×Q>0 → Q describing the rates

of convergence of the sequences (ua,q : q ∈ Q>0) for each a ∈ X by letting R(a, p) = 2−n, where n is
least such that (∀q ∈ Q>0)(q ≤ 2−n → |ra − ua,q| < p).

Now we define a sequence (an : n ∈ N) of points in X converging to a critical point of f and a
helper sequence (qn : n ∈ N) of points in Q>0. Let a0 be the first point (that is, the point with the
least code) in X, and let q0 = 2−2R(a0, 1). Given (ai : i ≤ n) and (qi : i ≤ n), let an+1 be the first

point in S(an, qn) such that f(an+1) < uan,qn + 2−(n+1), and let qn+1 = 2−(n+3)
∏
i≤n+1R(ai, 2

−i).

The important property of (qn : n ∈ N) is that, for every n ∈ N,

∑
k≥n

qk < min{2−n, R(an, 2
−n)},

which holds because (∀n)(∀k ≥ n)[qk ≤ 2−(k+2)R(an, 2
−n)].

As the sequence (f(an) : n ∈ N) is bounded from below, let ` = lim infn∈N f(an) (which exists
by [14, Lemma III.2.1] with ‘lim inf’ in place of ‘lim sup’). Observe that lim infn∈N uan,qn = ` as well

because ∀n(uan,qn ≤ f(an+1) < uan,qn+2−(n+1)). Let i0 < i1 < i2 < . . . be an increasing sequence of
indices such that limn∈N f(ain) = `. We show that the corresponding sequence (ain : n ∈ N) is Cauchy.

Given M ∈ N, let N > M be large enough so that ∀n,m(N < n < m→ |f(ain)−f(aim)| ≤ 2−(M+1)).
Then, for every n,m ∈ N with N < n < m, we have that

d(ain , aim) ≤
im−1∑
k=in

d(ak, ak+1)

≤
im−1∑
k=in

[f(ak)− f(ak+1) + qk]

≤ f(ain)− f(aim) +
∑
k≥in

qk (2)

≤ 2−(M+1) + 2−(M+1) ≤ 2−M .

In the above expression, the first inequality is the triangle inequality, the second inequality is because
ak+1 is chosen from S(ak, qk) for every k ∈ N, the third inequality is obtained by canceling the
appropriate terms in the telescoping sum, and the fourth inequality is by the choice of N and by
recalling that

∑
k≥in qk < 2−in (and that in ≥ n > N > M). Thus (ain : n ∈ N) is Cauchy. By the

(1)⇒(3) direction of [14, Theorem III.2.2], (ain : n ∈ N) converges to some x∗ ∈ X .
We show that x∗ is a critical point of f . By the continuity of f , f(x∗) = limn∈N f(ain) = `. We

show that if y ∈ X is such that d(x∗, y) ≤ f(x∗) − f(y), then f(y) = ` as well. Thus consider
a y ∈ X such that d(x∗, y) ≤ f(x∗) − f(y). Clearly f(y) ≤ ` because otherwise we would have
the contradiction d(x∗, y) < 0. So we show that f(y) ≥ `. To do this, fix n ∈ N. We see that
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d(ain , x∗) ≤ f(ain)− f(x∗) +
∑

k≥in qk by considering the inequality (2) as m→∞. Therefore,

d(ain , y) ≤ d(ain , x∗) + d(x∗, y)

≤ f(ain)− f(x∗) +
∑
k≥in

qk + f(x∗)− f(y)

= f(ain)− f(y) +
∑
k≥in

qk.

Thus d(ain , y) < f(ain) − f(y) + R(ain , 2
−in) because

∑
k≥in qk < R(ain , 2

−in). It follows that

f(y) ≥ uain ,R(ain ,2
−in ) because y is in the open set

U = {x ∈ X : d(ain , x) < f(ain)− f(x) +R(ain , 2
−in)}

and S(ain , R(ain , 2
−in)) is dense in U . Observe also that qin ≤ R(ain , 2

−in), which implies that
uain ,qin − uain ,R(ain ,2

−in ) < 2−in . Therefore f(y) > uain ,qin − 2−in . So we have shown that

∀n(f(y) > uain ,qin − 2−in). As (uain ,qin : n ∈ N) is a subsequence of (uan,qn : n ∈ N), it follows
that lim infn∈N uain ,qin ≥ lim infn∈N uan,qn = `. Thus we conclude that f(y) ≥ `, as desired. This
completes the proof that if d(x∗, y) ≤ f(x∗) − f(y), then f(y) = f(x∗) = `. So if y ∈ X satisfies
d(x∗, y) ≤ f(x∗)− f(y), then y = x∗. Hence x∗ is a critical point of f . �

8. Critical points of arbitrary potentials

Now let us consider the case where f is a possibly discontinuous potential. As it turns out, this
general case can be reduced to the continuous case by using envelopes. To be precise, in order to
find an α-critical point of a lower semi-continuous potential f , it suffices to find an α-critical point
of the β-envelope fβ for any β > α.

Lemma 8.1 (RCA0). Let X be a complete separable metric space, 0 < α < β, f : X → R≥0 be a
potential with supp(f) 6= ∅, and suppose that there is a continuous function fβ : X → R≥0 such
that, for every x ∈ X ,

fβ(x) = inf
y∈X

(f(y) + βd(x, y)).

Then, for any x∗ ∈ X :

(1) If x∗ is an α-critical point of fβ, then f(x∗) = fβ(x∗) and x∗ is an α-critical point of f .
(2) If fβ attains its minimum at x∗, then f attains its minimum at x∗.

Proof. In view of Lemma 7.2, the second item is a consequence of the first: indeed, if fβ attains its
minimum at x∗ ∈ X , then for every α < β we have that x∗ is α-critical for fβ, so that by the first
item it is α-critical for f . Since α is arbitrary, f attains its minimum at x∗.

Thus we focus on the first item. Suppose that x∗ is an α-critical point of fβ ; we begin by showing
that f(x∗) = fβ(x∗). Clearly fβ(x∗) ≤ f(x∗), so suppose for a contradiction that fβ(x∗) < f(x∗).

Let ε = 1 if f(x∗) = ∞ and ε =
f(x∗)−fβ(x∗)

2 > 0 otherwise, and let δ ∈ Q>0 be such that
f(y) > fβ(x∗) + ε whenever d(x∗, y) < δ. Such a δ can be obtained by letting Φ be the code for f ;

letting Br(a) ⊆ X and q ∈ Q>0 be such that Br(a)
Φ
⇁ q, x∗ ∈ Br(a), and q > fβ(x∗) + ε; and then

taking δ < r − d(a, x∗). Now let y ∈ X be such that

fβ(x∗) + min{(β − α)δ, ε} > f(y) + βd(x∗, y).
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Note that y 6= x∗, for otherwise fβ(x∗) > f(x∗)−min{(β − α)δ, ε} ≥ fβ(x∗) + ε, a contradiction.
Moreover, we cannot have that d(x∗, y) < δ, for otherwise

fβ(x∗) > f(y) + βd(x∗, y)−min{(β − α)δ, ε}
> (fβ(x∗) + ε) + βd(x∗, y)−min{(β − α)δ, ε}
≥ fβ(x∗) + βd(x∗, y),

where the first inequality is by the choice of y and the second inequality is by the choice of δ and
the assumption d(x∗, y) < δ. Thus it must be that d(x∗, y) ≥ δ. Therefore,

αd(x∗, y) < fβ(x∗)− f(y)− (β − α)d(x∗, y) + min{(β − α)δ, ε}
≤ fβ(x∗)− fβ(y)− (β − α)δ + (β − α)δ = fβ(x∗)− fβ(y),

where the first inequality is by the choice of y and the second inequality is because fβ(y) ≤ f(y),
δ ≤ d(x∗, y), and min{(β − α)δ, ε} ≤ (β − α)δ. This means that x∗ is not an α-critical point of fβ,
which is a contradiction.

We have established that f(x∗) = fβ(x∗). We now use this to show that x∗ is an α-critical
point of f . Assume for a contradiction that this is not the case. Then there is a y ∈ X such that
αd(x∗, y) ≤ f(x∗)− f(y) but y 6= x∗. Then,

αd(x∗, y) ≤ f(x∗)− f(y) ≤ fβ(x∗)− fβ(y)

because fβ(x∗) = f(x∗) and fβ(y) ≤ f(y). This contradicts that x∗ is an α-critical point of fβ.
Thus x∗ is indeed an α-critical point of f . �

Theorem 8.2.

(i) (ACA0) The FVP holds for arbitrary X and any honestly-coded potential f .
(ii) (ACA0) The FVP holds for compact X and any potential f ; in fact, such an f attains its

minimum.
(iii) (Π1

1-CA0) The FVP holds for arbitrary X and any potential f .

Proof. In view of Lemma 7.2, we may assume that ε = 1; note that an honest code remains honest
after scaling f .

(i) As f is assumed to be honestly-coded, the envelope f2 exists and is continuous by Lemma 6.3.
The function f2 has a critical point by Theorem 7.5, and this critical point is also a critical point of
f by Lemma 8.1.

(ii) As X is compact, f can be honestly coded by Lemma 5.2 item (ii). Thus f has a critical point
by item (i) of this theorem. In fact, f2 is defined and attains its minimum by Proposition 7.4, so
that f also attains its minimum.

(iii) Working in Π1
1-CA0, we can assume that f is honestly-coded by Lemma 5.2 item (iv). Thus f

has a critical point by item (i). �

Below we will show that the points in Theorem 8.2 are optimal.

9. Reversals of the variational principle

In this section we show that many of the results of §7 and §8 reverse. Let us begin with the
weakest version of the FVP we have considered. Recall from Proposition 7.4 that WKL0 suffices to
prove that every continuous potential over a compact space has a critical point. We now show that
WKL0 is also necessary to prove this version of the FVP.

Proposition 9.1. The FVP for continuous, bounded f on the Cantor space or on [0, 1] implies
WKL0 over RCA0.
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Proof. We work in RCA0 and prove the contrapositive. If WKL0 fails, then there is an infinite binary
tree T ⊆ 2<N that has no infinite path. Let T ◦ be the set of leaves of T : T ◦ = {σ ∈ T : σa0, σa1 /∈ T}.
Since T is infinite and has no infinite path, T ◦ is also infinite. For each σ ∈ T ◦, define

Aσ = {i < |σ| − 1 : ¬(∃τ ∈ T )(|τ | = |σ|+ 1 and τ w (σ�i)a(1− σ(i+ 1))}.

For each σ ∈ T , define σ̃ ∈ 2<N with |σ̃| = 2|σ| as σ̃(2i) = 0 and σ̃(2i + 1) = σ(i) if i < |σ|. Put

T̃ = {σ̃ : σ ∈ T}, T̃ ◦ = {σ̃ : σ ∈ T ◦}, and put

S = {τ ∈ 2<N : (∀σ ∈ T )(τ 6v σ̃) and (∃σ ∈ T )(τ�(|τ | − 1) @ σ̃)}.

Here, S is the set of all binary strings τ which move away from T̃ before reaching a member of T̃ ◦.
S can be defined in RCA0 because each τ need only be checked against strings σ̃ of length at most
|τ |. The elements of T̃ ◦ ∪ S are pairwise incomparable, and for every x ∈ 2N there is a σ ∈ T̃ ◦ ∪ S
such that x w σ. Indeed, each x must either reach a leaf of T̃ or move away from T̃ before that
because T̃ has no infinite path.

Now, define a continuous function f : 2N → [0, 3] as follows:

f(x) =

{
2−

∑
i∈Aσ 2−2i if x w σ̃ for some σ ∈ T ◦,

3 if x w τ for some τ ∈ S.

One may easily obtain a code for f by Lemma 3.8 and Lemma 3.9. We show that f has no critical
point, which gives the desired contradiction. If x w τ for some τ ∈ S, then take any σ ∈ T ◦ and
y w σ̃, and observe that f(x) − f(y) ≥ 3 − 2 ≥ d(x, y). Thus x is not a critical point. Assume
instead that x w σ̃ for some σ ∈ T ◦. Let i0 be the greatest i < |σ|− 1 such that i /∈ Aσ, which exists
because T is infinite. Then there is a σ′ ∈ T ◦ such that σ′ w (σ�i0)a(1− σ(i0 + 1)) and |σ′| > |σ|.
By the maximality of i0, any τ ∈ T which extends σ�(i0 + 1) is shorter than σ′. Thus, we have
that i0 ∈ Aσ′ and that j ∈ Aσ implies that j ∈ Aσ′ for every j < i0 since σ�i0 = σ′�i0. Take y w σ̃′.
Then d(x, y) ≤ 2−2i0−1, and therefore

f(x)− f(y) = −
∑
i∈Aσ

2−2i +
∑
i∈Aσ′

2−2i ≥ 2−2i0 −
∑

i∈Aσ ,i>i0

2−2i ≥ 2−2i0−1 ≥ d(x, y).

Thus x is not a critical point.
We can simulate the above construction on the unit interval in order to obtain a continuous function

on [0, 1] that has no critical point. For a given σ ∈ 2<N, let lσ = 0.σ =
∑

i<|σ| 2
−σ(i), rσ = lσ + 2−|σ|,

and Iσ = [lσ, rσ] ⊆ [0, 1]. Now, for each σ ∈ T ◦, let gσ̃ : Iσ̃ → [0, 3] be a piecewise linear function
such that gσ̃(lσ̃) = gσ̃(rσ̃) = 3 and gσ̃((lσ̃ + rσ̃)/2) = 2 −

∑
i∈Aσ 2−2i, and, for each τ ∈ S, define

gτ : Iτ → [0, 3] as gτ (x) = 3. Put g =
⋃
τ∈T̃ ◦∪S gτ . Then, g is a continuous function on [0, 1] by

Lemma 3.8 and Lemma 3.9: for this, observe that for each τ ∈ T̃ ◦ ∪ S, gτ can be extended to an
open subset of [0, 1], and thus g can be decomposed into piecewise linear functions on open subsets

of [0, 1]. Indeed, if lτ , rτ /∈ {0, 1}, then one can effectively find σ0, σ1 ∈ T̃ ◦ ∪ S such that rσ0 = lτ
and rτ = lσ1 . Then g is still piecewise linear on an interval (lσ0 , rσ1). One can check that g has
no critical point, as we have seen above. If x ∈ Iτ for some τ ∈ S, then take any σ ∈ T ◦, and
observe that y = (lσ̃ + rσ̃)/2 witnesses that x is not a critical point. If x ∈ Iσ̃ for some σ ∈ T ◦ then
take σ′ ∈ T ◦ as in the Cantor space case. Then y = (lσ̃′ + rσ̃′)/2 witnesses that x is not a critical
point. �

Next we consider versions of the variational principle provable in ACA0. Recall from Theorem 7.5
and Theorem 8.2 that ACA0 is able to prove the FVP when either f is continuous or X is compact.
Let us see that each of these cases implies ACA0, beginning with the former.

Proposition 9.2. The FVP for continuous, bounded f on the Baire space implies ACA0 over RCA0.
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Proof. As is well-known, ACA0 is equivalent to the statement “for every injection h : N→ N, the
range of h exists as a set.” (see [14, Lemma III.1.3]).

Let h : N→ N be an injection. For the purposes of this proof, we view the natural numbers as
coding the finite sets, with 0 coding ∅. For each n ∈ N and finite set D, let vn(D) denote the
number of a ∈ D with h(a) < n: vn(D) = |{a ∈ D : h(a) < n}|. The fact that h is an injection
implies that vn(D) ≤ n.

Define a continuous function g : NN → R≥0 by

g(x) =
∑
n∈N

2−2n−1+vn(x(2n+1)) ≤ 1.

We may use Lemma 3.8 to show that g can indeed be coded as a continuous function in RCA0, as
it is straightforward to produce the sequence (〈σa0N, g(σa0N)〉 : σ ∈ N<N) and, for all n ∈ N and
σ, τ ∈ N<N, to check that

d(σa0N, τa0N) < 2−2n+1 ⇒ |g(σa0N)− g(τa0N)| < 2−n.

To see the above implication, observe that if d(x, y) < 2−2n+1
, then x�(2n+1 + 1) = y�(2n+1 + 1).

This means that the terms 2−2k−1+vk(x(2k+1)) and 2−2k−1+vk(y(2k+1)) agree for k ≤ n and therefore
that |g(x)− g(y)| <

∑∞
k=n+1 2−k−1 = 2−n−1 < 2−n.

We see that g(x) ≤ 1 for all x ∈ NN, thus the function f : NN → R≥0 given by f(x) = 1− g(x) is
a continuous potential on the Baire space that is bounded by 1.

By the FVP on the Baire space, let x∗ be a critical point of f . For each n, let Dn denote the set
coded by x∗(2

n+1). We claim that Dn must contain every a for which h(a) < n. Suppose not, and
let a be such that h(a) < n but a /∈ Dn. Let y ∈ NN be such that y(2n+1) is a code for Dn ∪ {a}
and y(m) = x∗(m) for all m 6= 2n+1. Then

d(x∗, y) = 2−2n+1 ≤ 2−2n−1 ≤ 2−2n−1+vn(Dn) = f(x∗)− f(y),

contradicting that x∗ is a critical point. Thus Dn contains every a for which h(a) < n. We may
then extract the range of h from x∗ by taking ran(h) = {n : (∃a ∈ Dn+1)(h(a) = n)}. �

Proposition 9.3. The FVP for honestly-coded f on [0, 1] implies ACA0 over RCA0.

Proof. We work in RCA0 and prove the contrapositive. By Theorem 3.5, if ACA0 fails, then there is
a strictly increasing sequence ~c = (cn : n ∈ N) of rationals in [0, 1] with no supremum.

To define f , enumerate a code Φ by enumerating (u, v)
Φ
⇁ q if q ≤ u or if q ≤ 2 and there is an n

such that v < cn. One readily checks that Φ is a code for the potential f : [0, 1]→ R≥0 given by

f(x) =

{
2 if ∃n(x < cn)

x otherwise.

To ensure that Φ is honest, additionally enumerate (u, v)
Φ
⇁ q whenever there is an n such that

q ≤ cn < v. To see that the resulting code is honest, consider an open interval (u, v), and suppose
that (∀x ∈ (u, v))(f(x) ≥ q). Note that f is bounded above by 2, so q ≤ 2. If there is an n such

that v < cn, then (u, v)
Φ
⇁ q. If cn < u for all n, then f(x) = x on (u, v). Thus q ≤ u, so (u, v)

Φ
⇁ q.

Finally, suppose that there is an n such that cn ∈ (u, v), but there is no n such that v < cn. As
v is not the supremum of (cn : n ∈ N) (because we assumed that there is no such supremum),
there is a y ∈ (u, v) such that ∀n(cn < y). Then f(y) = y, which implies that q ≤ y < v. By a
similar argument, it cannot be that ∀n(cn < q) because if this were true, then there would be a
z ∈ (u, v) with z < q such that ∀n(cn < z). As also f(z) = z, this contradicts the assumption that

(∀x ∈ (u, v))(f(x) ≥ q). Thus it must be that q ≤ cn < v for some n, which implies that (u, v)
Φ
⇁ q.

Hence Φ is honest.
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We claim that f has no critical point. Assume towards a contradiction that c∗ is a critical point
of f . We show that c∗ is the supremum of ~c. Indeed, it is readily checked that if c∗ < cn for some n,
then

f(1) = 1 ≤ 2− d(c∗, 1) = f(c∗)− d(c∗, 1),

and hence c∗ cannot be a critical point. It follows that c∗ ≥ cn for all n. Now, if c′ < c∗ were also
an upper bound of ~c, then we would have f(c′) = c′, so that

f(c′) = c′ = c∗ − (c∗ − c′) = f(c∗)− d(c′, c∗),

and thus c∗ cannot be a critical point. Hence c∗ is the supremum of ~c, contradicting our initial
assumption. �

Finally, we show that the unrestricted FVP proves Π1
1-CA0 by appealing to the following charac-

terization of Π1
1-CA0.

Lemma 9.4 ([14, Lemma VI.1.1]). The following are equivalent over RCA0:

(1) Π1
1-CA0

(2) for any sequence (Ti)i∈N of subtrees of N<N, there is a set X such that for all i ∈ N, i ∈ X
if and only if Ti has an infinite path.

Proposition 9.5. The FVP on the Baire space implies Π1
1-CA0 over RCA0.

Proof. By Proposition 9.2, the FVP on the Baire space implies ACA0 over RCA0, so we may work
over ACA0.

Recall that we assume that the pairing function 〈·, ·〉 : N×N→ N is increasing in both coordinates.
For the purposes of this proof, if x ∈ NN and i ∈ N, then (x)i ∈ NN is the function defined by
(x)i(n) = x(〈i, n〉). Similarly, if σ ∈ N<N and i ∈ N, then (σ)i ∈ N<N is the longest sequence such
that (∀n < |(σ)i|)[〈i, n〉 ∈ domσ ∧ (σ)i(n) = σ(〈i, n〉)].

Let (Ti)i∈N be a sequence of subtrees of N<N. We first define a code for the lower semi-continuous
potential f : NN → [0, 1] given by

f(x) =

∞∑
i=0

{2−i : (x)i /∈ [Ti]}.

To do this, define Br(σ)
Φ
⇁ q if there is a τ ∈ N<N such that Br(σ) D B2−|τ |(τ) and q ≤

∑∞
i=0{2−i :

(τ)i /∈ Ti}. For a given x ∈ NN, one readily checks that v =
∑∞

i=0{2−i : (x)i /∈ [Ti]} (which ACA0

proves exists) is indeed the supremum of

{q ∈ Q : (∃〈σ, r〉 ∈ N<N ×Q>0)(Br(σ)
Φ
⇁ q ∧ d(x, σ) < r)}.

This shows that Φ correctly codes the desired potential f and that f is provably total in ACA0.
By the FVP, let x∗ be a critical point of f . Let X = {i : (x∗)i ∈ [Ti]}. We show that

(∀i ≥ 0)(i ∈ X ↔ Ti has a path). Clearly, if i ∈ X, then Ti has a path. Suppose for a contradiction
that there is a j such that Tj has a path, but j /∈ X. Let h ∈ [Tj ], and let y ∈ NN be such that for
all i, n ∈ N,

y(〈i, n〉) =

{
h(n) if i = j

x∗(〈i, n〉) otherwise,

so that (y)j = h and ∀i[i 6= j → (y)i = (x∗)i]. Then

d(x∗, y) ≤ 2−〈j,0〉 ≤ 2−j = f(x∗)− f(y).

This contradicts that x∗ is a critical point of f , which completes the proof. �
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10. The localized variational principle

In this section we compare the strength of the free and localized variational principles in different
contexts. First, we show that, in contrast to the FVP, the LVP is not affected by the boundedness
of f . We also show that the two principles are equivalent when f is not assumed to be continuous.
For the latter, it is clear that the LVP implies the FVP, so we focus on the other direction. The
following two lemmas aid the proof of the above facts.

Lemma 10.1 (RCA0). Let X be a complete separable metric space, let f : X → R≥0 be lower semi-

continuous, and let C ⊆ X be closed. Then there is a lower semi-continuous function g : X → R≥0

such that

g(x) =

{
0 if x ∈ C
f(x) if x 6∈ C.

Proof. Let Ψ be a code for f , and let U be a code for the complement of C. Enumerate a code Φ

for g by enumerating Br(a)
Φ
⇁ q if either

• q ≤ 0 or

• Br(a)
Ψ
⇁ q and there is an open ball Bs(b) enumerated in U with Br(a) D Bs(b).

If x ∈ C then there are balls Br(a) with x ∈ Br(a) and Br(a)
Φ
⇁ 0, but there are no balls Br(a) and

q > 0 such that x ∈ Br(a) and Br(a)
Φ
⇁ q. Hence g(x) = 0. If x /∈ C, given q ∈ Q>0, it is clear from

the definition of Φ that if there is a ball Br(a) with x ∈ Br(a) and Br(a)
Φ
⇁ q then also Br(a)

Ψ
⇁ q.

Conversely, suppose that there is a ball Br(a) with x ∈ Br(a) and Br(a)
Ψ
⇁ q. Since x /∈ C, x ∈ Bs(b)

for some ball Bs(b) enumerated in U , and hence there are a′, r′ such that x ∈ Br′(a′) D Br(a), Bs(b).

But then by condition (lsc1) of Definition 4.1, Br′(a
′)

Ψ
⇁ q, so that also Br′(a

′)
Φ
⇁ q. Since q was

arbitrary we conclude that g(x) = f(x) given that both are the supremum of such q in R. �

Lemma 10.2 (RCA0). Let X be a complete separable metric space, and let f, g : X → R≥0 be lower

semi-continuous. Then (f +g),max{f, g},min{f, g} : X → R≥0 (defined in the usual way) are lower
semi-continuous.

Proof. Let Ψ0 be a code for f and let Ψ1 be a code for g. Enumerate a code for f+g by enumerating

Br(a)
Φ
⇁ q if there are q0, q1 such that Br(a)

Ψ0⇁ q0, Br(a)
Ψ1⇁ q1, and q ≤ q0 + q1. Enumerate a code

Φ for max{f, g} by enumerating Br(a)
Φ
⇁ q if either Br(a)

Ψ0⇁ q or Br(a)
Ψ1⇁ q. Enumerate a code Φ

for min{f, g} by enumerating Br(a)
Φ
⇁ q if both Br(a)

Ψ0⇁ q and Br(a)
Ψ1⇁ q. �

Lemma 10.3 (RCA0). For every complete separable metric space X , the LVP for bounded potentials
on X implies the LVP on X , and the LVP for bounded continuous potentials on X implies the LVP
for continuous potentials on X .

Proof. Given a complete separable metric space X , a potential f : X → R≥0, and an x0 ∈ supp(f),

define f̃ : X → R≥0 by setting f̃(x) = min{f(x), f(x0)}. Then f̃ is bounded, is a potential by
Lemma 10.2, and is continuous if f is continuous. Suppose that ε > 0 and that x∗ ∈ X is an
ε-critical point of f̃ with εd(x0, x∗) ≤ f̃(x0)− f̃(x∗). Then either f̃(x∗) = f(x∗) or f̃(x∗) = f(x0).

However, if f̃(x∗) = f(x0), then εd(x0, x∗) ≤ f̃(x0)− f̃(x∗) = f(x0)− f(x0) = 0. Thus d(x0, x∗) = 0

and x∗ = x0, in which case again f̃(x∗) = f(x∗). Thus in either case f̃(x∗) = f(x∗). Therefore

εd(x0, x∗) ≤ f̃(x0)− f̃(x∗) = f(x0)− f(x∗). Furthermore, if x ∈ X and εd(x∗, x) ≤ f(x∗)− f(x),

then also εd(x∗, x) ≤ f̃(x∗)− f̃(x), so x = x∗ because x∗ is an ε-critical point of f̃ . Thus x∗ is also
an ε-critical point of f with εd(x0, x∗) ≤ f(x0)− f(x∗). �

Lemma 10.4 (RCA0). For every complete separable metric space X , the FVP on X implies the
LVP on X .
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Proof. Assume the FVP. Let f : X → R≥0 be any potential, ε > 0, x0 ∈ supp(f), and let C be the
closed set

C = {x ∈ X : εd(x, x0) ≤ f(x0)− f(x)}.
To see that C is closed, rewrite C as C = {x ∈ X : f(x) + εd(x, x0) ≤ f(x0)}, and observe that the
function g(x) = f(x) + εd(x, x0) is lower semi-continuous by Proposition 4.3 and Lemma 10.2. As
in the proof of Proposition 4.2, g(x) ≤ f(x0) is a Π0

1-definable property of x, so C is closed.

By Lemma 10.1 and Lemma 10.2, the function f̃ : X → R≥0 given by

f̃(x) =

{
f(x) if x ∈ C
max{f(x), εd(x, x0) + f(x0)} if x /∈ C

is lower semi-continuous. Let x∗ be an ε-critical point of f̃ . It must be that x∗ ∈ C, for otherwise we
would have that x∗ 6= x0 (as x0 ∈ C), but f̃(x∗) ≥ εd(x∗, x0) + f(x0) = εd(x∗, x0) + f̃(x0), meaning

that x0 witnesses that x∗ is not an ε-critical point of f̃ .
We have that f(x∗) ≤ f(x0) − εd(x∗, x0) because x∗ ∈ C. Moreover, if x ∈ X and f(x) ≤

f(x∗)− εd(x∗, x), then

f(x) ≤ f(x∗)− εd(x∗, x) ≤ f(x0)− εd(x∗, x0)− εd(x∗, x) ≤ f(x0)− εd(x, x0)

(where the last inequality is by the triangle inequality), so x ∈ C and therefore f̃(x) = f(x). Thus
for an x ∈ X with f(x) ≤ f(x∗)− εd(x∗, x),

f̃(x) = f(x) ≤ f(x∗)− εd(x∗, x) = f̃(x∗)− εd(x∗, x),

and therefore x = x∗ because x∗ is an ε-critical point of f̃ . So x∗ is also an ε-critical point of f . We
conclude that x∗ is an ε-critical point of f and that f(x∗) ≤ f(x0)− εd(x∗, x0). �

Thus the FVP and the LVP for arbitrary f are equivalent. In contrast, the LVP for continuous
functions suffices to prove the full FVP. To make this precise, we introduce the notion of pseudo-
fibrations. Below, by a closed isometry we mean a continuous function f : X → Y such that
dX (x0, x1) = dY(f(x0), f(x1)) for all x0, x1 ∈ X and such that f [X ] is closed. We check that if f is
a closed isometry and C ⊆ X is closed, then RCA0 proves that f [C] is closed as well.

Lemma 10.5 (RCA0). Let X be a complete separable metric space, let C ⊆ X be closed, and let
f : X → Y be a closed isometry. Then f [C] ⊆ Y is closed.

Proof. Let U be a code for the complement of C ⊆ X , and let V0 be a code for the complement of
f [X ] ⊆ Y. Enumerate a code V for an open V ⊆ Y by enumerating the ball Bs(b) in V if either

• Bs(b) is enumerated in V0 or
• there is a ball Br(a) enumerated in U such that dY(f(a), b) + s < r.

We show that a y ∈ Y is in V if and only if there is no x ∈ C such that f(x) = y. This shows that V
is the complement of f [C] and hence that f [C] is closed.

For y ∈ Y , we know that there is no x ∈ X such that y = f(x) if and only if there is a ball Bs(b)
containing y that is enumerated in V0. Thus it suffices to assume that there is an x ∈ X such that
y = f(x) and show that y ∈ V if and only if x /∈ C. Note that x is unique because f is an isometry.

First suppose that x /∈ C. Then x ∈ Br(a) for some ball Br(a) enumerated in U . We have that
dY(f(a), y) = dX (a, x) < r because y = f(x) and f is an isometry. Thus by choosing b sufficiently
close to y, we see that there is a ball Bs(b) containing y with dY(f(a), b) + s < r. Thus y ∈ V.

Conversely, suppose that y ∈ V. Then there are balls Bs(b) ⊆ Y and Br(a) ⊆ X such that
y ∈ Bs(b), Br(a) is enumerated in U , and dY(f(a), b) + s < r. Therefore dY(f(a), f(x)) < r because
f(x) = y ∈ Bs(b). Thus dX (a, x) < r because f is an isometry. Therefore x ∈ Br(a), so x /∈ C. �

Definition 10.6. Let X ,Y be complete separable metric spaces. Say that a space Z is an X -
pseudofibration of Y if there are a closed isometry ι : X × Y → Z and a continuous function
π : Z → Y such that
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(1) for all z, z′ ∈ Z, dY(π(z), π(z′)) ≤ dZ(z, z′) and
(2) for all 〈x, y〉 ∈ X × Y, πι(x, y) = y.

Of course the typical example of an X -pseudofibration of Y is X × Y, but later we will see that
there are others. Pseudofibrations are useful due to the following.

Lemma 10.7 (RCA0).

(1) If X and Z are complete separable metric spaces such that Z is an X -pseudofibration of
R≥0, then the LVP for continuous potentials on Z implies the FVP on X .

(2) If X and Z are complete separable metric spaces such that Z is an X -pseudofibration of
[0, 1], then the LVP for continuous potentials on Z implies the 1-FVP on X .

Proof. We give a uniform proof for the two claims. Note that by Lemma 7.3.1 we can also assume
for the conclusion of the first claim that ε = 1. Let X be a complete separable metric space, let Y
be either R≥0 for the first claim or [0, 1] for the second, and let Z be an X -pseudofibration of Y
with associated functions ι : X × Y → Z and π : Z → Y. For the first claim, let f : X → R≥0 be
lower semi-continuous; and for the second claim, let f : X → [0, 1] be lower semi-continuous. By
Proposition 4.2, the set

∆ = {〈x, y〉 ∈ X × Y : f(x) ≤ y}

is closed, hence so is Γ = ι[∆] ⊆ Z by Lemma 10.5 because ι is a closed isometry. By Urysohn’s
lemma, which is provable in RCA0 by [14, Lemma II.7.3], there is a continuous function g : Z → [0, 1]

such that g(z) = 0 if and only if z ∈ Γ. Define a continuous function f̃ : Z → R≥0 by

f̃(z) = π(z) + g(z).

Every z ∈ Γ is of the form z = ι(x, y) for some 〈x, y〉 ∈ X × Y. For such a z, we then have that

f̃(z) = π(z) + g(z) = π(z) = πι(x, y) = y,

where the second equality is because z ∈ Γ (and therefore g(z) = 0), and the last equality is by
Definition 10.6.2.

Now, fix any x0 ∈ supp(f), let y0 = f(x0), and let z0 = ι(x0, y0). By the LVP for continuous

potentials on Z, let z∗ ∈ Z be a critical point of f̃ that satisfies f̃(z∗) ≤ f̃(z0)− dZ(z0, z∗). We first

claim that z∗ ∈ Γ. To see this, observe that z0 ∈ Γ by definition and therefore f̃(z0) = π(z0) = y0.
We then have that

π(z∗) + g(z∗) = f̃(z∗) ≤ f̃(z0)− dZ(z0, z∗)

= π(z0)− dZ(z0, z∗)

≤ π(z0)− dY(π(z0), π(z∗)) by Definition 10.6.1

= π(z0)− |π(z0)− π(z∗)|
≤ π(z∗).

Therefore we must have that g(z∗) = 0, which means that z∗ ∈ Γ.
As z∗ ∈ Γ, it must be that z∗ = ι(x∗, y∗) for some 〈x∗, y∗〉 ∈ ∆. Thus x∗ ∈ X and y∗ ≥ f(x∗). In

fact, it must be that y∗ = f(x∗). To see this, suppose for a contradiction that y∗ > f(x∗), and let
z = ι(x∗, f(x∗)). We then have that

f̃(z∗)− f̃(z) = y∗ − f(x∗) = dZ(z, z∗),

where the first equality is because z∗ and z are in Γ, and the second equality is because ι is an
isometry. Thus z witnesses that z∗ is not a critical point of f̃ , which is a contradiction. Therefore
y∗ = f(x∗), so z∗ = ι(x∗, f(x∗)).
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We now show that x∗ is a critical point of the original f , which completes the proof. Let x ∈ X ,
and suppose that f(x∗) ≥ f(x) + dX (x, x∗). Let z = ι(x, f(x)). Then

dZ(z∗, z) = dX×Y(〈x∗, f(x∗)〉, 〈x, f(x)〉) = f(x∗)− f(x),

where the first equality is because ι is an isometry, and the second equality is because f(x∗)−f(x) ≥
dX (x, x∗) and we use the max norm on X × Y. As z∗ and z are in Γ, we have that

f̃(z∗)− f̃(z) = f(x∗)− f(x) = dZ(z∗, z).

Therefore z = z∗ because z∗ is a critical point of f̃ , and since ι is injective, x = x∗. We have shown
that if x ∈ X satisfies f(x∗) ≥ f(x) + dX (x, x∗), then x = x∗. Thus x∗ is a critical point of f . �

Of course it follows from Lemma 10.7 that the LVP for continuous functions on X × R≥0 implies
the FVP on X . However, the notion of pseudofibrations will allow us to replace X × R≥0 by a
more familiar space. In what follows, we will mainly deal with C

(
[0, 1]

)
. For given h ∈ C

(
[0, 1]

)
and

a closed interval I ⊆ [0, 1], we write ‖h‖I = supt∈I |h(t)|. By the definition (coding) of C
(
[0, 1]

)
,

statements of the form ‖h‖I ≤ r are always Π0
1.

Lemma 10.8 (RCA0). Let X be a complete separable metric space, and let Y = [a, b] ∩ R, where
a < b are elements of R. If X embeds by a closed isometry into C

(
[0, 1]

)
, then C

(
[0, 1]

)
is an

X -pseudofibration of Y.

Proof. Let Z = C
(
[0, 1]

)
and let f : X → Z be a closed isometry. Let us write fx instead of f(x).

Define ι : X × Y → Z by (
ι(x, y)

)
(t) =

{
2tfx(0) + (1− 2t)y if t < 1/2,

fx(2t− 1) if t ≥ 1/2,

and define π : Z → Y by

π(g) =


a if g(0) < a,

b if g(0) > b,

g(0) otherwise.

Intuitively, ι(x, y) represents y by its value on 0 and represents f(x) by its values on [1/2, 1]. It is
easy to check that a code for π can be constructed using Lemma 3.8. We may also use Lemma 3.8
to construct a code for ι. To do this, let X and Y be the dense sets of X and Y, respectively. It is
straightforward to produce the sequence (〈〈a, q〉, ι(a, q)〉 : 〈a, q〉 ∈ X × Y ) and observe that

dX×Y(〈a0, q0〉, 〈a1, q1〉) = max(dX (a0, a1), dY(q0, q1)) = dZ(ι(a0, q0), ι(a1, q1)). (3)

Thus the hypotheses of Lemma 3.8 are satisfied, so there exists a code for ι. Equation (3) implies that
ι is an isometry. To see that ι is closed, consider an h ∈ C

(
[0, 1]

)
, put h[(t) = (2t)h(1/2)−(1−2t)h(0),

and put h](t) = h(t/2 + 1/2). Then h ∈ ι[X × Y ] if and only if ‖h− h[‖[0,1/2] = 0 (i.e., h is linear on

[0, 1/2]), h(0) ∈ Y, and h] ∈ f [X ], which is a Π0
1 condition because f [X ] is closed by assumption.

Thus, ι[X × Y] is closed by Lemma 3.7. It is then easy to check that ι and π make Z an X -
pseudofibration of Y. �

In order to apply Lemma 10.8, we need to show that many of the spaces we are interested in
isometrically embed into C

(
[0, 1]

)
. Let us begin with the unit interval.

Lemma 10.9 (RCA0). There exists a closed isometry f : [0, 1]→ C
(
[0, 1]

)
.

Proof. Let X = [0, 1] and Y = C
(
[0, 1]

)
. For r ∈ [0, 1], write Ir for the constant function with value

r. Define f : X → Y by f(x) = Ix. It is obvious that f is an isometry and thus a code for f exists
by arguing in the style of the proof of Lemma 10.8 and appealing to Lemma 3.8. We may observe
that h ∈ f [X ] if and only if ‖h − Ih(0)‖[0,1] = 0, which is a Π0

1 condition, thus f [X ] is closed by
Lemma 3.7. �
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Next, let us see that there is also a closed isometry from the Baire space into C
(
[0, 1]

)
.

Definition 10.10. If I = [a, b] is an interval with 0 ≤ a < b ≤ 1, define Î : [0, 1] → R to be the

piecewise linear function with Î(0) = Î(a) = Î(b) = Î(1) = 0, Î
(
a+b

2

)
= 1, and Î linear elsewhere.

For n ∈ N, define In = [1− 2−n, 1− 2−(n+1)] and for m,n ∈ N define

Jmn =
[
1− 2−(n+1) − 2−(n+m+1), 1− 2−(n+1) − 2−(n+m+2)

]
.

Let X be the Baire space and Y be C
(
[0, 1]

)
. Then, define F : X → Y by

F (x) =
∑
n∈N

2−nĴx(n)
n .

Lemma 10.11 (RCA0). The function F of Definition 10.10 is a closed isometry from the Baire
space to C

(
[0, 1]

)
.

Proof. A code for F exists by checking that F is an isometry, arguing as in the proof of Lemma 10.8,
and appealing to Lemma 3.8. For h ∈ C

(
[0, 1]

)
, h ∈ F [NN] if and only if for every n ∈ N, ‖h‖In = 2−n,

and for every n,m ∈ N, either ‖h‖Jmn = 0 or ‖h − 2−nĴmn ‖In = 0, which is a Π0
1 statement. It

is easy to check the “only if” direction, so we check the “if” direction. For a given h ∈ C
(
[0, 1]

)
which satisfies the assumption, define hN : N→ N by letting hN(n) be the unique m ∈ N such that
‖h‖Jmn 6= 0 (which can be found effectively). Then F (hN) = h. Thus the image of F is closed by
Lemma 3.7. �

Proposition 10.12 (RCA0).

(1) The LVP for bounded, continuous potentials on [0, 1]× [0, 1] with the max metric implies
ACA0.

(2) The LVP for bounded, continuous potentials on C
(
[0, 1]

)
implies Π1

1-CA0.

Proof. Note that in view of Lemma 10.3 the bounded LVP implies the full LVP, so we may remove
‘bounded’ from both items. For the first item, we note by Proposition 9.3 that the FVP on [0, 1]
implies ACA0. Moreover, by Lemma 7.3.3d, since [0, 1] is a closed ball in R1, we may replace the
FVP by the 1-FVP. Since [0, 1]× [0, 1] is clearly a [0, 1]-pseudofibration of [0, 1], by Lemma 10.7 we
have that the LVP for bounded, continuous potentials on [0, 1]× [0, 1] implies ACA0 as well.

For the second, let X be the Baire space and Z be C
(
[0, 1]

)
. By Lemma 7.3.3b and Proposition

9.5, the 1-FVP on X implies Π1
1-CA0. By Lemma 10.11, X embeds by a closed isometry into Z, so

that by Lemma 10.8, Z is an X -pseudofibration of [0, 1]. Hence, reasoning as above, the LVP for
bounded, continuous functions on Z implies the 1-FVP on X , from which we obtain Π1

1-CA0. �

Remark 10.13. Let B be the closed unit ball of C
(
[0, 1]

)
. It is easy to see that the isometries used

in Lemmas 10.9 and 10.11 map into B, and the proof of Lemma 10.8 can be modified to show that
B is an X -pseudofibration of [0, 1]. With this we may replace C

(
[0, 1]

)
by B in Proposition 10.12.2.

11. Conclusion

We have considered formalizations of Ekeland’s variational principle with various natural restric-
tions and have shown that they are equivalent to well-known theories of second-order arithmetic. In
this final section we synthesize these results to produce the definitive versions of our main results.

There are three main weakenings of the LVP we considered: the free, rather than localized,
statement; the case where X is compact; and the case where f is continuous. When the LVP is
weakened in the three ways simultaneously, we obtain a statement equivalent to WKL0.

Theorem 11.1. Over RCA0, the following are equivalent:

(a) WKL0;
(b) the FVP for continuous f and compact X ;
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(c) the FVP for continuous f on the Cantor space or on [0, 1].

Proof. That (a) implies the other items is Proposition 7.4, while (c) implies (a) by Proposition
9.1. �

If we choose two, but not three, of the weakenings, we instead obtain statements equivalent to
ACA0. Moreover, if we impose only one of the three weakenings, we typically obtain statements
that are not provable in ACA0. The only exception to this is the case where X is compact.

Theorem 11.2. Over RCA0, the following are equivalent:

(a) ACA0;
(b) the FVP for continuous f ;
(c) the FVP for compact X ;
(d) the LVP for compact X ;
(e) the LVP for continuous f and compact X .

Moreover in item (b) we may take X to be the Baire space, in items (c) and (d) we may take
X = [0, 1], and in (d) and (e) we may take X = [0, 1]× [0, 1] with the max metric.

Proof. The equivalence between (a) and (b) is given by Theorem 7.5 and Proposition 9.2, while the
equivalence between (a) and (c) is given by Theorem 8.2 and Proposition 9.3. By Lemma 10.4, (c)
implies (d). Clearly, (d) implies (e), which by Proposition 10.12 implies (c). �

Other than compactness, if we impose at most one weakening to the LVP we obtain statements
equivalent to Π1

1-CA0.

Theorem 11.3. The following are equivalent:

(a) Π1
1-CA0;

(b) the FVP;
(c) the LVP for continuous f ;
(d) the LVP.

Moreover, in (b) and (d) we may take X to be the Baire space, and in any of (b)-(d) we may take
X to be (the closed unit ball of) C

(
[0, 1]

)
.

Proof. The equivalence between (a) and (b) is given by Theorem 8.2 and Proposition 9.5. That (b)
implies (d) is Lemma 10.4. Clearly, (d) implies (c), and the latter implies (a) by Proposition 10.12
(with Remark 10.13). �

We have also considered variants of the variational principle where f is bounded, but this
restriction has not affected the proof-theoretic strength of the theorem; indeed, in each of these
theorems we may additionally assume that f is bounded.
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