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Abstract. We prove that the first-order theory of the Medvedev degrees, the first-order theory of
the Muchnik degrees, and the third-order theory of true arithmetic are pairwise recursively isomor-
phic (obtained independently by Lewis, Nies, and Sorbi [7]). We then restrict our attention to the
degrees of closed sets and prove that the following theories are pairwise recursively isomorphic: the
first-order theory of the closed Medvedev degrees, the first-order theory of the compact Medvedev
degrees, the first-order theory of the closed Muchnik degrees, the first-order theory of the com-
pact Muchnik degrees, and the second-order theory of true arithmetic. Our coding methods also
prove that neither the closed Medvedev degrees nor the compact Medvedev degrees are elementarily
equivalent to either the closed Muchnik degrees or the compact Muchnik degrees.

1. Introduction

The complexities of the first-order theories of degree structures are a central topic in computabil-
ity theory. The results typically show that these theories are computationally as complicated as
possible. Major results include (in chronological order):

• The first-order theory of the Turing degrees is recursively isomorphic to the second-order
theory of true arithmetic (Simpson [15]).
• The first-order theory of the Turing degrees below 0′ is recursively isomorphic to the first-

order theory of true arithmetic (Shore [14]).
• The first-order theory of the Turing degrees of r.e. sets is recursively isomorphic to the

first-order theory of true arithmetic (Harrington and Slaman, unpublished; see also Nies,
Shore, and Slaman [12]).

We continue in this vein by proving two main theorems:

• Theorem 3.13: The first-order theory of the Medvedev degrees, the first-order theory of
the Muchnik degrees, and the third-order theory of true arithmetic are pairwise recursively
isomorphic (obtained independently by Lewis, Nies, and Sorbi [7]).
• Theorem 5.12: The following theories are pairwise recursively isomorphic: the first-order

theory of the closed Medvedev degrees, the first-order theory of the compact Medvedev
degrees, the first-order theory of the closed Muchnik degrees, the first-order theory of the
compact Muchnik degrees, and the second-order theory of true arithmetic.

In addition we prove:

• Theorem 6.3: Neither the closed Medvedev degrees nor the compact Medvedev degrees
are elementarily equivalent to either the closed Muchnik degrees or the compact Muchnik
degrees.

Our codings of arithmetic into the Medvedev and Muchnik degree structures are direct. We
define parameters coding ω, ≤, +, and ×, and then we explain how to simulate quantification. In
the third-order case, we show that any Medvedev degree or Muchnik degree codes both a subset of
ω and a subset of 2ω. Hence quantification over the Medvedev degrees or over the Muchnik degrees
simulates both quantification over 2ω and quantification over 22

ω
. In the second-order case, we use
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a different coding and again show that quantification over the closed degrees or over the compact
degrees simulates quantification over 2ω. In contrast, Lewis, Nies, and Sorbi’s proof of Theorem
3.13 relies on the following facts: The third-order theory of arithmetic is recursively isomorphic to
the second-order theory of the reals, and the reals can be coded as a symmetric graph.

This paper is organized as follows: The rest of the introduction establishes notation and defines
the objects considered. Section 2 interprets the various degree structures in third-order arithmetic
or in second-order arithmetic. Section 3 interprets third-order arithmetic in the Medvedev degrees
and in the Muchnik degrees. Section 4 interprets second-order arithmetic in the closed Muchnik
degrees and in the compact Muchnik degrees. Section 5 interprets second-order arithmetic in
the closed Medvedev degrees and in the compact Medvedev degrees. Section 6 distinguishes the
first-order theories of the closed Medvedev degrees and the compact Medvedev degrees from the
first-order theories of the closed Muchnik degrees and the compact Muchnik degrees

1.1. Basic notation. Φe denotes the eth Turing functional. The function 〈 ·, · 〉 : ω × ω → ω is a
fixed recursive bijection. For f, g ∈ ωω, f ⊕ g ∈ ωω is the function where (f ⊕ g)(2n) = f(n) and
(f ⊕ g)(2n+ 1) = g(n). For finite sequences σ, τ ∈ ω<ω, σ ⊂ τ means that σ is an initial segment of
τ . Similarly, σ ⊂ f means that σ is an initial segment of f . The sequence σaτ is the concatenation
of sequences σ and τ . Similarly σaf is the concatenation of σ and f . For σ ∈ ω<ω and A ⊆ ωω,
σaA denotes {σaf | f ∈ A}. The sequence f � n is the initial segment of f of length n. The
length of a sequence σ is denoted by |σ|. A tree is a set T ⊆ ω<ω closed under initial segments. A
function f is a path through T if (f � n) ∈ T for all n ∈ ω. For A,B ⊆ ω, we write A≤1B if there
is a one-to-one recursive function f such that ∀n(n ∈ A↔ f(n) ∈ B). A and B are recursively
isomorphic if there is such an f that is a bijection. The Myhill isomorphism theorem states that
A and B are recursively isomorphic if and only if A≤1B and B≤1A (see [18] Section I.5).

Our coding will make use of the following familiar definitions from recursion theory:

Definition 1.1. A ⊆ ωω is a Turing antichain if f |T g for any distinct f, g ∈ A.

Definition 1.2. A ⊆ ωω is independent if g�T f1 ⊕ · · · ⊕ fn for any distinct g, f1, . . . , fn ∈ A.

Infinite independent sets exist. See [6] section II.3 for an example. An independent set is a
Turing antichain.

1.2. Standard relational models of arithmetic. We describe what we mean by “true arith-
metic” by defining the standard relational models of first-order, second-order, and third-order
arithmetic. In what follows, equality is always part of the language and is always interpreted as
true equality on ω. Equality on 2ω and 22

ω
is defined in terms of membership via extensionality.

The standard model of arithmetic is the structure N = 〈ω,≤,+,×〉. The relations ≤⊆ ω2,
+ ⊆ ω3, and × ⊆ ω3 are interpreted as the usual less-than-or-equal-to, plus, and times. Variables
x range over ω.

The standard model of second-order arithmetic is the structure N2 = 〈ω, 2ω,≤,+,×,∈ 〉. The
relations ≤, +, and × are interpreted as usual. The relation ∈⊆ ω×2ω is interpreted as membership.
Variables x range over ω and variables X range over 2ω. Th(N2) denotes the theory of N2, the set
of all sentences in this language true in N2.

The standard model of third-order arithmetic is the structure N3 = 〈ω, 2ω, 22ω ,≤,+,×,∈2,∈3 〉.
The relations ≤, +, and × are interpreted as usual. The relation ∈2⊆ ω × 2ω is interpreted as
second-order membership and the relation ∈3⊆ 2ω × 22

ω
is interpreted as third-order membership.

Variables x range over ω, variables X range over 2ω, and variables X range over 22
ω
. Th(N3)

denotes the theory of N3, the set of all sentences in this language true in N3.
We consider arithmetic with + and × as relations ⊆ ω3 instead of as the usual functions ω2→ω

because our coding methods most naturally code relations. Any formula in which + and × are
relation symbols can be trivially translated into an equivalent formula in which + and × are
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function symbols. Translations in the other direction require unnesting. In general, a formula is
said to be unnested if all its atomic subformulas are of the form x = y, c = y, f(x1, . . . , xn) = y, or
R(x1, . . . , xn), where x, y, and the xi are variables, c is a constant symbol, f is a function symbol,
and R is a relation symbol. Every formula can be recursively translated into an equivalent unnested
formula. See for example [4] section 2.6. When unnesting is applied to a first-order formula in the
functional language of arithmetic, we get an equivalent formula whose atomic subformulas are of
the form

x = y x ≤ y x+ y = z x× y = z,

which can easily be translated into a formula in the relational language of arithmetic. Unnesting
second-order or third-order formulas is the same but allows additional atomic formulas x ∈ X
(second-order case) or x ∈2 X and X ∈3 X (third-order case). Thus the functional and relational
theories of second-order arithmetic are recursively isomorphic, as are the functional and relational
theories of third-order arithmetic.

1.3. Mass problems and reducibilities. A mass problem is a set of functions A ⊆ ωω. We
say mass problem A Medvedev reduces to mass problem B (written A≤M B) if there is a Turing
functional Φ such that for every f ∈ B, Φf computes a total function that is in A (written
Φ(B) ⊆ A). We say A and B are Medvedev equivalent (written A≡M B) if A≤M B and B≤MA. The
relation ≡M is an equivalence relation on 2ω

ω
, and the equivalence class [A] is called the Medvedev

degree of A. Medvedev reducibility induces a partial order on degrees: [A]≤M[B] if and only if
A≤M B. The structure M = (2ω

ω
/≡M,≤M) introduced by Medvedev in [9] is called the Medvedev

degrees. M is a lattice. For mass problems A and B, let

A+B = {f ⊕ g | f ∈ A∧ g ∈ B}

A×B = 0aA ∪ 1aB.

Then join is given by [A] +[B] = [A+B] and meet is given by [A]×[B] = [A×B]. Th(M) denotes
the first-order theory of the Medvedev degrees.

We say mass problem AMuchnik reduces (or weakly reduces) to mass problem B (written A≤w B)
if for every f ∈ B there is a g ∈ A with g≤T f . Muchnik reducibility is the non-uniform version
of Medvedev reducibility. We say A and B are Muchnik equivalent (or weakly equivalent, written
A≡w B) if A≤w B and B≤wA. The equivalence class [A]w is called the Muchnik degree of A.
Muchnik reducibility induces a partial order on degrees [A]w, and this partial order is a lattice
with join and meet computed as in the Medvedev case: [A]w +[B]w = [A+B]w and [A]w×[B]w =
[A×B]w. Notice that in the Muchnik case A×B≡wA ∪ B, so one may think of A×B as being
defined as A ∪ B in this case. The structure Mw = (2ω

ω
/≡w,≤w) introduced by Muchnik in [11]

is called the Muchnik degrees. Th(Mw) denotes the first-order theory of the Muchnik degrees.
M and Mw both have a least element and a greatest element. In both lattices, ωω has minimum

degree. In fact, a mass problem has minimum degree if and only if it contains a recursive function.
The empty mass problem has maximum degree, and it is the only such mass problem. M and Mw

are also both distributive lattices. That is, they satisfy ∀x∀y∀z[x+ (y× z) = (x+ y)× (x+ z)] and
∀x∀y∀z[x× (y + z) = (x× y) + (x× z)]. Sorbi’s [22] is a good introduction to M and Mw.

We note that Lewis, Nies, and Sorbi [7] prove that M and Mw are not elementary equivalent.
Thus the theorem Th(M)≡1 Th(Mw) is nontrivial.

For the sake of definiteness, the official language of M (and of all lattices considered here) is
that of partial orders. In any lattice, + and × are first-order definable from ≤, so we will freely
use the symbols + and × with the understanding that they are abbreviations for their first-order
definitions.

The notation Th(M) is also used to denote the collection of propositional formulas valid in M
when studying M as a Brouwer algebra. In fact, this interpretation was the main motivation
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behind Medvedev’s introduction of M in [9], and in [10] he proves that M provides semantics for
intuitionistic logic plus the additional axiom ¬p∨¬¬p (the so-called Jankov’s logic [5]). There are
many interesting results and problems in this direction. See for example [17], [20], [21], [23], and
[13]. However, we do not consider propositional logics here, and for us the notation Th(M) always
denotes the first-order theory of M.

Our notation for join and meet in lattices conflicts with the notation for plus and times in
arithmetic. The lattice join and meet operations are denoted in the literature variously as +, ×,
as ∨, ∧, and confusingly as ∧, ∨. We prefer to conflict with the arithmetic notation rather than
the logical notation.

1.4. Mass problems and topology. We consider Baire space ωω and Cantor space 2ω, both with
their usual product topologies. Basic open sets in ωω have the form I(σ) = {f ∈ ωω | σ ⊂ f} for
σ ∈ ω<ω, and similarly for 2ω. If A ⊆ ωω is closed, then A is the set of paths through the tree
T ⊆ ω<ω defined by T = {σ | (∃f ∈ A)[σ ⊂ f ]}. Conversely, if T ⊆ ω<ω is a tree, then the set of
paths through T is a closed subset of ωω. A set A ⊆ ωω is compact if and only if it is closed and
bounded if and only if it is the set of paths through a finitely branching tree (here bounded means
there is a g : ω → ω such that f(n) ≤ g(n) for all f ∈ A and n ∈ ω).

A Medvedev degree is said to be closed (compact) if it is of the form [A] where A is closed
(compact) in ωω. By inspecting the definitions, one can check that if A and B are closed (compact)
then so are 0aA ∪ 1aB and {f ⊕ g | f ∈ A∧ g ∈ B}. Thus the closed Medvedev degrees form a
distributive sublattice of M which we denote by Mcl, and the compact Medvedev degrees form a
distributive sublattice of M (and of Mcl) which we denote by M01

cl , both as in [8] (the “01” notation
is explained below). Both Mcl and M01

cl inherit the least element and the greatest element from M.
Th(Mcl) denotes the first-order theory of Mcl, and Th(M01

cl ) denotes the first-order theory of M01
cl .

Similarly, a Muchnik degree is said to be closed (compact) if it is of the form [A]w where A
is closed (compact) in ωω. The closed (compact) Muchnik degrees form a distributive sublattice
of Mw denoted by Mw,cl (M01

w,cl). M01
w,cl is also a distributive sublattice of Mw,cl. Both Mw,cl

and M01
w,cl inherit the least element and the greatest element from Mw. Th(Mw,cl) denotes the

first-order theory of Mw,cl, and Th(M01
w,cl) denotes the first-order theory of M01

w,cl.
The closed subsets of ωω (and of 2ω) are the topologically simplest classes which yield non-trivial

degree structures because every nonempty open set contains a recursive function. As such, they are
worthy objects of study. For example, Bianchini and Sorbi [1] studied the filter (in M) generated
by the nonminimum closed degrees. Lewis, Shore, and Sorbi [8] have made a recent study of
topologically-defined collections of Medvedev degrees.

In general, every A ⊆ ωω is Medvedev equivalent (and hence also Muchnik equivalent) to some
B ⊆ 2ω:

Lemma 1.3. If A ⊆ ωω then there is a B ⊆ 2ω with A≡M B.

Proof. For f ∈ ωω, let graph f ⊆ ω denote {〈n,m 〉 | f(n) = m} Given A, let B = {graph f | f ∈
A}. Let Φ be the functional such that Φf (〈n,m 〉) = 1 if f(n) = m and Φf (〈n,m 〉) = 0 otherwise.
Then Φf = graph f for all f . Thus Φ(A) = B. Let Ψ be the functional such that Ψg(n) searches
for an m such that g(〈n,m 〉) = 1 and outputs such an m if it is found. If g is the characteristic
function of graph f , then Ψg is total and equals f . Hence Ψ(B) = A. �

If we let M01 denote the Medvedev degrees of mass problems A ⊆ 2ω and let M01
w denote the

Muchnik degrees of mass problems A ⊆ 2ω, then Lemma 1.3 says M = M01 and Mw = M01
w .

However, if A ⊆ ωω is closed, the B ⊆ 2ω produced by Lemma 1.3 need not be. Turing functionals
are continuous, but ωω and 2ω are not homeomorphic. Nevertheless, if A ⊆ ωω is compact, Lemma
1.3 produces a closed B ⊆ 2ω. So every compact A ⊆ ωω is Medvedev equivalent (and hence also
Muchnik equivalent) to a closed (hence compact) B ⊆ 2ω. This explains the notations M01

cl and
M01

w,cl for the collections of compact degrees.
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We will prove that neither Mcl nor M01
cl are elementarily equivalent to either Mw,cl or M01

w,cl

(Theorem 6.3 below). The relationship between Mcl and M01
cl and the relationship between Mw,cl

and M01
w,cl require further study.

Question 1.4.

• Is every closed X ⊆ ωω Medvedev equivalent to some closed Y ⊆ 2ω? If not, are Mcl and
M01

cl isomorphic? If not, are Mcl and M01
cl elementarily equivalent?

• Is every closed X ⊆ ωω Muchnik equivalent to some closed Y ⊆ 2ω? If not, are Mw,cl and

M01
w,cl isomorphic? If not, are Mw,cl and M01

w,cl elementarily equivalent?

Our topological considerations of Medvedev reducibility are consequences of the familiar use
property (see [6] section I.3): If Φf (m) = n, then there is a finite σ ⊂ f such that σ contains all
the answers to the oracle queries made during the computation of Φf (m) = n. This is written
Φσ(m) = n and implies Φg(m) = n for any g ⊃ σ. The starting point is the following simple
lemma:

Lemma 1.5. Let m,n ∈ ω. For any program Φ, the set {f ∈ ωω | Φf (m) = n} is open. If Φf is
total for all f ∈ A, then {f ∈ A | Φf (m) = n} is clopen in A (i.e. it is both the intersection of A
with a set open in ωω and the intersection of A with a set closed in ωω).

Proof. If Φf (m) = n, then by the use property there is some σ ⊂ f such that Φσ(m) = n. Hence
{f ∈ ωω | Φf (m) = n} =

⋃
{I(σ) | Φσ(m) = n}.

If Φ is total on A, then {f ∈ A | Φf (m) = n} = A ∩ {f ∈ ωω | Φf (m) = n} = A ∩
(⋂

i 6=n{f ∈
ωω | Φf (m) 6= i}

)
. The last equality holds because if Φf is total and Φf (m) 6= i for all i 6= n, then

it must be that Φf (m) = n. �

2. Interpreting the Medvedev degrees and the Muchnik degrees in arithmetic

In this section we prove that Th(M), Th(Mw)≤1 Th(N3) and also that Th(Mcl), Th(M01
cl ),

Th(Mw,cl), Th(M01
w,cl)≤1 Th(N2).

The reductions Th(M), Th(Mw)≤1 Th(N3) follow from the fact that every mass problem A is
equivalent to some B ⊆ 2ω (i.e. Lemma 1.3) and that the Medvedev and Muchnik reducibilities are
definable in N3.

Lemma 2.1. Th(M), Th(Mw)≤1 Th(N3).

Proof. The relation R(X, e,m, n) expressing ΦX
e (m) = n is definable by a formula which says “there

exists a number s coding a sequence of configurations witnessing the computation ΦX
e (m) = n.”

The relation S(X,Y, e) expressing ΦX
e = Y is definable by the formula

∀m[(m ∈ Y →R(X, e,m, 1))∧(m /∈ Y →R(X, e,m, 0))].

Thus the relation A≤M B is definable by the formula

ϕ(A,B) := ∃e∀X[X ∈ B→∃Y (Y ∈ A∧S(X,Y, e))].

Now, given a sentence ψ in the language of partial orders, produce a sentence ψ′ in the language
of N3 by replacing quantifications ∀x and ∃x with third-order quantifications ∀X and ∃X , by
replacing atomic formulas x ≤ y with ϕ(X ,Y), and by replacing atomic formulas x = y with
ϕ(X ,Y)∧ϕ(Y,X ). Then N3 |= ψ′ if and only if M |= ψ.

The reduction Th(Mw)≤1 Th(N3) is obtained by switching the quantifiers ∃e and ∀X in the
definition of the formula ϕ above. �

The interpretations of Mcl and Mw,cl (M01
cl and M01

w,cl) in N2 rely on the fact that A ⊆ ωω

(A ⊆ 2ω) is closed if and only if it is the set of paths through some tree T ⊆ ω<ω (T ⊆ 2<ω). Thus
we quantify over all closed mass problems by quantifying over all trees. So fix some definable coding
of sequences, trees, and functions in N2. See [16] section II.2 for a particularly careful method.
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Lemma 2.2. Th(Mcl), Th(M01
cl ), Th(Mw,cl), Th(M01

w,cl)≤1 Th(N2).

Proof. The relation P (f, T ) expressing “function f is a path through tree T” is definable by the

formula ∀n∃σ(σ ∈ T ∧ |σ| = n∧(∀i < |σ|)[σ(i) = f(i)]). Relations R(f, e,m, n) expressing Φf
e (m) =

n and S(f, g, e) expressing Φf
e = g are definable as in Lemma 2.1. Thus the relation T ≤M S

(expressing that the set of paths through T Medvedev reduces to the set of paths through S) is
definable by the formula ϕ(T, S) := ∃e∀f [P (f, S)→∃g(P (g, T )∧S(f, g, e))].

Now, given a sentence ψ in the language of partial orders, produce a sentence ψ′ in the language
of N2 by replacing quantifications ∀x and ∃x with second-order quantifications ∀Tx and ∃Tx quan-
tifying over trees Tx ⊆ ω<ω, by replacing atomic formulas x ≤ y with ϕ(Tx, Ty), and by replacing
atomic formulas x = y with ϕ(Tx, Ty)∧ϕ(Ty, Tx). Then N2 |= ψ′ if and only if Mcl |= ψ. The

reduction Th(M01
cl )≤1 Th(N2) is exactly the same, except we quantify over trees T ⊆ 2<ω.

The reductions Th(Mw,cl),Th(M01
w,cl)≤1 Th(N2) are obtained by switching the quantifiers ∃e

and ∀f in the definition of the formula ϕ above. �

3. Interpreting arithmetic in the Medvedev degrees and in the Muchnik degrees

In this section we prove Th(N3)≤1 Th(Mw)≤1 Th(M), thereby completing the proof that all
three theories are pairwise recursively isomorphic. The proof of Th(N3)≤1 Th(Mw) is also valid
with M in place of Mw. This makes the Th(Mw)≤1 Th(M) step unnecessary, but the definability
of Mw in M is still worthwhile to notice.

3.1. Defining Mw in M. The Muchnik degrees are definable in the Medvedev degrees [2], thereby
giving Th(Mw)≤1 Th(M).

Definition 3.1. For a mass problem A, let C(A) denote the Turing upward-closure of A: C(A) =
{f | (∃g ∈ A)[g≤T f ]}.

Definition 3.2. A Medvedev degree s is called a degree of solvability if s = [{f}] for some f ∈ ωω.

Definition 3.3. A Medvedev degree m is called a Muchnik degree if m = [C(A)] for some mass
problem A.

Notice that C(A)≤M B if and only if B ⊆ C(A). Medvedev degrees of the form [C(A)] are called
Muchnik degrees because A≤w B if and only if C(B) ⊆ C(A) if and only if C(A)≤MC(B). The
mapping [A]w 7→ [C(A)] embeds Mw into M as an upper-semilattice but not as a lattice [19].

Lemma 3.4 (Medvedev [9], Dyment [2]). The degrees of solvability and the Muchnik degrees are
definable in M.

The formula defining the degrees of solvability is θ(x) := ∃y[x < y ∧∀z(x < z→ y ≤ z)]. For a
degree of solvability x = [{f}], the witnessing y is the degree [{eag | Φg

e = f ∧ g�T f}]. Complete
proofs that θ defines the degrees of solvability are found in [2] and [22]. We reproduce the definability
of the Muchnik degrees here. The result essentially appears in [2], but is not phrased in terms of
definability.

Proof that the Muchnik degrees are definable in M.
The defining formula is χ(x) := ∀y[∀z[(θ(z)∧ y ≤ z)→x ≤ z]→x ≤ y], where θ is the for-
mula defining the degrees of solvability as above. Let [C(A)] be a Muchnik degree. If B satis-
fies (∀f ∈ ωω)[B≤M{f}→C(A)≤M{f}], then in particular we must have C(A)≤M{f} for all
f ∈ B. Hence B ⊆ C(A) and so χ([C(A)]) holds. Conversely, suppose χ([A]). As (∀f ∈
ωω)[C(A)≤M{f}→A≤M{f}], we have A≤MC(A). Thus A≡MC(A), so [A] is a Muchnik de-
gree. �

Corollary 3.5. Th(Mw)≤1 Th(M).
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Proof. Interpret Th(Mw) inside Th(M) by restricting quantification in M to quantify only over
degrees of the form [C(A)]. That is, given a sentence ψ in the language of partial orders, generate
a sentence ψ′ by inductively replacing subformulas ∃xϕ and ∀xϕ by formulas ∃x(χ(x)∧ϕ) and
∀x(χ(x)→ϕ). Then Mw |= ψ if and only if M |= ψ′. �

In Mw, a degree s is also called a degree of solvability if s = [{f}]w for some f ∈ ωω. The formula
θ(x) as above defines the degrees of solvability in Mw, and the proof is similar to that for M.

3.2. Defining a code for N3. We code N3 into Mw to prove that Th(N3)≤1 Th(Mw). Although
we phrase what follows in terms of Mw, the same coding can be used to code N3 into M and thus
to prove Th(N3)≤1 Th(M) without appealing to the definability of Mw in M.

We view each degree w as coding the set of minimal degrees of solvability above it. Degree s is
a minimal degree of solvability above w if and only if η(s,w) where

η(s, w) := θ(s)∧w ≤ s∧∀z[(θ(z)∧w ≤ z)→ z ≮ s]

and θ(x) is the formula defining the degrees of solvability from Lemma 3.4.

Definition 3.6. For w ∈ Mw, E(w) = {s ∈ Mw | η(s,w)} denotes the set of minimal degrees of
solvability above w.

Our coding makes use of the following obvious lemma:

Lemma 3.7. If W is a Turing antichain, then E([W]w) = {[{f}]w | f ∈ W}.

Proof. Obvious �

Definition 3.8. A code for N3 in Mw is a collection of degrees w0,w1,w2,m, l,p, t, r ∈Mw such
that:

(i) For every degree a there is an s ∈ E(r) such that for all u ∈ E(w0), u ∈ E(a) if and only
if u≤w s.

(ii) If R≤ is the following 2-ary relation defined on E(w0)
2 and R+ and R× are the following

3-ary relations defined on E(w0)
3:

– R≤(s0,u0) if and only if there is a u1 ∈ E(w1) with u0 + u1 ∈ E(m) and s0 + u1 ∈ E(l),
– R+(s0,u0,v0) if and only if there is a u1 ∈ E(w1) and a v2 ∈ E(w2) with u0 + u1 ∈
E(m), v0 + v2 ∈ E(m), and s0 + u1 + v2 ∈ E(p),

– R×(s0,u0,v0) if and only if there is a u1 ∈ E(w1) and a v2 ∈ E(w2) with u0 + u1 ∈
E(m), v0 + v2 ∈ E(m), and s0 + u1 + v2 ∈ E(t),

then Mw satisfies the formula that says E(w0) is a discretely ordered commutative semiring
with unity and for every a ∈Mw, if there is an s ∈ E(a)∩E(w0), then there is a least such
s, where ≤, +, and × are interpreted as R≤, R+, and R× respectively.

The property “w0,w1,w2,m, l,p, t, r is a code for N3 in Mw” is first-order definable. The
relation s ∈ E(w) is defined by the first-order formula η(s, w). By inspecting Definition 3.8, we
see that the property in item (i) is first-order and that the relations R≤, R+, and R× in item (ii)
are first-order. The axioms of a discretely ordered commutative semiring with unity are first-order,
so if we change these axioms to make quantification be over E(w0) and to make ≤, +, and ×
be interpreted as the relations R≤, R+, and R× respectively, we have a first-order formula in the
language of partial orders expressing that E(w0) is a discretely ordered commutative semiring with
unity. Therefore the property in item (ii) is also first-order.

In Definition 3.8, think w for “ω,” m for “match,” l for “less,” p for “plus,” t for “times,”
and r for “reals.” Our intention is that w0 codes ω as E(w0) and that the auxiliary degrees
w1,w2,m, l,p, t code ≤,+,× on E(w0). The idea is that, for s and u in some E(w), we would like
to code the tuple (s,u) as the degree s + u. However, with this coding we would not be able to tell
(s,u) from (u, s) because s + u = u + s. To fix this problem, we let w0 code both the “true” ω and
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the first-coordinate version of ω, and we introduce w1 and w2 to code second- and third-coordinate
versions of ω. The degree m matches first-coordinate “numbers” with their corresponding second-
and third-coordinate “numbers.” We think of u0 ∈ E(w0) and u1 ∈ E(w1) as coding the same
number if u0 + u1 ∈ E(m). Similarly, v0 ∈ E(w0) and v2 ∈ E(w2) code the same number if
v0 + v2 ∈ E(m). Now, for s0,u0 ∈ E(w0), if there is a u1 ∈ E(w1) with u0 + u1 ∈ E(m), then
we can code the tuple (s0,u0) as s0 + u1. For example, in item (ii) of Definition 3.8, R≤(s0,u0)
holds if and only if there is a second-coordinate version of u0 (called u1) such that s0 + u1 ∈ E(l).
Similarly, R+(s0,u0,v0) holds if and only if there are a second-coordinate version of u0 (called u1)
and a third-coordinate version of v0 (called v2) such that s0 + u1 + v2 ∈ E(p). The degree m need
not code bijections (or even functions) between E(w0) and E(w1) and between E(w0) and E(w2).
However, this is irrelevant because the definitions of the relations R≤, R+, and R× make sense for
any degree m.

A degree a codes the set E(a) ∩ E(w0) ⊆ E(w0). Every subset of E(w0) has a code: If
X ⊆ E(w0), then for each s ∈ X fix an fs ∈ ωω such that s = [{fs}]w. Let A = {fs | s ∈ X} and
let a = [A]w. A is a Turing antichain, so E(a) = X by Lemma 3.7. Thus a is a code for X. We
then quantify over all subsets of E(w0) by quantifying over all degrees a and interpreting each as
a subset of E(w0). Therefore item (ii) above ensures that, for a code for N3 in Mw, the structure
〈E(w0), R≤, R+, R× 〉 is a well-founded model of arithmetic and as such is isomorphic to N.

A degree b can also be interpreted as coding a subset S(b) of 2E(w0) as follows.

Definition 3.9. For w0 as in a code for N3 in Mw and b ∈ Mw, S(b) = {X ⊆ E(w0) | (∃s ∈
E(b))(∀u ∈ E(w0))[u ∈ X↔u≤w s]}.

Let π(a, b, w) be the formula

π(a, b, w) := (∃s ∈ E(b))(∀u ∈ E(w))[u ∈ E(a)↔u ≤ s].
We write a ∈ S(b) for π(a,b,w0), which expresses that the subset of E(w0) coded by a is an

element of the subset of 2E(w0) coded by b. Every subset of 2E(w0) has a code: If X ⊆ 2E(w0) then
for each X ∈ X fix a degree aX with E(aX) ∩ E(w0) = X. Then by item (i), for each aX find a
degree sX ∈ E(r) such that (∀u ∈ E(w0))[u ∈ E(aX)↔u≤w sX ]. For each sX , fix fX ∈ ωω such
that sX = [{fX}]w. Let b = [{fX | X ∈ X}]w. Then S(b) = X .

We have seen that, for a code for N3 in Mw, every degree can be interpreted as a subset of
E(w0) and as a subset of 2E(w0). Moreover, quantifying over all degrees quantifies over all subsets

of E(w0) and quantifies over all subsets of 2E(w0). Thus for a code for N3 in Mw, the coded

structure is exactly 〈E(w0), 2
E(w0), 22

E(w0) , R≤, R+, R× 〉, and this structure is isomorphic to N3.
As discussed above, there is a sentence in the language of partial orders expressing the existence
of a code for N3. Given a sentence ψ in the language of N3, we translate it into a sentence in
the language of partial orders that says “there is a code for N3 in Mw and ψ is true in the coded
structure.” It remains to prove the existence of such a code.

3.3. Finding a code for N3 in Mw. The crucial point is the existence of the degree r coding 22
ω
.

The following lemma is proved using standard recursion theoretic techniques:

Lemma 3.10. If A = {fi | i ∈ ω} is a countable independent set, then there exists a Turing
antichain R = {gX | X ∈ 2ω} such that {fi | i ∈ X} = {f ∈ A | f ≤T gX} for each X ∈ 2ω.

Proof. We construct partial functions gσ : ω→ω for σ ∈ 2<ω and put gX = ∪n∈ωgX�n. The gσ will
have the following properties:

(i) If σ ⊂ τ then dom gσ ⊆ dom gτ and the two functions agree on their common domain.
(ii) If s < |σ| and σ(s) = 0 then gσ(〈 s, j 〉) is defined for all j and equals 0 for all but finitely

many j.
(iii) If s < |σ| and σ(s) = 1 then gσ(〈 s, j 〉) is defined for all j and equals fs(j) for all but finitely

many j.
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(iv) gσ(〈 s, j 〉) is defined for only finitely many 〈 s, j 〉 with s ≥ |σ|.
Items (i) – (iii) ensure that each gX is a total function, and item (iii) ensures fs≤T gX for all s ∈ X.
In addition we satisfy the following requirements for all e, i ∈ ω and all X,Y ⊆ ω:

• RXe,i: i /∈ X→ΦgX
e 6= fi

• QX,Ye : X 6= Y →ΦgX
e 6= gY

Let g∅ = ∅. At stage s we have gσ for all σ of length s.
At stage s = 2 〈 e, i 〉 we handle requirement RXe,i. For each σ of length s do the following: If

σ(i) = 0, if there is a finite partial function hσ with domain disjoint from gσ, and if there is a number

n such that Φgσ∪hσ
e (n) ↓6= fi(n), then redefine gσ to be gσ ∪ hσ. Then for each σ of length s put

gσa0 = gσ ∪ {〈 〈 s, j 〉, 0 〉 | 〈 s, j 〉 /∈ dom gσ} and put gσa1 = gσ ∪ {〈 〈 s, j 〉, fs(j) 〉 | 〈 s, j 〉 /∈ dom gσ}.
At stage s = 2e+1 we handle requirementQX,Ye . List the pairs (σ, τ) with |σ| = |τ | = s and σ 6= τ .

For each such (σ, τ) do the following: Let n be least such that n /∈ dom gτ . If there is a finite partial

function hσ with domain disjoint from gσ and if there is a number m such that Φgσ∪hσ
e (n) ↓= m,

then redefine gσ to be gσ ∪ hσ and redefine gτ to be gτ ∪ {〈n,m+ 1 〉}. After these extensions are
made for each pair (σ, τ), then for each σ of length s put gσa0 = gσ∪{〈 〈 s, j 〉, 0 〉 | 〈 s, j 〉 /∈ dom gσ}
and put gσa1 = gσ ∪ {〈 〈 s, j 〉, fs(j) 〉 | 〈 s, j 〉 /∈ dom gσ}.

We verify i /∈ X→ fi�T gX . Suppose that i /∈ X and ΦgX
e = fi. Consider stage s = 2 〈 e, i 〉 of

the construction. Let σ = X � s and let f =
⊕
{ft | t < s∧σ(t) = 1}. The function f computes

the graph of the partial function gσ. Thus we can use f to simulate the computation Φgσ∪h
e (n) for

any finite partial function h with domain disjoint from gσ. We now have the contradiction fi≤T f
as follows: Given input n, use f to search for a finite partial function h with domain disjoint from

gσ such that Φgσ∪h
e (n) ↓= m for some m. There must be such an h because gX extends gσ and

ΦgX
e (n) ↓. Moreover, we must have m = fi(n). Otherwise at stage s we would have been able to

find an hσ such that Φgσ∪hσ
e (n) ↓6= fi(n), and this would imply ΦgX

e 6= fi.
We verify X 6= Y → gY �T gX . Suppose for a contradiction that ΦgX = gY . Choose an index e

for Φ greater than the least e such that X(e) 6= Y (e), put s = 2e+ 1, and let σ = X � s, τ = Y � s.
Consider the gσ and gτ we have right before we process the pair (σ, τ) in stage s. Let n be least
such that n /∈ dom gτ . Since gX extends gσ and ΦgX

e is total, we must have found a finite hσ and

number m such that Φgσ∪hσ
e (n) ↓= m. But then we extended gτ so that gτ (n) = m + 1. Thus

ΦgX
e (n) = m 6= gY (n), a contradiction. �

Lemma 3.11. There is a code for N3 in Mw.

Proof. Let

• W0 = {f0,i | i ∈ ω},W1 = {f1,i | i ∈ ω}, andW2 = {f2,i | i ∈ ω} be such thatW0∪W1∪W2

is independent,
• M = {f0,i ⊕ f1,i | i ∈ ω} ∪ {f0,i ⊕ f2,i | i ∈ ω},
• L = {f0,i ⊕ f1,j | i ≤ j},
• P = {f0,i ⊕ f1,j ⊕ f2,k | i+ j = k},
• T = {f0,i ⊕ f1,j ⊕ f2,k | i× j = k},
• by Lemma 3.10, let R = {gX | X ∈ 2ω} be a Turing antichain such that {f0,i ∈ W0 | i ∈
X} = {f0,i ∈ W0 | f0,i≤T gX} for each X ∈ 2ω.

Put w0 = [W0]w, w1 = [W1]w, w2 = [W2]w, m = [M]w, l = [L]w, p = [P]w, t = [T ]w, r = [R]w.
We check the two cases of Definition 3.8. Notice that the above mass problems are all Turing
antichains.

(i) Given a degree a, let X = {i | [{f0,i}]w ∈ E(a) ∩ E(w0)} and let s = [{gX}]w. Then
s ∈ E(r) and (∀u ∈ E(w0))[u ∈ E(a)↔u≤w s].

(ii) For [{f0,i}]w, [{f0,j}]w ∈ E(w0) we have R≤([{f0,i}]w, [{f0,j}]w) if and only if there is a
u1 ∈ E(w1) with [{f0,j}]w + u1 ∈ E(m) and [{f0,i}]w + u1 ∈ E(l). By the independence
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of W0 ∪ W1 ∪ W2 and Lemma 3.7, this happens if and only if u1 = [{f1,j}]w and i ≤ j.
Thus R≤([{f0,i}]w, [{f0,j}]w) if and only if i ≤ j. Similarly R+([{f0,i}]w, [{f0,j}]w, [{f0,k}]w)
if and only if i+ j = k and R×([{f0,i}]w, [{f0,j}]w, [{f0,k}]w) if and only if i× j = k. Hence
E(w0) is a discretely ordered commutative semiring with unity. Moreover, if E(a)∩E(w0)
is nonempty, then there is a least i for which s = [{f0,i}]w is in E(a)∩E(w0). This s is the
R≤-least element of E(a) ∩ E(w0).

�

We are ready to interpret N3 in Mw.

Lemma 3.12. Th(N3)≤1 Th(Mw).

Proof. Let ϕ be a sentence in the language of N3. Each atomic subformula of ϕ has one of the
following forms:

x = y x ≤ y x+ y = z x× y = z x ∈2 X X ∈3 X .

Now let ϕ′(w0, w1, w2,m, `, p, t, r) be the formula (with the displayed variables free) in the language
of partial orders obtained from ϕ by making the replacements below. The second-order variable X
in ϕ corresponds to the variable vX in ϕ′ and the third-order variable X in ϕ corresponds to the
variable vX in ϕ′.

• Replace x ≤ y by the formula defining R≤(x, y).
• Replace x+ y = z by the formula defining R+(x, y, z).
• Replace x× y = z by the formula defining R×(x, y, z).
• Replace x ∈2 X by the formula expressing x ∈ E(vX).
• Replace X ∈3 X by the formula expressing vX ∈ S(vX ).
• Replace quantifiers ∃x and ∀x by ∃x ∈ E(w0) and ∀x ∈ E(w0).
• Replace quantifiers ∃X and ∀X by ∃vX and ∀vX .
• Replace quantifiers ∃X and ∀X by ∃vX and ∀vX .

Let ψ be the sentence saying “there is a code w0, w1, w2, m, `, p, t, r for N3 in Mw and
ϕ′(w0, w1, w2,m, `, p, t, r).” A code for N3 in Mw codes a structure isomorphic to N3, and so
Mw |= ψ if and only if N3 |= ϕ. �

Theorem 3.13 (Independently by Lewis, Nies, and Sorbi [7]). Th(Mw)≡1 Th(M)≡1 Th(N3).

Proof. We have Th(M)≤1 Th(N3) by Lemma 2.1, Th(Mw)≤1 Th(M) by Corollary 3.5, and we
have Th(N3)≤1 Th(Mw) by Lemma 3.12. �

4. Interpreting arithmetic in the closed and compact Muchnik degrees

Our coding of third-order arithmetic in Mw relied on the definability of the degrees of solvability
in Mw. The definability of degrees of solvability in Mcl, M01

cl , Mw,cl, and M01
w,cl would give an

immediate proof of Th(N2)≤1 Th(Mcl), Th(M01
cl ), Th(Mw,cl), Th(M01

w,cl). This is because the
Turing degrees are isomorphic to the degrees of solvability and because the first-order theory of the
Turing degrees is recursively isomorphic to Th(N2) [15]. Singleton mass problems {f} are compact,
so the degrees of solvability are in Mcl, M

01
cl , Mw,cl, and M01

w,cl. However, we do not know if the
degrees of solvability are definable in any of these structures.

Question 4.1. Are the degrees of solvability definable in Mcl, M
01
cl , Mw,cl, or M01

w,cl?

In this section we prove that Th(N2)≤1 Th(Mw,cl), Th(M01
w,cl), and in Section 5 we prove that

Th(N2)≤1 Th(Mcl), Th(M01
cl ). We will use the same definition of a code for N2 (Definition 4.6

below) in all four cases. The difference between the Muchnik cases and the Medvedev cases is in
how we prove that each subset of ω has a code.



CODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK DEGREES 11

4.1. Defining a code for N2. In Section 3, a degree w coded the set of minimal degrees of
solvability above it. Now a degree w codes the set of minimal meet-irreducible degrees that meet
to it.

Definition 4.2. An element of a lattice is called meet-reducible if it satisfies the formula θ̃(x) :=
∃y∃z(x < y ∧x < z ∧x = y× z). An element of a lattice is called meet-irreducible if it is not
meet-reducible.

We will take advantage of the following easily checkable fact: In a distributive lattice, if x is
meet-irreducible and x ≥ y× z, then x ≥ y or x ≥ z.

Definition 4.3. For elements s and w of a lattice, we say s meets to w if s and w satisfy the
formula χ̃(s, w) := ∃y(y > w∧ s× y = w).

Hence for s and w in a lattice, s is a minimal meet-irreducible that meets to w if and only if
η̃(s,w) where

η̃(s, w) := ¬θ̃(s)∧ χ̃(s, w)∧∀y[y < s→(w � y ∨ θ̃(y))].

Definition 4.4. For a lattice L and an element w ∈ L, F (w) = {s ∈ L | s ≥ w} denotes the set of

elements above w and Ẽ(w) = {s ∈ L | η̃(s,w)} denotes the set of minimal meet-irreducibles that
meet to w.

Notice that Ẽ(w) is an antichain by the minimality of its elements.
Keep in mind that the lattices we now consider are Mw,cl and M01

w,cl and that meet-reducible
means meet-reducible in these lattices. If a closed (compact)W has meet-reducible degree in Mw,cl

(M01
w,cl), then it has meet-reducible degree in Mw. However, we do not know the converse.

Question 4.5. If W is closed (compact) and W≡w X ×Y for X ,Y >wW, then are there closed
(compact) such X and Y?

The converse does hold in the Medvedev cases: A closed (compact)W has meet-reducible degree
in Mcl (M01

cl ) if and only if it has meet-reducible degree in M. See Lemma 5.1 below.

Definition 4.6. Let L be one of Mcl,M
01
cl ,Mw,cl,M

01
w,cl. A code for N2 in L is a collection of

degrees w0,w1,w2,m, l,p, t ∈ L such that if R≤ is the following 2-ary relation defined on Ẽ(w0)
2

and R+ and R× are the following 3-ary relations defined on Ẽ(w0)
3:

• R≤(s0,u0) if and only if there is a u1 ∈ Ẽ(w1) with u0 + u1 ∈ Ẽ(m) and s0 + u1 ∈ Ẽ(l),

• R+(s0,u0,v0) if and only if there is a u1 ∈ Ẽ(w1) and a v2 ∈ Ẽ(w2) with u0 + u1 ∈ Ẽ(m),

v0 + v2 ∈ Ẽ(m), and s0 + u1 + v2 ∈ Ẽ(p),

• R×(s0,u0,v0) if and only if there is a u1 ∈ Ẽ(w1) and a v2 ∈ Ẽ(w2) with u0 + u1 ∈ Ẽ(m),

v0 + v2 ∈ Ẽ(m), and s0 + u1 + v2 ∈ Ẽ(t),

then L satisfies the formula that says Ẽ(w0) is a discretely ordered commutative semiring with

unity and for every a ∈ L, if there is an s ∈ F (a) ∩ Ẽ(w0), then there is a least such s, where ≤,
+, and × are interpreted as R≤, R+, and R× respectively.

We think of w0 as coding ω as Ẽ(w0) and any degree a as coding F (a) ∩ Ẽ(w0) ⊆ Ẽ(w0). If

we can show that every subset of Ẽ(w0) has a code, then we will know that the coded structure is

exactly 〈 Ẽ(w0), 2
Ẽ(w0), R≤, R+, R× 〉 and is isomorphic to N2. In fact, it suffices to show that every

countable subset of Ẽ(w0) has a code. This is because if there is a nonempty S ⊆ Ẽ(w0) with no

R≤-least element, then there is a countable such S. So if every countable subset of Ẽ(w0) has a code

and every nonempty coded subset of Ẽ(w0) has an R≤-least element, then 〈 Ẽ(w0), R≤, R+, R× 〉
is a well-founded model of arithmetic and, as such, is isomorphic to N. In particular, Ẽ(w0) is
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countable, so every subset is countable and hence has a code. Our attention now turns to finding
these codes.

4.2. Coding subsets of ω in Mw,cl and M01
w,cl. It is well-known that Mw is a complete lattice.

That is, every arbitrary collection of degrees S ⊆Mw has a least upper bound and a greatest lower
bound. Let 〈 Xi | i ∈ I 〉 be a selection of one representative for each degree in S. Then the least
upper bound of S is

[⋂
i∈I C(Xi)

]
w

and the greatest lower bound of S is
[⋃

i∈I C(Xi)
]
w

(which

equals
[⋃

i∈I Xi

]
w

). In Mw,cl and M01
w,cl, arbitrary countable collections of degrees have greatest

lower bounds. This fact allows us to code all countable subsets of an Ẽ(w).

Lemma 4.7. Both Mw,cl and M01
w,cl are countably meet-complete.

Proof. For Mw,cl, let {xi | i ∈ ω} ⊆Mw,cl be a countable set of degrees and let Xi ⊆ ωω be a closed

representative of xi for each i. The degree a =
[⋃

i∈ω i
aXi

]
w

is in Mw,cl and is a lower bound for the
degrees xi. Suppose b is any other lower bound for the xi and let B be a representative for b. Then
B≤w Xi for each i which means (∀i ∈ ω)(∀f ∈ Xi)(∃g ∈ B)[g≤T f ]. So

(
∀f ∈

⋃
i∈ω i

aXi
)(
∃g ∈

B
)[
g≤T f

]
. Hence b≤w a.

The above proof does not work for M01
w,cl because

⋃
i∈ω i

aXi is not compact. We provide a

modified proof for M01
w,cl. Let {xi | i ∈ ω} ⊆ M01

w,cl be a countable set of degrees and let Xi ⊆ 2ω

be a closed representative of xi for each i. Choose any g in any non-empty Xi (if all the Xi are
empty, then [∅]w is the greatest-lower-bound). Let σi = (g � i)a(1 − g(i)) for each i ∈ ω. The set

A = {g} ∪
(⋃

i∈ω σ
a
i Xi

)
is closed in 2ω, so let a = [A]w. Then a ∈M01

w,cl and the rest of the proof
proceeds as in the Mw,cl case. �

In contrast, M, Mcl, and M01
cl are not countably complete, as shown by Dyment’s Lemma 6.2

below.

Lemma 4.8. Let L be Mw,cl or M01
w,cl. Then for any w ∈ L and any at-most-countable S ⊆ Ẽ(w)

there is an a ∈ L such that F (a) ∩ Ẽ(w) = S.

Proof. In either case take a to be the greatest-lower-bound of S by Lemma 4.7. This ensures

S ⊆ F (a)∩ Ẽ(w). To see equality, let x ∈ Ẽ(w)−S and let y be such that y>w w and x×y = w.

If s ∈ S, then s�w x because Ẽ(w) is an antichain. Thus s≥w y for all s ∈ S because s is
meet-irreducible and s≥w w = x×y for all s ∈ S. Therefore a≥w y which implies x�w a. �

It is possible for Ẽ(w) to be uncountable for w ∈Mw,cl or w ∈M01
w,cl. This is in contrast to the

Medvedev cases, in which Ẽ(w) is always at most countable (see Corollary 5.3 below).

Lemma 4.9. IfW ⊆ ωω (W ⊆ 2ω) is a closed Turing antichain, then, in Mw,cl (M01
w,cl), Ẽ([W]w) =

{[{f}]w | f ∈ W}.

Proof. Assume in both cases that |W| > 1, for otherwise the lemma is trivial.
For Mw,cl, let W ⊆ ωω be closed and a Turing antichain, and let f ∈ W. Let T be a tree

whose set of paths is W. Let 〈 τi | i ∈ ω 〉 list the sequences in T that are not initial segments
of f (so that, for g ∈ W, g 6= f↔∃i[τi ⊂ g]). Let Ti denote the full subtree of T rooted at τi:
Ti = {σ ∈ ω<ω | τiaσ ∈ T}. Let R be the tree

⋃
i∈ω i

aTi where iaTi = {iaσ | σ ∈ Ti} for each i.
Let Y be the set of paths through R. If, for a mass problem A, we let degTA = {degT f | f ∈ A}
denote the set of Turing degrees of the members of A, we see that degT Y = degTW − {degT f}.
From this and the fact that W is a Turing antichain, it follows that Y >wW and W≡w{f}×Y.
Hence [{f}]w is meet-irreducible and meets to [W]w. We need to show that [{f}]w is minimal. First
suppose that B≥wW is closed and has meet-irreducible degree in Mw,cl. We claim B�w{f} implies
{f}�w B. We have B≥w{f} or B≥w Y because B≥wW≡w{f}×Y and B has meet-irreducible
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degree. But B�w{f}, so we must have B≥w Y. Thus {f}�w B because {f}�w Y. Therefore, if we
have a closed B of meet-irreducible degree in Mw,cl with W≤w B≤w{f}, then the contrapositive

of the claim tells us {f}≤w B. Thus [{f}]w is minimal, making [{f}]w ∈ Ẽ([W]w).

Conversely, suppose for a contradiction that B is closed and [B]w ∈ Ẽ([W]w), but B�w{f} for
all f ∈ W. By the claim, we also have {f}�w B for all f ∈ W. Then if C is closed such that
W≡w B×C, it must be that {f}≥w C for all f ∈ W. Hence W≥w C. So for any closed C such that

W≡w B×C we have W≥w C. This contradicts that [B]w meets to [W]w. Thus if b ∈ Ẽ([W]w), we

must have b≥w[{f}]w for some f ∈ W. But [{f}]w ∈ Ẽ([W]w), hence b = [{f}]w by minimality.
For M01

w,cl, let W ⊆ 2ω be closed and a Turing antichain, and let f ∈ W. Let T be a tree whose
set of paths is W. Let 〈 τi | i ∈ ω 〉 list the sequences in T that are not initial segments of f . Let
Ti denote the full subtree of T rooted at τi. Choose any g ∈ W − {f}. Let σi = (g � i)a(1− g(i))
for each i ∈ ω. Let R be the tree

⋃
i∈ω σi

aTi. Let Y be the set of paths through R. Then
degT Y = degTW − {degT f}. The proof now proceeds exactly as in the Mw,cl case. �

Corollary 4.10. Let L be Mw,cl or M01
w,cl. Then there is a degree w ∈ L such that Ẽ(w) is

uncountable.

Proof. In either case, let T ⊆ 2<ω be a perfect tree whose set of paths is a Turing antichain, and let
w be the degree of this set of paths. See [18] Section VI.1 for the construction of such a tree. �

4.3. Finding a code for N2 in Mw,cl.

Definition 4.11 (Dyment [2]). W ⊆ ωω is called effectively discrete if (∀f ∈ W)(∀g ∈ W)[f 6=
g→ f(0) 6= g(0)].

An effectively discrete mass problem is closed and at most countable.

Lemma 4.12. There is a code for N2 in Mw,cl.

Proof. Let

• W0 = {iaf0,i | i ∈ ω}, W1 = {iaf1,i | i ∈ ω}, and W2 = {iaf2,i | i ∈ ω} be such that
W0 ∪W1 ∪W2 is independent,
• M = {(2i)a(f0,i ⊕ f1,i) | i ∈ ω} ∪ {(2i+ 1)a(f0,i ⊕ f2,i) | i ∈ ω},
• L = {〈 i, j 〉a(f0,i ⊕ f1,j) | i ≤ j},
• P = {〈 〈 i, j 〉, k 〉a(f0,i ⊕ f1,j ⊕ f2,k) | i+ j = k},
• T = {〈 〈 i, j 〉, k 〉a(f0,i ⊕ f1,j ⊕ f2,k) | i× j = k}.

The above mass problems are effectively discrete Turing antichains. Put w0 = [W0]w, w1 = [W1]w,
w2 = [W2]w, m = [M]w, l = [L]w, p = [P]w, t = [T ]w. The verification that these degrees satisfy
Definition 4.6 is the same as the verification that the corresponding degrees defined in Lemma 3.11
satisfy case (ii) of Definition 3.8. Use Lemma 4.9 in place of Lemma 3.7. �

We are ready to interpret N2 in Mw,cl.

Lemma 4.13. Th(N2)≤1 Th(Mw,cl).

Proof. Let ϕ be a sentence in the language of N2. Each atomic subformula of ϕ has one of the
following forms:

x = y x ≤ y x+ y = z x× y = z x ∈ X.
Now let ϕ′(w0, w1, w2,m, `, p, t) be the formula (with the displayed variables free) in the language
of partial orders obtained from ϕ by making the replacements below. The second-order variable X
in ϕ corresponds to the variable vX in ϕ′.

• Replace x ≤ y by the formula defining R≤(x, y).
• Replace x+ y = z by the formula defining R+(x, y, z).
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• Replace x× y = z by the formula defining R×(x, y, z).
• Replace x ∈ X by the formula expressing x ∈ F (vx).

• Replace quantifiers ∃x and ∀x by ∃x ∈ Ẽ(w0) and ∀x ∈ Ẽ(w0).
• Replace quantifiers ∃X and ∀X by ∃vX and ∀vX .

Let ψ be the sentence saying “there is a code w0, w1, w2, m, `, p, t, for N2 in Mw,cl and
ϕ′(w0, w1, w2,m, `, p, t).” A code for N2 in Mw,cl codes a structure isomorphic to N2, and so
Mw,cl |= ψ if and only if N2 |= ϕ. �

4.4. Finding a code for N2 in M01
w,cl. An infinite effectively discrete Turing antichain is not

compact, so we can no longer rely on them to provide a code. Instead we use the following
definition:

Definition 4.14. Let g ∈ 2ω. A set A ⊆ 2ω is called a g-spine (or just a spine) if it is of the form
{g} ∪ {σiafi | i ∈ X} where X ⊆ ω is infinite, σi = (g � i)a(1 − g(i)) for each i ∈ X, and fi ∈ 2ω

for each i ∈ X.

Definition 4.15. Let g ∈ 2ω and let A ⊆ 2ω be countable. Fix an enumeration 〈 fi | i ∈ ω 〉 of A.
We denote by spine(g,A) the g-spine {g} ∪ {σiafi | i ∈ ω} where σi = (g � i)a(1 − g(i)) for each
i ∈ ω. We denote by spine(A) the f0-spine spine(f0,A− {f0}).

Notice that a spine is a closed subset of 2ω.

Lemma 4.16. There is a code for N2 in M01
w,cl.

Proof. Let W ′0 = {f0,i | i ∈ ω}, W ′1 = {f1,i | i ∈ ω}, and W ′2 = {f2,i | i ∈ ω} be such that
W ′0 ∪W ′1 ∪W ′2 ⊆ 2ω is independent. Then let

• W0 = spine(W ′0), W1 = spine(W ′1), W2 = spine(W ′2),
• M = spine({f0,i ⊕ f1,i | i ∈ ω} ∪ {f0,i ⊕ f2,i | i ∈ ω}),
• L = spine({f0,i ⊕ f1,j | i ≤ j}),
• P = spine({f0,i ⊕ f1,j ⊕ f2,k | i+ j = k}),
• T = spine({f0,i ⊕ f1,j ⊕ f2,k | i× j = k}).

The above mass problems are spines that are Turing antichains. Put w0 = [W0]w, w1 = [W1]w,
w2 = [W2]w, m = [M]w, l = [L]w, p = [P]w, t = [T ]w. The verification that these degrees satisfy
Definition 4.6 is the same as the verification that the corresponding degrees defined in Lemma 3.11
satisfy case (ii) of Definition 3.8. Use Lemma 4.9 in place of Lemma 3.7. �

Lemma 4.17. Th(N2)≤1 Th(M01
cl ).

Proof. As in Lemma 4.13. �

5. Interpreting arithmetic in the closed and compact Medvedev degrees

In this section we prove that Th(N2)≤1 Th(Mcl), Th(M01
cl ). As always, the crucial point is

coding any S ⊆ Ẽ(w) as some F (a) ∩ Ẽ(w). In the Muchnik cases, this was accomplished by
assuming that S is countable, fixing a closed representative for each degree in S, and essentially
taking the union of these representatives. However, the proof that this produced such an a relied
on the non-uniformity afforded by Muchnik reducibility. Specifically, if Xi≥w Y for each i ∈ ω, then⋃
i∈ω Xi≥w Y. In the Medvedev cases, it may be that Xi≥M Y for each i ∈ ω but

⋃
i∈ω Xi�M Y

because the reductions witnessing each Xi≥M Y cannot be combined into one uniform reduction
witnessing

⋃
i∈ω Xi≥M Y. We will show that it is possible to choose the representatives Xi in such

a way that taking their union preserves uniformity.
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5.1. Coding subsets of ω. The results of this section apply to arbitrary mass problems, not just
closed and compact ones. We consider arbitrary mass problems W and degrees w ∈M.

The next lemma is a clarifying example. It implies that a closed (compact)W has meet-reducible
degree in Mcl (M01

cl ) if and only if it has meet-reducible degree in M.

Lemma 5.1 (Dyment [2]). If W≡MX ×Y, then W = X̂ ∪ Ŷ where X̂ and Ŷ are disjoint and

clopen in W, X̂ ≥MX , Ŷ ≥M Y, and W≡M X̂ × Ŷ.

Proof. Let Φ be such that Φ(W) ⊆ 0aX ∪ 1aY. Put X̂ = {f ∈ W | Φf (0) = 0} and put

Ŷ = {f ∈ W | Φf (0) = 1}. By Lemma 1.5, X̂ and Ŷ are clopen in W, and it is easily checked that

X̂ ≥MX and Ŷ ≥M Y (hence W≤M X̂ × Ŷ). We have W≥M 0aX̂ ∪ 1aŶ by the reduction which
sends f to 0af if Φf (0) = 0 and sends f to 1af if Φf (0) = 1. �

Our coding relies on the following lemma similar to Lemma 5.1.

Lemma 5.2. If W≡MX ×Y where X has meet-irreducible degree and Y >MW, then W = X̂ ∪ Ŷ
where X̂ and Ŷ are disjoint and clopen in W, X̂ ≡MX , and X̂ �M Ŷ.

Proof. As in Lemma 5.1, let Φ be such that Φ(W) ⊆ 0aX∪1aY, put X̂ = {f ∈ W | Φf (0) = 0}, and

put Ŷ = {f ∈ W | Φf (0) = 1}. Then W = X̂ ∪ Ŷ, X̂ ∩ Ŷ = ∅, X̂ and Ŷ are clopen in W, X̂ ≥MX ,

Ŷ ≥M Y, and W≡M X̂ × Ŷ. To see X ≥M X̂ , observe X ≥MW≡M X̂ × Ŷ. X has meet-irreducible

degree, so X ≥M X̂ or X ≥M Ŷ. We cannot have X ≥M Ŷ because Ŷ ≥M Y and this would imply

W≡MX ×Y ≡M Y >MW. Thus X ≥M X̂ . Similarly X̂ �M Ŷ for otherwise W≡M Ŷ ≥M Y >MW.
�

Corollary 5.3. For any degree w ∈M there are at most countably many meet-irreducible degrees
that meet to w.

Proof. Fix a representative W for w. In Lemma 5.2 we showed that if x is meet-irreducible and
meets to w, then x has a representative {f ∈ W | Φf (0) = 0} for some program Φ. There are only
countably many programs, so there can be at most countably many such x. �

Notice that Corollary 5.3 is in contrast to the Muchnik case, in which a degree may have un-
countably many meet-irreducibles that meet to it (see Lemma 4.9). Also notice that if w is closed
(compact) and x is meet-irreducible and meets to w, then Lemma 5.2 produces a closed (compact)
representative for x. Thus for a closed (compact) degree w, the meet-irreducible degrees that meet
to w are the same whether they are computed in M or in Mcl (M01

cl ).

Lemma 5.4. Let W be a mass problem whose degree has countably many minimal meet-irreducible
degrees meeting to it, and let 〈 Xi | i ∈ ω 〉 be a list of representatives for these degrees. Then there

are mass problems 〈 X̂i | i ∈ ω 〉 such that:

(i) X̂i ⊆ W is clopen in W for each i,

(ii) X̂i ∩ X̂j = ∅ for i 6= j,

(iii) X̂i≡MXi for each i,

(iv) X̂i�MW − X̂i for each i.

Proof. Inductively construct the sequence 〈 X̂i | i ∈ ω 〉. At the start of step n + 1 we have

〈 X̂i | i ≤ n 〉 satisfying (i)–(iv) for i, j ≤ n, and we have indices e0, . . . , en such that, for i ≤ n,

X̂i =
{
f ∈ W −

⋃
j<i X̂j | Φ

f
ei(0) = 0

}
and W −

⋃
j≤i X̂j =

{
f ∈ W −

⋃
j<i X̂j | Φ

f
ei(0) = 1

}
.

We first show W≡M X̂0× · · ·× X̂n×
(
W −

⋃
i≤n X̂i

)
. The meet is ≥MW because each term is a

subset of W. To see the reverse inequality, write the meet as
⋃
i≤n i

aX̂i ∪
(
n+ 1

)a(W −⋃i≤n X̂i
)
.
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Then apply the following reduction: For each i ≤ n in order, check if Φf
ei(0) is 0 or 1. If it is 0,

send f to iaf . If it is 1, go to the next i. If Φf
ei(0) = 1 for each i ≤ n, then send f to (n+ 1)af .

We now have Xn+1≥MW≡M X̂0× · · ·× X̂n×
(
W −

⋃
i≤n X̂i

)
. We cannot have Xn+1≥M X̂i for

any i ≤ n because X̂i≡MXi and the Xi’s are incomparable by minimality. However, Xn+1 has meet-

irreducible degree. Therefore Xn+1≥MW −
⋃
i≤n X̂i. Moreover, by distributivity

[
Xn+1

]
meets to[

W −
⋃
i≤n X̂i

]
because

[
Xn+1

]
meets to

[
W
]

and
[
Xn+1

]
≥M

[
W −

⋃
i≤n X̂i

]
≥M

[
W
]
. Thus, as

in Lemma 5.2, there is an X̂n+1 ⊆ W −
⋃
i≤n X̂i clopen in W −

⋃
i≤n X̂i and an en+1 such that

X̂n+1 =
{
f ∈ W −

⋃
i≤n X̂i | Φ

f
en+1(0) = 0

}
, W −

⋃
i≤n+1 X̂i =

{
f ∈ W −

⋃
i≤n X̂i | Φ

f
en+1(0) = 1

}
,

X̂n+1≡MXn+1, and X̂n+1�MW −
⋃
i≤n+1 X̂i. Clearly X̂n+1 is disjoint from X̂i for i ≤ n. X̂n+1 is

clopen inW because it is clopen inW−
⋃
i≤n X̂i which is clopen inW. Finally, X̂n+1�MW−X̂n+1

because X̂n+1 has meet-irreducible degree, X̂n+1�M X̂i for i ≤ n, X̂n+1�MW −
⋃
i≤n+1 X̂i, and

W − X̂n+1≡M X̂0× · · ·× X̂n×
(
W −

⋃
i≤n+1 X̂i

)
. �

The next lemma implies that every subset of ω has a code. That is, if w is closed (compact) and

S ⊆ Ẽ(w) then there is a closed (compact) a such that F (a) ∩ Ẽ(w) = S.

Lemma 5.5. Let w ∈ M and let W be a representative for w. Then for any S ⊆ Ẽ(w) there is

an A ⊆ W closed in W such that F ([A]) ∩ Ẽ(w) = S.

Proof. We only consider the case in which Ẽ(w) is infinite. By Corollary 5.3, Ẽ(w) is countable.

Let 〈 Xi | i ∈ ω 〉 be a list of representatives for the degrees in Ẽ(w). Apply Lemma 5.4 to W
and 〈 Xi | i ∈ ω 〉 to get a new set of representatives 〈 X̂i | i ∈ ω 〉 disjoint and clopen in W with

X̂i�MW − X̂i for each i. Put A = W −
⋃
{X̂i | [X̂i] /∈ S}, and note that A is closed in W. We

show X̂i≥MA if and only if [X̂i] ∈ S. If [X̂i] ∈ S then X̂i ⊆ A and so X̂i≥MA. If [X̂i] /∈ S then

A ⊆ W − X̂i and so A≥MW − X̂i. Thus X̂i�MA because X̂i�MW − X̂i. �

5.2. Finding a code for N2 in Mcl and in M01
cl . The following lemma is the Mcl analog to

Lemma 3.7 and Lemma 4.9:

Lemma 5.6. If W is an effectively discrete Turing antichain, then Ẽ([W]) = {[{f}] | f ∈ W}.

Proof. First, let f ∈ W and suppose B≥MW has meet-irreducible degree. We claim B�M{f}
implies {f}�M B. To see this, use the effectively discreteness of W to show W≡M{f}×(W −
{f}). If B�M{f}, then it must be that B≥MW − {f} because B has meet-irreducible degree and
B≥M{f}×(W − {f}). Hence {f}�M B because {f}�MW − {f}.

Now, if f ∈ W, it is clear that [{f}] is meet-irreducible and meets to [W]. To see that [{f}] is
minimal, suppose B is closed, has meet-irreducible degree, andW≤M B≤M{f}. The contrapositive

of the claim tells us {f}≤M B. Thus [{f}] is minimal, making [{f}] ∈ Ẽ([W]).

Conversely, suppose for a contradiction that B is closed and [B] ∈ Ẽ([W]), but B�M{f} for all
f ∈ W. By the claim, we also have {f}�M B for all f ∈ W. So if W≡M B×C for some C, we must
have W≥M C because no Φ can send a member of W to a member of B. This contradicts that [B]

meets to [W]. So if b ∈ Ẽ([W]), we must have b≥M[{f}] for some f ∈ W. But [{f}] ∈ Ẽ([W]),
hence b = [{f}] by minimality. �

We also need the compact version of Lemma 5.6 for M01
cl :

Lemma 5.7. If W = {g} ∪ {σiafi | i ∈ X} is a g-spine that is a Turing antichain, then Ẽ([W]) =
{[{fi}] | i ∈ X}.
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Proof. One can checkW≡M{fi}×(W−{σiafi}) for each i ∈ X. So if B≥MW has meet-irreducible
degree and B�M{fi}, we have both B≥MW − {σiafi} and {fi}�M B. The proof that [{fi}] ∈
Ẽ([W]) is then the same as in Lemma 5.6.

Conversely, suppose for a contradiction that [B] ∈ Ẽ([W]) but B�M{fi} for all i ∈ X. Therefore
{fi}�M B for all i ∈ X. Suppose then that W≡M B×C for some C, and let Φ be such that

Φ(W) ⊆ 0aB ∪ 1aC. We must have Φσi
afi ∈ 1aC for each i ∈ X because otherwise {fi}≥M B

for some i. We must also have Φg ∈ 1aC: If not, Φg(0) = 0 and there is some τ ⊂ g such that

Φτ (0) = 0. Choose i ∈ X with i > |τ |. Then τ ⊂ σi, and we have the contradiction Φσi
afi(0) = 0.

We must therefore have W≥M C. This contradicts that [B] meets to [W]. So if b ∈ Ẽ([W]), we

must have b≥M[{fi}] for some i. But [{fi}] ∈ Ẽ([W]), hence b = [{fi}] by minimality. �

Notice the difference between Lemma 4.9 and Lemma 5.7. If A is a g-spine that is a Turing

antichain, then in M01
w,cl we have [{g}]w ∈ Ẽ([A]w), but in M01

cl we have [{g}] /∈ Ẽ([A]).

Lemma 5.8. There is a code for N2 in Mcl.

Proof. As in Lemma 4.12. Use Lemma 5.6 in place of Lemma 4.9. �

Lemma 5.9. Th(N2)≤1 Th(Mcl).

Proof. As in Lemma 4.13. �

Lemma 5.10. There is a code for N2 in M01
cl .

Proof. Let g, W ′0 = {f0,i | i ∈ ω}, W ′1 = {f1,i | i ∈ ω}, and W ′2 = {f2,i | i ∈ ω} be such that
{g} ∪W ′0 ∪W ′1 ∪W ′2 ⊆ 2ω is independent. Then let

• W0 = spine(g,W0), W1 = spine(g,W1), W2 = spine(g,W2),
• M = spine(g, {f0,i ⊕ f1,i | i ∈ ω} ∪ {f0,i ⊕ f2,i | i ∈ ω}),
• L = spine(g, {f0,i ⊕ f1,j | i ≤ j}),
• P = spine(g, {f0,i ⊕ f1,j ⊕ f2,k | i+ j = k}),
• T = spine(g, {f0,i ⊕ f1,j ⊕ f2,k | i× j = k}).

The above mass problems are g-spines that are Turing antichains. Put w0 = [W0], w1 = [W1],
w2 = [W2], m = [M], l = [L], p = [P], t = [T ]. The verification that these degrees satisfy
Definition 4.6 is the same as the verification that the corresponding degrees defined in Lemma 3.11
satisfy case (ii) of Definition 3.8. Use Lemma 5.7 in place of Lemma 3.7. �

Lemma 5.11. Th(N2)≤1 Th(M01
cl ).

Proof. As in Lemma 4.13. �

Theorem 5.12. Th(Mw,cl)≡1 Th(M01
w,cl)≡1 Th(Mcl)≡1 Th(M01

cl )≡1 Th(N2).

Proof. First Th(Mcl), Th(M01
cl ), Th(Mw,cl), Th(M01

w,cl)≤1 Th(N2) by Lemma 2.2. Next we have

Th(N2)≤1 Th(Mw,cl), Th(M01
w,cl) by Lemma 4.13 and Lemma 4.17. Finally Th(N2)≤1 Th(Mcl),

Th(M01
cl ) by Lemma 5.9 and Lemma 5.11. �

6. A first-order sentence distinguishing Mcl and M01
cl from Mw,cl and M01

w,cl

We have seen in Lemma 4.7 that Mw,cl and M01
w,cl are countably meet-complete. In contrast,

Dyment proved that in M there are countable collections of degrees which do not have greatest
lower bounds [3]. This result holds for Mcl and M01

cl as well.

Definition 6.1. In a lattice L, a set X ⊆ L is called strongly meet-incomplete if for any finite
{yi | i ≤ n} ⊆ X there is an x ∈ X such that x � y1×y2× · · ·×yn.
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Lemma 6.2 (Dyment [3]; See also [22]). No countable strongly meet-incomplete X ⊆ M has a
greatest lower bound.

The proof of Lemma 6.2 works in Mcl, and it only requires a slight modification for M01
cl .

We have shown that if w0 is as in a code for N2 in any of Mcl, M
01
cl , Mw,cl, M

01
w,cl, then Ẽ(w0)

is countable. This observation gives us the following theorem:

Theorem 6.3. Neither Mcl nor M01
cl is elementarily equivalent to either Mw,cl or M01

w,cl.

Proof. Let ϕ be the first-order sentence that says “for all w0, if w0 is as in a code for N2, then

Ẽ(w0) has a greatest lower bound.” The sentence ϕ is true in both Mw,cl and M01
w,cl because such

an Ẽ(w0) is countable and these lattices are countably meet-complete. On the other hand, ϕ fails
in both Mcl and M01

cl . If w0 is as in the code for N2 produced in either Lemma 5.8 or Lemma 5.10,

then Ẽ(w0) = {[{f}]i | i ∈ ω} where {fi | i ∈ ω} is a Turing antichain. It is then easy to check

that Ẽ(w0) is strongly meet-incomplete and hence has no greatest lower bound. �
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