CODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK
DEGREES
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ABSTRACT. We prove that the first-order theory of the Medvedev degrees, the first-order theory of
the Muchnik degrees, and the third-order theory of true arithmetic are pairwise recursively isomor-
phic (obtained independently by Lewis, Nies, and Sorbi [7]). We then restrict our attention to the
degrees of closed sets and prove that the following theories are pairwise recursively isomorphic: the
first-order theory of the closed Medvedev degrees, the first-order theory of the compact Medvedev
degrees, the first-order theory of the closed Muchnik degrees, the first-order theory of the com-
pact Muchnik degrees, and the second-order theory of true arithmetic. Our coding methods also
prove that neither the closed Medvedev degrees nor the compact Medvedev degrees are elementarily
equivalent to either the closed Muchnik degrees or the compact Muchnik degrees.

1. INTRODUCTION

The complexities of the first-order theories of degree structures are a central topic in computabil-
ity theory. The results typically show that these theories are computationally as complicated as
possible. Major results include (in chronological order):

e The first-order theory of the Turing degrees is recursively isomorphic to the second-order
theory of true arithmetic (Simpson [15]).

e The first-order theory of the Turing degrees below 0’ is recursively isomorphic to the first-
order theory of true arithmetic (Shore [14]).

e The first-order theory of the Turing degrees of r.e. sets is recursively isomorphic to the
first-order theory of true arithmetic (Harrington and Slaman, unpublished; see also Nies,
Shore, and Slaman [12]).

We continue in this vein by proving two main theorems:

e Theorem 3.13: The first-order theory of the Medvedev degrees, the first-order theory of
the Muchnik degrees, and the third-order theory of true arithmetic are pairwise recursively
isomorphic (obtained independently by Lewis, Nies, and Sorbi [7]).

e Theorem 5.12: The following theories are pairwise recursively isomorphic: the first-order
theory of the closed Medvedev degrees, the first-order theory of the compact Medvedev
degrees, the first-order theory of the closed Muchnik degrees, the first-order theory of the
compact Muchnik degrees, and the second-order theory of true arithmetic.

In addition we prove:

e Theorem 6.3: Neither the closed Medvedev degrees nor the compact Medvedev degrees
are elementarily equivalent to either the closed Muchnik degrees or the compact Muchnik
degrees.

Our codings of arithmetic into the Medvedev and Muchnik degree structures are direct. We
define parameters coding w, <, +, and x, and then we explain how to simulate quantification. In
the third-order case, we show that any Medvedev degree or Muchnik degree codes both a subset of
w and a subset of 2¢. Hence quantification over the Medvedev degrees or over the Muchnik degrees
simulates both quantification over 2 and quantification over 22°. In the second-order case, we use
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a different coding and again show that quantification over the closed degrees or over the compact
degrees simulates quantification over 2“. In contrast, Lewis, Nies, and Sorbi’s proof of Theorem
3.13 relies on the following facts: The third-order theory of arithmetic is recursively isomorphic to
the second-order theory of the reals, and the reals can be coded as a symmetric graph.

This paper is organized as follows: The rest of the introduction establishes notation and defines
the objects considered. Section 2 interprets the various degree structures in third-order arithmetic
or in second-order arithmetic. Section 3 interprets third-order arithmetic in the Medvedev degrees
and in the Muchnik degrees. Section 4 interprets second-order arithmetic in the closed Muchnik
degrees and in the compact Muchnik degrees. Section 5 interprets second-order arithmetic in
the closed Medvedev degrees and in the compact Medvedev degrees. Section 6 distinguishes the
first-order theories of the closed Medvedev degrees and the compact Medvedev degrees from the
first-order theories of the closed Muchnik degrees and the compact Muchnik degrees

1.1. Basic notation. ®, denotes the e Turing functional. The function (-,-): w x w — w is a
fixed recursive bijection. For f,g € w¥, f @ g € w* is the function where (f @ g)(2n) = f(n) and
(f®g)(2n+1) = g(n). For finite sequences o, 7 € w<¥, ¢ C T means that o is an initial segment of
7. Similarly, ¢ C f means that ¢ is an initial segment of f. The sequence o™ 7 is the concatenation
of sequences o and 7. Similarly ¢” f is the concatenation of ¢ and f. For 0 € w<* and A C w¥,
0"~ A denotes {oc”f | f € A}. The sequence f [ n is the initial segment of f of length n. The
length of a sequence o is denoted by |o|. A tree is a set T C w<¥ closed under initial segments. A
function f is a path through 7" if (f [ n) € T for all n € w. For A, B C w, we write A <y B if there
is a one-to-one recursive function f such that Vn(n € A< f(n) € B). A and B are recursively
isomorphic if there is such an f that is a bijection. The Myhill isomorphism theorem states that
A and B are recursively isomorphic if and only if A <; B and B <; A (see [18] Section 1.5).
Our coding will make use of the following familiar definitions from recursion theory:

Definition 1.1. A C w*” is a Turing antichain if f |7 g for any distinct f, g € A.
Definition 1.2. A C w¥ is independent if g £ f1 & -+ @ f, for any distinct g, fi,..., fn € A

Infinite independent sets exist. See [6] section I1.3 for an example. An independent set is a
Turing antichain.

1.2. Standard relational models of arithmetic. We describe what we mean by “true arith-
metic” by defining the standard relational models of first-order, second-order, and third-order
arithmetic. In what follows, equality is always part of the language and is always interpreted as
true equality on w. Equality on 2 and 2%° is defined in terms of membership via extensionality.

The standard model of arithmetic is the structure 9 = (w, <, +, x ). The relations <C w?,
+ C w?, and x C w? are interpreted as the usual less-than-or-equal-to, plus, and times. Variables
T range over w.

The standard model of second-order arithmetic is the structure My = (w, 2%, <, +, x, € ). The
relations <, +, and x are interpreted as usual. The relation €C w x 2% is interpreted as membership.
Variables x range over w and variables X range over 2. Th(12) denotes the theory of g, the set
of all sentences in this language true in M.

The standard model of third-order arithmetic is the structure M3 = (w, 2%, 22", <, 4, x, €9, €3 ).
The relations <, +, and x are interpreted as usual. The relation €2C w x 2¥ is interpreted as
second-order membership and the relation €3C 2% x 22° is interpreted as third-order membership.
Variables = range over w, variables X range over 2¥, and variables X range over 22°. Th(913)
denotes the theory of 913, the set of all sentences in this language true in 3.

We consider arithmetic with + and x as relations C w? instead of as the usual functions w? — w
because our coding methods most naturally code relations. Any formula in which 4+ and x are
relation symbols can be trivially translated into an equivalent formula in which + and x are
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function symbols. Translations in the other direction require unnesting. In general, a formula is
said to be unnested if all its atomic subformulas are of the form x =y, ¢ =y, f(x1,...,2,) =y, or
R(z1,...,x,), where x, y, and the z; are variables, ¢ is a constant symbol, f is a function symbol,
and R is a relation symbol. Every formula can be recursively translated into an equivalent unnested
formula. See for example [4] section 2.6. When unnesting is applied to a first-order formula in the
functional language of arithmetic, we get an equivalent formula whose atomic subformulas are of
the form

T =1y z<y rT+y==z T XY=z,

which can easily be translated into a formula in the relational language of arithmetic. Unnesting
second-order or third-order formulas is the same but allows additional atomic formulas z € X
(second-order case) or z €3 X and X €3 X (third-order case). Thus the functional and relational
theories of second-order arithmetic are recursively isomorphic, as are the functional and relational
theories of third-order arithmetic.

1.3. Mass problems and reducibilities. A mass problem is a set of functions A C w®. We
say mass problem A Medvedev reduces to mass problem B (written A <j;B) if there is a Turing
functional ® such that for every f € B, ®/ computes a total function that is in A (written
®(B) C A). Wesay A and B are Medvedev equivalent (written A=y B) if A<y B and B<j;.A. The
relation =) is an equivalence relation on 2, and the equivalence class [A] is called the Medvedev
degree of A. Medvedev reducibility induces a partial order on degrees: [A] <y[B] if and only if
A < B. The structure 9t = (2¥° / =1, <y1) introduced by Medvedev in [9] is called the Medvedev
degrees. M is a lattice. For mass problems A and B, let

A+B={fdg|feANg € B}
AxXxB=0AU1"B.

Then join is given by [A] +[B] = [A+ B] and meet is given by [A] x[B] = [A x B]. Th(9) denotes
the first-order theory of the Medvedev degrees.

We say mass problem A Muchnik reduces (or weakly reduces) to mass problem B (written A <, B)
if for every f € B there is a g € A with g <p f. Muchnik reducibility is the non-uniform version
of Medvedev reducibility. We say A and B are Muchnik equivalent (or weakly equivalent, written
A=y B) if A<, B and B< A. The equivalence class [A]y is called the Muchnik degree of A.
Muchnik reducibility induces a partial order on degrees [A]y, and this partial order is a lattice
with join and meet computed as in the Medvedev case: [A]y +[B]w = [A+ Blw and [A]y, X[Bly =
[A x Bl]y. Notice that in the Muchnik case A x B=, AU B, so one may think of A x B as being
defined as A U B in this case. The structure M, = (27 / =, <) introduced by Muchnik in [11]
is called the Muchnik degrees. Th(9My,) denotes the first-order theory of the Muchnik degrees.

9 and 9N, both have a least element and a greatest element. In both lattices, w* has minimum
degree. In fact, a mass problem has minimum degree if and only if it contains a recursive function.
The empty mass problem has maximum degree, and it is the only such mass problem. 9t and 9,
are also both distributive lattices. That is, they satisfy VaVyVz[z + (y X 2) = (v +y) X (z + 2)] and
VaVyVzx x (y + z) = (x X y) + (& x z)]. Sorbi’s [22] is a good introduction to 9 and M.

We note that Lewis, Nies, and Sorbi [7] prove that 9t and 91, are not elementary equivalent.
Thus the theorem Th(9t) =; Th(9My,) is nontrivial.

For the sake of definiteness, the official language of 9 (and of all lattices considered here) is
that of partial orders. In any lattice, + and X are first-order definable from <, so we will freely
use the symbols + and x with the understanding that they are abbreviations for their first-order
definitions.

The notation Th(91) is also used to denote the collection of propositional formulas valid in 9t
when studying M as a Brouwer algebra. In fact, this interpretation was the main motivation
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behind Medvedev’s introduction of 9% in [9], and in [10] he proves that 9t provides semantics for
intuitionistic logic plus the additional axiom —pV ——p (the so-called Jankov’s logic [5]). There are
many interesting results and problems in this direction. See for example [17], [20], [21], [23], and
[13]. However, we do not consider propositional logics here, and for us the notation Th(9t) always
denotes the first-order theory of 9.

Our notation for join and meet in lattices conflicts with the notation for plus and times in
arithmetic. The lattice join and meet operations are denoted in the literature variously as +, X,
as V, A, and confusingly as A, V. We prefer to conflict with the arithmetic notation rather than
the logical notation.

1.4. Mass problems and topology. We consider Baire space w* and Cantor space 2, both with
their usual product topologies. Basic open sets in w® have the form I(o) = {f € w¥ | ¢ C f} for
o € w<¥, and similarly for 2¢. If A C w® is closed, then A is the set of paths through the tree
T C w<¥ defined by T = {o | (3f € A)[oc C f]}. Conversely, if T' C w<¥ is a tree, then the set of
paths through T is a closed subset of w*. A set A C w* is compact if and only if it is closed and
bounded if and only if it is the set of paths through a finitely branching tree (here bounded means
there is a g: w — w such that f(n) < g(n) for all f € A and n € w).

A Medvedev degree is said to be closed (compact) if it is of the form [A] where A is closed
(compact) in w”. By inspecting the definitions, one can check that if A and B are closed (compact)
then so are 0" AU1"B and {f &g | f € AANg € B}. Thus the closed Medvedev degrees form a
distributive sublattice of 9t which we denote by M., and the compact Medvedev degrees form a
distributive sublattice of Mt (and of M) which we denote by 9%, both as in [8] (the “01” notation
is explained below). Both 90, and 92 inherit the least element and the greatest element from 9.
Th(90%) denotes the first-order theory of M, and Th(IMY') denotes the first-order theory of Y.

Similarly, a Muchnik degree is said to be closed (compact) if it is of the form [A]y, where A
is closed (compact) in w®. The closed (compact) Muchnik degrees form a distributive sublattice
of M,, denoted by M, (DJISV{CI). EJJT[V)V{CI is also a distributive sublattice of My, . Both My,

and sm?v{d inherit the least element and the greatest element from M. Th(M o) denotes the
first-order theory of My, 1, and Th(,‘)ﬁo1 ) denotes the first-order theory of ool

w,cl w,cl*

The closed subsets of w* (and of 2¢) are the topologically simplest classes which yield non-trivial
degree structures because every nonempty open set contains a recursive function. As such, they are
worthy objects of study. For example, Bianchini and Sorbi [1] studied the filter (in 9t) generated
by the nonminimum closed degrees. Lewis, Shore, and Sorbi [8] have made a recent study of
topologically-defined collections of Medvedev degrees.

In general, every A C w® is Medvedev equivalent (and hence also Muchnik equivalent) to some
B C2v¥:

Lemma 1.3. If A C w® then there is a B C 2% with A=\ B.

Proof. For f € w¥, let graph f C w denote {(n,m) | f(n) = m} Given A, let B = {graph f | f €
A}. Let @ be the functional such that ®/((n,m)) = 1if f(n) = m and ®/({(n,m)) = 0 otherwise.
Then ®f = graph f for all f. Thus ®(A) = B. Let ¥ be the functional such that ¥9(n) searches
for an m such that g({(n,m)) = 1 and outputs such an m if it is found. If g is the characteristic
function of graph f, then W9 is total and equals f. Hence ¥(B) = A. O

If we let 9% denote the Medvedev degrees of mass problems A C 2¢ and let imgvl denote the
Muchnik degrees of mass problems A C 2¢, then Lemma 1.3 says 9t = 9% and M,, = imgvl.
However, if A C w® is closed, the B C 2 produced by Lemma 1.3 need not be. Turing functionals
are continuous, but w* and 2“ are not homeomorphic. Nevertheless, if A C w* is compact, Lemma
1.3 produces a closed B C 2¢. So every compact A C w* is Medvedev equivalent (and hence also
Muchnik equivalent) to a closed (hence compact) B C 2¢. This explains the notations 93?211 and
Qﬂgv{cl for the collections of compact degrees.



CODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK DEGREES 5

We will prove that neither 9, nor 99 are elementarily equivalent to either My, o or Dﬁgv{d

(Theorem 6.3 below). The relationship between 9. and zmgl and the relationship between 9, 1
and S)ﬁ(v)v{d require further study.

Question 1.4.
e Is every closed X C w“ Medvedev equivalent to some closed Y C 2“7 If not, are 9 and
9)1211 isomorphic? If not, are M and zmgll elementarily equivalent?
e Is every closed X C w® Muchnik equivalent to some closed Y C 27 If not, are M, o and
QJ?(VJV{CI isomorphic? If not, are My, o and 91713,1761 elementarily equivalent?

Our topological considerations of Medvedev reducibility are consequences of the familiar use
property (see [6] section 1.3): If ®f(m) = n, then there is a finite ¢ C f such that ¢ contains all
the answers to the oracle queries made during the computation of ®f(m) = n. This is written
®?(m) = n and implies ®9(m) = n for any g O 0. The starting point is the following simple
lemma:

Lemma 1.5. Let m,n € w. For any program ®, the set {f € w* | ®f(m) = n} is open. If ® is
total for all f € A, then {f € A| ®f(m) =n} is clopen in A (i.e. it is both the intersection of A
with a set open in w* and the intersection of A with a set closed in w*).

Proof. If ®/(m) = n, then by the use property there is some o C f such that ®7(m) = n. Hence
{f €w” | ®/(m) =n} =U{I(0) | 27 (m) = n}.

If ® is total on A, then {f € A| ®/(m) =n} = AN{f cw? | ®f(m)=n} = AN (ﬂ#n{f €
w* | ®f(m) # i}). The last equality holds because if ®/ is total and ®f(m) # i for all i # n, then
it must be that ®/(m) = n. O

2. INTERPRETING THE MEDVEDEV DEGREES AND THE MUCHNIK DEGREES IN ARITHMETIC

In this section we prove that Th(9%), Th(M,) <; Th(M3) and also that Th(My), Th(MY),
Th(IMy, 1), Th(MOL,) <) Th(Ty).

The reductions Th(9?), Th(My) <; Th(N3) follow from the fact that every mass problem A is
equivalent to some B C 2 (i.e. Lemma 1.3) and that the Medvedev and Muchnik reducibilities are

definable in 3.
Lemma 2.1. Th(9), Th(M,) <; Th(N3).

Proof. The relation R(X, e, m,n) expressing ®X (m) = n is definable by a formula which says “there
exists a number s coding a sequence of configurations witnessing the computation ®X(m) = n.”
The relation S(X,Y,e) expressing ®X =Y is definable by the formula

VmlimeY - R(X,e,m,1))AN(m ¢ Y — R(X,e,m,0))].
Thus the relation A <p; B is definable by the formula
o(A,B):=3eVX[X e B>V (Y € ANS(X,Y,e))].

Now, given a sentence ¢ in the language of partial orders, produce a sentence 1)’ in the language
of 913 by replacing quantifications V& and dx with third-order quantifications VX and 3X, by
replacing atomic formulas z < y with ¢(X,)), and by replacing atomic formulas z = y with
(X, V) Np(Y,X). Then N3 = ¢ if and only if M |= 1.

The reduction Th(M,) <; Th(N3) is obtained by switching the quantifiers Je and VX in the
definition of the formula ¢ above. O

The interpretations of 9y and My o (MY and ng{d) in Ny rely on the fact that A C w®
(A C 2¥) is closed if and only if it is the set of paths through some tree T C w<* (T C 2<%). Thus
we quantify over all closed mass problems by quantifying over all trees. So fix some definable coding

of sequences, trees, and functions in 9. See [16] section I1.2 for a particularly careful method.
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Lemma 2.2. Th(9M,), Th(MY), Th(My a), Th(ON2,)) <1 Th(N).

w,cl

Proof. The relation P(f,T) expressing “function f is a path through tree T” is definable by the
formula Vn3o (o € T A|o| = n A(Vi < |o|)[o(i) = f(i)]). Relations R(f, e, m,n) expressing ® (m) =
n and S(f,g,e) expressing @Z = g are definable as in Lemma 2.1. Thus the relation T <j; S
(expressing that the set of paths through T" Medvedev reduces to the set of paths through S) is
definable by the formula ¢(7,S) := 3eVf[P(f,S)—39(P(g,T)NS(f,g,¢€))]

Now, given a sentence 9 in the language of partial orders, produce a sentence v’ in the language
of 9y by replacing quantifications Yz and dx with second-order quantifications VT, and 37, quan-
tifying over trees T, C w<“, by replacing atomic formulas z < y with ¢(7},Ty), and by replacing
atomic formulas z = y with ¢(Ty,T,) A¢(T,,T;). Then Ny = ¢ if and only if My = . The
reduction Th(MY') <; Th(Ny) is exactly the same, except we quantify over trees T' C 2<%,

The reductions Th(9y, 1), Th(M! ) <; Th(My) are obtained by switching the quantifiers Je

w,cl

and Vf in the definition of the formula ¢ above. O

3. INTERPRETING ARITHMETIC IN THE MEDVEDEV DEGREES AND IN THE MUCHNIK DEGREES

In this section we prove Th(913) <; Th(9M,) <; Th(9M), thereby completing the proof that all
three theories are pairwise recursively isomorphic. The proof of Th(3) <; Th(M,,) is also valid
with 9t in place of M. This makes the Th(9M,) <; Th(IM) step unnecessary, but the definability
of My, in M is still worthwhile to notice.

3.1. Defining 9, in M. The Muchnik degrees are definable in the Medvedev degrees [2], thereby
giving Th(9My,) <3 Th(M).

Definition 3.1. For a mass problem A, let C(.A) denote the Turing upward-closure of A: C(A) =
{139 € Alg<rf1}.

Definition 3.2. A Medvedev degree s is called a degree of solvability if s = [{f}] for some f € w®.

Definition 3.3. A Medvedev degree m is called a Muchnik degree if m = [C'(A)] for some mass
problem A.

Notice that C(A) <y B if and only if B C C(A). Medvedev degrees of the form [C'(A)] are called
Muchnik degrees because A <y, B if and only if C(B) C C(A) if and only if C(A) <y C(B). The
mapping [A]y — [C(A)] embeds My, into M as an upper-semilattice but not as a lattice [19].

Lemma 3.4 (Medvedev [9], Dyment [2]). The degrees of solvability and the Muchnik degrees are
definable in M.

The formula defining the degrees of solvability is §(z) := Jy[r < yAVz(zr < z—y < 2)]. For a
degree of solvability x = [{f}], the witnessing y is the degree [{¢"g | ®4 = f Ag £r f}]. Complete
proofs that 6 defines the degrees of solvability are found in [2] and [22]. We reproduce the definability
of the Muchnik degrees here. The result essentially appears in [2], but is not phrased in terms of
definability.

Proof that the Muchnik degrees are definable in 9.

The defining formula is x(z) := Vy[Vz[(0(z) Ay < z)—=z < z]—x < y|, where 6 is the for-
mula defining the degrees of solvability as above. Let [C'(A)] be a Muchnik degree. If B satis-
fies (Vf € w¥)[B<m{f} = C(A) <m{f}], then in particular we must have C(A) <y{f} for all
f € B. Hence B C C(A) and so x([C(A)]) holds. Conversely, suppose x([A]). As (Vf €
w)[C(A) <m{f} = A<m{f}], we have A<y C(A). Thus A=y C(A), so [A] is a Muchnik de-
gree. d

Corollary 3.5. Th(9ty,) <; Th(9Mn).
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Proof. Interpret Th(9M,,) inside Th(9) by restricting quantification in 9 to quantify only over
degrees of the form [C'(A)]. That is, given a sentence 1 in the language of partial orders, generate
a sentence ¢’ by inductively replacing subformulas Jz¢ and Vazp by formulas Jz(x(z) A ) and
Va(x(z) = ¢). Then My, |= ¢ if and only if M = . O

In My, a degree s is also called a degree of solvability if s = [{ f}]w for some f € w*. The formula
O(x) as above defines the degrees of solvability in 9y, and the proof is similar to that for 9.

3.2. Defining a code for M3. We code N3 into M, to prove that Th(M3) <; Th(My,). Although
we phrase what follows in terms of M, the same coding can be used to code 913 into 9 and thus
to prove Th(913) <; Th(9N) without appealing to the definability of 9ty in 9.

We view each degree w as coding the set of minimal degrees of solvability above it. Degree s is
a minimal degree of solvability above w if and only if (s, w) where

n(s,w) :=0(s) ANw < sAVz[(0(z) Nw < z) » z £ 5]
and 6(x) is the formula defining the degrees of solvability from Lemma 3.4.

Definition 3.6. For w € M,,, E(w) = {s € M, | n(s,w)} denotes the set of minimal degrees of
solvability above w.

Our coding makes use of the following obvious lemma:
Lemma 3.7. If W is a Turing antichain, then E(Ww) = {[{/}Hw | [ € W}.
Proof. Obvious O

Definition 3.8. A code for M3 in M, is a collection of degrees wg, w1, wo, m, L, p,t,r € M, such
that:

(i) For every degree a there is an s € E(r) such that for all u € E(wp), u € E(a) if and only
if u<ys.
(ii) If R< is the following 2-ary relation defined on E(w()? and R, and Ry are the following
3-ary relations defined on E(wg)3:
— R<(so,up) if and only if there isa u; € E(w) withup+u; € E(m) and sp+u; € E(1),
— R4 (s0,u0, Vo) if and only if there is a u; € E(w;) and a vo € E(wg) with ug+u; €
E(m), vo+vs € E(m), and sp+u; +vo € E(p),
— Ry (sp,up,vp) if and only if there is a u; € E(w;) and a vo € E(wg) with up+u; €
E(m), vo+va € E(m), and sp+u; +vo € E(t),
then My, satisfies the formula that says E(wy) is a discretely ordered commutative semiring
with unity and for every a € M, if there is an s € E(a) N E(wy), then there is a least such
s, where <, 4, and x are interpreted as R<, R4, and Ry respectively.

The property “wq, w1, wo,m,Lp,t,r is a code for M3 in M, is first-order definable. The
relation s € E(w) is defined by the first-order formula 7(s,w). By inspecting Definition 3.8, we
see that the property in item (i) is first-order and that the relations R<, R4, and Ry in item (ii)
are first-order. The axioms of a discretely ordered commutative semiring with unity are first-order,
so if we change these axioms to make quantification be over F(wy) and to make <, +, and X
be interpreted as the relations R<, R, and R« respectively, we have a first-order formula in the
language of partial orders expressing that E(wg) is a discretely ordered commutative semiring with
unity. Therefore the property in item (ii) is also first-order.

In Definition 3.8, think w for “w,” m for “match,” 1 for “less,” p for “plus,” t for “times,”
and r for “reals.” Our intention is that wy codes w as E(wg) and that the auxiliary degrees
w1, wo, m, 1 p,t code <, 4, x on F(wy). The idea is that, for s and u in some E(w), we would like
to code the tuple (s, u) as the degree s + u. However, with this coding we would not be able to tell
(s,u) from (u,s) because s +u = u+s. To fix this problem, we let wq code both the “true” w and
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the first-coordinate version of w, and we introduce wy and ws to code second- and third-coordinate
versions of w. The degree m matches first-coordinate “numbers” with their corresponding second-
and third-coordinate “numbers.” We think of uy € E(wq) and u; € E(w;) as coding the same
number if up+u; € E(m). Similarly, vo € E(wp) and ve € E(wsy) code the same number if
vo+ve € E(m). Now, for sg,up € E(wy), if there is a u; € E(w;) with up+u; € E(m), then
we can code the tuple (sg,ug) as sp+uj. For example, in item (ii) of Definition 3.8, R<(so, uo)
holds if and only if there is a second-coordinate version of ug (called u;) such that so+u; € E(1).
Similarly, R4 (so, ug, vo) holds if and only if there are a second-coordinate version of ug (called uy)
and a third-coordinate version of vq (called va) such that sy +u; + vo € E(p). The degree m need
not code bijections (or even functions) between E(wg) and E(w;) and between E(wq) and E(w3).
However, this is irrelevant because the definitions of the relations R<, Ry, and Ry make sense for
any degree m.

A degree a codes the set E(a) N E(wg) C E(wg). Every subset of E(wg) has a code: If
X C E(wy), then for each s € X fix an fs € w* such that s = [{fs}]w. Let A= {fs|s € X} and
let a = [A]y. A is a Turing antichain, so E(a) = X by Lemma 3.7. Thus a is a code for X. We
then quantify over all subsets of F(wg) by quantifying over all degrees a and interpreting each as
a subset of E(wq). Therefore item (ii) above ensures that, for a code for 913 in My, the structure
(E(wo), R<, R4+, Ry ) is a well-founded model of arithmetic and as such is isomorphic to .

A degree b can also be interpreted as coding a subset S(b) of 2F (Wo) as follows.

Definition 3.9. For wy as in a code for 93 in My, and b € My, S(b) = {X C E(wy) | (3s €
ED))(Vu € E(wp))ue X < u<ys}.

Let 7(a,b, w) be the formula
m(a,b,w) = (3s € E(b))(Vu € E(w))[u € E(a) > u < s].

We write a € S(b) for m(a,b,wq), which expresses that the subset of F(wq) coded by a is an
element of the subset of 22(W0) coded by b. Every subset of 22(%0) has a code: If X C 2E(Wo) then
for each X € X fix a degree ax with F(ax) N E(wg) = X. Then by item (i), for each ay find a
degree sy € E(r) such that (Yu € E(wy))[u € E(ay) <> u<ysx]. For each sx, fix fx € w* such
that sx = [{fx}w. Let b=[{fx | X € X}]w. Then S(b) = X.

We have seen that, for a code for 13 in My, every degree can be interpreted as a subset of
E(wy) and as a subset of 2E(Wo) - Moreover, quantifying over all degrees quantifies over all subsets
of E(wg) and quantifies over all subsets of 2E(wWo)  Thus for a code for Mg in My, the coded
structure is exactly ( E(wyq), 2" (wo) 22E(w0>,R§, Ry, Ry ), and this structure is isomorphic to 91s.
As discussed above, there is a sentence in the language of partial orders expressing the existence
of a code for 913. Given a sentence ¥ in the language of 913, we translate it into a sentence in
the language of partial orders that says “there is a code for 913 in 9y, and ¥ is true in the coded
structure.” It remains to prove the existence of such a code.

3.3. Finding a code for 913 in 91,,. The crucial point is the existence of the degree r coding 2*.
The following lemma is proved using standard recursion theoretic techniques:

Lemma 3.10. If A = {f; | i € w} is a countable independent set, then there exists a Turing
antichain R = {gx | X € 2¥} such that {f; |i€ X} ={f € A| f<rgx} for each X € 2¥.

Proof. We construct partial functions g, : w — w for o € 2<“ and put gx = Upecwgxn. The g, will
have the following properties:
(i) If 0 C 7 then dom g, C dom g, and the two functions agree on their common domain.
(ii) If s < |o| and o(s) = 0 then g,((s,7)) is defined for all j and equals 0 for all but finitely
many j.
(iii) If s < |o| and o(s) = 1 then g,({s,j)) is defined for all j and equals f,(j) for all but finitely
many j.
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(iv) g5({s,7)) is defined for only finitely many (s,j) with s > |o|.

Items (i) — (iii) ensure that each gx is a total function, and item (iii) ensures fs < gx forall s € X.
In addition we satisfy the following requirements for all e,7 € w and all X,Y C w:

o RY;:i¢g X 50X £ f;

¢ Qe XAY 58 # gy
Let gy = (0. At stage s we have g, for all o of length s.

At stage s = 2(e,i) we handle requirement sz For each o of length s do the following: If
o(i) = 0, if there is a finite partial function h, with domain disjoint from g,, and if there is a number
n such that @*Z"Uh"(n) 1# fi(n), then redefine g, to be g, U h,. Then for each o of length s put
9o0 = 9o U{((5,7),0) [ (5,j) ¢ domg,} and put g,~; = go U{((s,5), fs(j)) | (5,7) ¢ dom g, }.

At stage s = 2e+1 we handle requirement Q2 . List the pairs (o, 7) with |o| = |7| = sand o # 7.
For each such (o, 7) do the following: Let n be least such that n ¢ dom g,. If there is a finite partial
function h, with domain disjoint from g, and if there is a number m such that @g”Uh" (n) J=m,
then redefine g, to be g, U h, and redefine g, to be g- U {(n,m + 1)}. After these extensions are
made for each pair (o, 7), then for each o of length s put g,~y = 9 U{((s,7),0) | (s,7) ¢ domg,}
and put g,y = go U {{ (5,5, fo(7)) | {5,7) ¢ dom g, }.

We verify i ¢ X — f; £1gx. Suppose that i ¢ X and ®Z* = f;. Consider stage s = 2 (e, i) of
the construction. Let 0 = X [ s and let f = @{fi |t < sAo(t) = 1}. The function f computes
the graph of the partial function g,. Thus we can use f to simulate the computation @gUUh(n) for
any finite partial function h with domain disjoint from g,. We now have the contradiction f; <t f
as follows: Given input n, use f to search for a finite partial function h with domain disjoint from
go such that <I>2"Uh(n) = m for some m. There must be such an h because gx extends g, and
®2X (n) |. Moreover, we must have m = f;(n). Otherwise at stage s we would have been able to
find an hy such that ®%°" (n) |# fi(n), and this would imply ®%* # f;.

We verify X # Y — gy €1 gx. Suppose for a contradiction that 9% = gy. Choose an index e
for ® greater than the least e such that X(e) # Y(e),put s=2e+1,andlet c =X [ s, 7=Y [ s.
Consider the g, and g, we have right before we process the pair (o, 7) in stage s. Let n be least
such that n ¢ dom g,. Since gx extends g, and ®¢¥ is total, we must have found a finite h, and
number m such that ®¢°“"(n) |= m. But then we extended g so that g,(n) = m + 1. Thus
®2X (n) = m # gy (n), a contradiction. O

Lemma 3.11. There is a code for Ng in My,.

Proof. Let
e Wo={foilicwt, Wi ={fril|liecw},and Wao ={fa, | i € w} besuch that Wy UW; UW,
is independent,
e M={fo® frili €w}U{fo;® fo;|i€w}
o L={foi® f1;|i<j},
o P={foi® fr;® for|i+ij=k},
o T ={foi® f1;® for|ixj=k},
e by Lemma 3.10, let R = {gx | X € 2} be a Turing antichain such that {fo; € Wy | i €
X}y ={foi e Wo| foi<tgx} for each X € 2v.
Put wo = [WO]W7 w1 = [Wl]W7 Wa = [WQ]Wa m = [M]Wa 1= [ﬁ]wa P = [P]W7 t = [ﬂwa r= [R}w
We check the two cases of Definition 3.8. Notice that the above mass problems are all Turing
antichains.
(i) Given a degree a, let X = {i | [{foi}]lw € E(a) N E(wo)} and let s = [{gx}]w. Then
s € E(r) and (Vu € E(wp))[u € E(a) < u<ys|.
(ii) For [{fo,i}]w,[{fo}lw € E(wo) we have R<([{foi}]w [{fo,j}]w) if and only if there is a
w € E(wy) with [{fo;}lw+w € E(m) and [{fo;}]w+u € E(l). By the independence
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of Wo UW; U W, and Lemma 3.7, this happens if and only if u; = [{f1;}]w and i < j.
Thus Re([{fo; Hher [fo o) if and only it i < j. Similarly Ry ({fo o [Lfog o [Lfos 1)
if and only if i + j = k and Ry ([{ fo.i}lw, [{f0,j}]w: [{fo.x}]w) if and only if ¢ x j = k. Hence
E(wy) is a discretely ordered commutative semiring with unity. Moreover, if E(a) N E(wg)
is nonempty, then there is a least ¢ for which s = [{ fo;}]w is in E(a) N E(wyg). This s is the
R<-least element of E(a) N E(wy).

O
We are ready to interpret 913 in M.
Lemma 3.12. Th(9t3) <; Th(M,,).

Proof. Let ¢ be a sentence in the language of 913. Each atomic subformula of ¢ has one of the
following forms:

r=y x <y T+y==z TXY==2 r€Er X Xes X

Now let ¢’ (wo, w1, wa, m, £, p,t,r) be the formula (with the displayed variables free) in the language
of partial orders obtained from ¢ by making the replacements below. The second-order variable X
in ¢ corresponds to the variable vy in ¢’ and the third-order variable X in ¢ corresponds to the
variable vy in ¢’
e Replace x < y by the formula defining R<(x,y).
Replace z + y = z by the formula defining R, (z,y, z).
Replace z x y = z by the formula defining Ry (z,y, z).
Replace © €2 X by the formula expressing z € E(vx).
Replace X €3 X by the formula expressing vx € S(vy).
Replace quantifiers 3z and Va by 3z € E(wp) and Va € E(wy).
Replace quantifiers 3X and VX by Jvx and Vvyx.
Replace quantifiers 34 and VX by Jvy and Vuy.

Let 1 be the sentence saying “there is a code wq, wi, ws, m, £, p, t, r for N3 in M,, and
¢ (wo, w1, wa,m, £, p,t,r).” A code for Nz in M, codes a structure isomorphic to N3, and so
My =1 if and only if N3 = ¢. O

Theorem 3.13 (Independently by Lewis, Nies, and Sorbi [7]). Th(My,) =1 Th(M) =1 Th(N3).

Proof. We have Th(91) <; Th(913) by Lemma 2.1, Th(9,) <; Th(9M) by Corollary 3.5, and we
have Th(M3) <; Th(M,) by Lemma 3.12. O

4. INTERPRETING ARITHMETIC IN THE CLOSED AND COMPACT MUCHNIK DEGREES

Our coding of third-order arithmetic in 9y, relied on the definability of the degrees of solvability
in M. The definability of degrees of solvability in 9, 931011, My o1, and Sjtgv{cl would give an

C

immediate proof of Th(Mz) <1 Th(Ma), Th(MY), Th(My,q), Th(M]' ). This is because the
Turing degrees are isomorphic to the degrees of solvability and because the first-order theory of the
Turing degrees is recursively isomorphic to Th(912) [15]. Singleton mass problems {f} are compact,
so the degrees of solvability are in M., MY, My, 4, and Z)ﬁ?v{d. However, we do not know if the

degrees of solvability are definable in any of these structures.

Question 4.1. Are the degrees of solvability definable in 9., 931211, My 1, OF ool 2

w,cl*

In this section we prove that Th(My) <; Th(My a1), Th(i)ﬁgv{cl), and in Section 5 we prove that
Th(91) <1 Th(9My), Th(MY'). We will use the same definition of a code for Ny (Definition 4.6
below) in all four cases. The difference between the Muchnik cases and the Medvedev cases is in

how we prove that each subset of w has a code.
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4.1. Defining a code for 91s. In Section 3, a degree w coded the set of minimal degrees of
solvability above it. Now a degree w codes the set of minimal meet-irreducible degrees that meet
to it.

Definition 4.2. An element of a lattice is called meet-reducible if it satisfies the formula 6(z) :=
JyIz(z < yAx < zAxz = yxz). An element of a lattice is called meet-irreducible if it is not
meet-reducible.

We will take advantage of the following easily checkable fact: In a distributive lattice, if x is
meet-irreducible and x > y X z, then x > y or x > z.

Definition 4.3. For elements s and w of a lattice, we say s meets to w if s and w satisfy the
formula Xx(s,w) :=Jy(y > wAsxy=w).

Hence for s and w in a lattice, s is a minimal meet-irreducible that meets to w if and only if
7(s, w) where

(s, w) = =0(s) AX(s,w) AVyly < s —(w £ yVO(y))].

Definition 4.4. For a lattice £ and an element w € £, F(w) = {s € £ | s > w} denotes the set of

elements above w and E(w) = {s € £ | 7j(s,w)} denotes the set of minimal meet-irreducibles that
meet to w.

Notice that E(w) is an antichain by the minimality of its elements.

Keep in mind that the lattices we now consider are I, o and m?‘e,{d and that meet-reducible
means meet-reducible in these lattices. If a closed (compact) W has meet-reducible degree in My, ¢
(9! 1), then it has meet-reducible degree in 9,,. However, we do not know the converse.

Question 4.5. If W is closed (compact) and W=y, X x ) for X',Y >, W, then are there closed
(compact) such X and Y7

The converse does hold in the Medvedev cases: A closed (compact) W has meet-reducible degree
in My (9)?01) if and only if it has meet-reducible degree in 9. See Lemma 5.1 below.

Definition 4.6. Let £ be one of imd,smd s My 1, M o1

Wl A code for My in £ is a collection of

degrees wo, wi, wo, m, 1, p,t € £ such that if R< is the following 2-ary relation defined on E (wo)?
and R, and R, are the following 3-ary relations defined on E(wg)3:
e R<(sg,up) if and only if there is a u; € E(Wl) with ugp+u; € E( ) and sp+u € E(l),
e R (so,uo,vo) if and only if there is a uj € E(wy) and a vy € E(wy) with ug+u; € E(m),
vo+ve € E( ), and sg+uy +vg € E( ),
e R, (so, uO,VU) if and only if there is a g € E(wl) and a vy € E(WQ) with ug+u; € E( ),
vo+Vva € E( ), and sg+u; +va € E( ),
then £ satisfies the formula that says E(wo) is a di~scretely ordered commutative semiring with

unity and for every a € £, if there is an s € F'(a) N E(wy), then there is a least such s, where <,
+, and X are interpreted as R<, R, and Ry respectively.

We think of wy as coding w as E(wg) and any degree a as coding F(a) N E(wq) C E(wo). If
we can show that every subset of E (wp) has a code, then we will know that the coded structure is
exactly ( E(wy), 9E(wo) ,R<, R4, Ry ) and is isomorphic to 9a. In fact, it suffices to show that every
countable subset of E(wo) has a code. This is because if there is a nonempty S C E(wo) with no
R<-least element, then there is a countable such S. So if every countable subset of E (wp) has a code
and every nonempty coded subset of E(wyg) has an R<-least element, then (E E(wo), R<,R{,Ry)
is a well-founded model of arithmetic and, as such, is isomorphic to 9. In particular, E(wo) is
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countable, so every subset is countable and hence has a code. Our attention now turns to finding
these codes.

4.2. Coding subsets of w in M, 4 and i)ﬁgvl’d. It is well-known that 9, is a complete lattice.
That is, every arbitrary collection of degrees S C 9y, has a least upper bound and a greatest lower
bound. Let (X; | i € I') be a selection of one representative for each degree in S. Then the least
upper bound of S is [;c; C(A;)],, and the greatest lower bound of S is [J;e; C(A;)]. (which

equals [Uze 7 Xi]w)‘ In My, a1 and 9O | arbitrary countable collections of degrees have greatest

w,cl

lower bounds. This fact allows us to code all countable subsets of an E (w).
Lemma 4.7. Both My q and E)ﬁgvlyd are countably meet-complete.

Proof. For My, o1, let {x; | i € w} C My, 1 be a countable set of degrees and let X; C w® be a closed
representative of x; for each i. The degree a = [Ui@) i”Xi] w is in My ¢ and is a lower bound for the
degrees x;. Suppose b is any other lower bound for the x; and let B be a representative for b. Then
B <y X; for each i which means (Vi € w)(Vf € X;)(3g € B)[g<r f]. So (Vf € U;e, " Xi) (39 €
B) [g <r f] Hence b <, a.

The above proof does not work for S)JTgV{Cl because | J;c,,i"A; is not compact. We provide a
modified proof for MO |, Let {x; | i € w} C Qﬁ‘%{cl be a countable set of degrees and let A; C 2%

w,cl*
be a closed representative of x; for each i. Choose any ¢ in any non-empty X; (if all the X are
empty, then [0}y, is the greatest-lower-bound). Let o; = (¢ [ )" (1 — g(i)) for each i € w. The set
A= {g} U (U, 0; Xi) is closed in 2, so let a = [A],,. Then a € Dﬁg\}d and the rest of the proof

proceeds as in the 9, o case. ]

In contrast, 9, M, and 93?211 are not countably complete, as shown by Dyment’s Lemma 6.2
below.

Lemma 4.8. Let £ be My, 1 or MO . Then for any w € £ and any at-most-countable S C E(W)

w,cl*

there is an a € £ such that F(a) N E(w) = S.

Proof. In either case take a to be the greatest-lower-bound of S by Lemma 4.7. This ensures
S C F(a)NE(w). To see equality, let x € E(w)— S and let y be such that y >y w and x x y = w.
If s € S, then s#yx because E(w) is an antichain. Thus s>,y for all s € S because s is
meet-irreducible and s > w = x x y for all s € S. Therefore a >, y which implies x # a. O

It is possible for E (w) to be uncountable for w € My, o or w € 9)?3,1761. This is in contrast to the

Medvedev cases, in which E(w) is always at most countable (see Corollary 5.3 below).

Lemma 4.9. If W C w* (W C 2¥) is a closed Turing antichain, then, in My, o (Sﬁgv{d), E(Wly) =
{{/Hw | feW).

Proof. Assume in both cases that [W| > 1, for otherwise the lemma is trivial.

For My, a1, let W C w® be closed and a Turing antichain, and let f € W. Let T be a tree
whose set of paths is W. Let (7; | i € w) list the sequences in T' that are not initial segments
of f (so that, for g € W, g # f <> 3i[m C g]). Let T; denote the full subtree of T rooted at 7;:
T; = {o € ws¥ | 7,70 € T}. Let R be the tree | J;c,, i"T; where i"T; = {i"0 | o € T;} for each i.
Let Y be the set of paths through R. If, for a mass problem A, we let degp A = {degy f | f € A}
denote the set of Turing degrees of the members of A, we see that degr ) = degr W — {degy f}.
From this and the fact that W is a Turing antichain, it follows that J >, W and W=y {f} x V.
Hence [{f}]w is meet-irreducible and meets to W]y,. We need to show that [{ f}]w is minimal. First
suppose that B>, W is closed and has meet-irreducible degree in M, ;. We claim B #,{f} implies
{f}#wB. We have B>y{f} or B>y Y because B>, W=y{f} xY and B has meet-irreducible
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degree. But B #y{ [}, so we must have B>, V. Thus {f} #w B because {f} #w Y. Therefore, if we
have a closed B of meet-irreducible degree in M, o1 with W <, B <, {f}, then the contrapositive
of the claim tells us {f} <y B. Thus [{f}]w is minimal, making [{f}lw € E(W]w).

Conversely, suppose for a contradiction that B is closed and [Bly € E([W]y), but B#4{f} for

all f € W. By the claim, we also have {f} %y B for all f € W. Then if C is closed such that
W=y, B xC, it must be that {f} >, C for all f € W. Hence W >,C. So for any closed C such that

W = B x C we have W >, C. This contradicts that [B]y meets to WV]y. Thus if b € E([Wly), we

must have b > [{f}]w for some f € W. But [{f}]w € E(W]w), hence b = [{f}], by minimality.
For MY | let W C 2 be closed and a Turing antichain, and let f € W. Let T be a tree whose

w,cls

set of paths is W. Let (7; | i € w) list the sequences in T that are not initial segments of f. Let
T; denote the full subtree of T" rooted at 7;. Choose any g € W — {f}. Let 0, = (¢ [ i)~ (1 — g(i))
for each i € w. Let R be the tree UiEW o;"T;. Let )Y be the set of paths through R. Then
degt Y = degr W — {degt f}. The proof now proceeds exactly as in the M, 1 case. ([l

Corollary 4.10. Let £ be My o or ZJJT(V)V{CI. Then there is a degree w € £ such that E(W) 18
uncountable.

Proof. In either case, let T' C 2<“ be a perfect tree whose set of paths is a Turing antichain, and let
w be the degree of this set of paths. See [18] Section VI.1 for the construction of such a tree. [

4.3. Finding a code for 91y in M, ..

Definition 4.11 (Dyment [2]). W C w* is called effectively discrete if (Vf € W)(Vg € W)[f #
g9 f(0) # g(0)].
An effectively discrete mass problem is closed and at most countable.

Lemma 4.12. There is a code for Ny in My, .

Proof. Let

e Wo ={i"foi|i€ewh Wi ={i"fiil|iew}, and Wy = {i"fa; | i € w} be such that

Wy UW; UWs is independent,

o M ={(20)"(foi ® fr4) | i € w}U{(20 +1)"(fo; ® fa) | i € w},

o L={(i,7) (foi® fry) | i=j},

o P={((i,7),k) (foi® f1; D far) |1 +3j=Fk},

o T ={({i,7),k) (fo,® f1;® for) | ixj=k}.
The above mass problems are effectively discrete Turing antichains. Put wo = Wolw, w1 = [Wilw,
wo = Walw, m = [M]y, 1 = [L]w, P = [P]w, t = [T]w. The verification that these degrees satisfy
Definition 4.6 is the same as the verification that the corresponding degrees defined in Lemma 3.11
satisfy case (ii) of Definition 3.8. Use Lemma 4.9 in place of Lemma 3.7. O

We are ready to interpret g in My .
Lemma 4.13. Th(912) <; Th(My ).
Proof. Let ¢ be a sentence in the language of 913. Each atomic subformula of ¢ has one of the
following forms:
r=y x <y T+y==z TXYy=z2 x e X.
Now let ¢ (wp, w1, ws, m, ¢, p,t) be the formula (with the displayed variables free) in the language

of partial orders obtained from ¢ by making the replacements below. The second-order variable X
in ¢ corresponds to the variable vx in ¢'.

e Replace z < y by the formula defining R<(z,y).
e Replace x + y = z by the formula defining R, (z, vy, 2).
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Replace z x y = z by the formula defining Ry (z,y, z).

Replace z € X by the formula expressing z € F(vy).

Replace quantifiers 3z and Va by 3z € E(wg) and V& € E(wy).
Replace quantifiers 3X and VX by Jvx and Vvx.

Let ¢ be the sentence saying “there is a code wgy, w1, w2, m, £, p, t, for Ny in My o and
¢ (wo, wi,we,m, ¢, p,t).” A code for My in My, 1 codes a structure isomorphic to My, and so
My o1 = ¢ if and only if Ny = . O

4.4. Finding a code for 91 in MY - An infinite effectively discrete Turing antichain is not
compact, so we can no longer rely on them to provide a code. Instead we use the following
definition:

Definition 4.14. Let g € 2¥. A set A C 2¥ is called a g-spine (or just a spine) if it is of the form
{9} U{oi"fi | i € X} where X C w is infinite, 0; = (g [ )" (1 — g(7)) for each i € X, and f; € 2¥
for each i € X.

Definition 4.15. Let g € 2¥ and let A C 2 be countable. Fix an enumeration ( f; | i € w) of A.
We denote by spine(g,.A) the g-spine {g} U {o;"f; | i € w} where o; = (g [ i)"(1 — g(¢)) for each
i € w. We denote by spine(.A) the fy-spine spine(fo, A — {fo}).

Notice that a spine is a closed subset of 2“.
Lemma 4.16. There is a code for 9y in EITI(V)V{CI.

Proof. Let W) = {fo; | i € w}, Wi = {fi; | i € w}, and W) = {fa; | i € w} be such that
WHU W UW), C 2% is independent. Then let

o Wy = spine(W})), Wi = spine(W;), Wy = spine(Wj),

o M =spine({fo; ® f1i |1 €w}U{foi® foiliecw}),

o L = spine({fo; @ f1; i< j}),

o P =spine({fo; ® f1; ® for |i+j=Fk}),

o 7 =spine({fo; @ f1,; © for | i x j = k}).
The above mass problems are spines that are Turing antichains. Put wo = Wolw, w1 = Wilw,
wy = Walw, m = My, | = [L]w, P = [Plw, t = [T]w. The verification that these degrees satisfy
Definition 4.6 is the same as the verification that the corresponding degrees defined in Lemma 3.11
satisfy case (ii) of Definition 3.8. Use Lemma 4.9 in place of Lemma 3.7. O

Lemma 4.17. Th(9) <; Th(MY}).
Proof. As in Lemma 4.13. 0

5. INTERPRETING ARITHMETIC IN THE CLOSED AND COMPACT MEDVEDEV DEGREES

In this section we prove that Th(My) <; Th(M), Th(MY). As always, the crucial point is
coding any S C E(w) as some F(a) N E(w). In the Muchnik cases, this was accomplished by
assuming that S is countable, fixing a closed representative for each degree in S, and essentially
taking the union of these representatives. However, the proof that this produced such an a relied
on the non-uniformity afforded by Muchnik reducibility. Specifically, if X; > ) for each i € w, then
UZ.EW X; >w Y. In the Medvedev cases, it may be that X; >\ ) for each ¢ € w but Uiew X; zMy
because the reductions witnessing each X; >y ) cannot be combined into one uniform reduction
witnessing UiEW X; >m Y. We will show that it is possible to choose the representatives A; in such
a way that taking their union preserves uniformity.
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5.1. Coding subsets of w. The results of this section apply to arbitrary mass problems, not just
closed and compact ones. We consider arbitrary mass problems VW and degrees w € 901.

The next lemma is a clarifying example. It implies that a closed (compact) W has meet-reducible
degree in My (IMY) if and only if it has meet-reducible degree in 9.

Lemma 5.1 (Dyment [2]). If W=n X x ), then W = X UY where X and Y are disjoint and
clopen in W, X>MX y>My and W MXX)/

Proof. Let @ be such that (W) C 00X U 17Y. Put X = {f €e W | ®/(0) = 0} and put
y {few] (IDf( ) =1}. By Lemma 1.5, X and Y are clopen in L W, and it is easily checked that
X>MX and y>My (hence W <y X x y) We have W >\ "X U1y by the reduction which
sends f to 0” f if ®/(0) = 0 and sends f to 17 f if ®/(0) = 1. O

Our coding relies on the following lemma similar to Lemma 5.1.

Lemma 5.2. IfW—M X x' Y where X has meet irreducible degree and Y>uW, then W = XU y
where X and y are disjoint and clopen in W, X= = X, and X Fm y

Proof. Asin Lemma 5.1, let ® be such that @(W) € 07 XU1™Y, put X = {few]|®/(0) = O} and
puty {f€W|<I>f( )=1}. Then W = /’\,’UJ/ xXny=90, Xandyareclopenan X >u i,
y>My and W= MX X y To see X >Mm X observe X >MW MX X y X has meet-irreducible
degree, so X >\ X or X >M y We cannot have X >M y because y >M Y and thls would imply

W=y X xV=yY>uW. Thus X >\ X. Similarly X Fu Y for otherwise W=y Y >u Y >y W.
O

Corollary 5.3. For any degree w € M there are at most countably many meet-irreducible degrees
that meet to w.

Proof. Fix a representative W for w. In Lemma 5.2 we showed that if x is meet-irreducible and
meets to w, then x has a representative {f € W | ®/(0) = 0} for some program ®. There are only
countably many programs, so there can be at most countably many such x. ]

Notice that Corollary 5.3 is in contrast to the Muchnik case, in which a degree may have un-
countably many meet-irreducibles that meet to it (see Lemma 4.9). Also notice that if w is closed
(compact) and x is meet-irreducible and meets to w, then Lemma 5.2 produces a closed (compact)
representative for x. Thus for a closed (compact) degree w, the meet-irreducible degrees that meet
to w are the same whether they are computed in 90t or in My (IMY).

Lemma 5.4. Let W be a mass problem whose degree has countably many minimal meet-irreducible
degrees meeting to it, and let (X; | i € w) be a list of representatives for these degrees. Then there
are mass problems (X; | i € w) such that:
(i) X; C W is clopen in W for each i,
(ii) X ﬂX =0 fori# 7,
(ili) X =m&; for each i,
(iv) X %MW X, for each i.

Proof. Inductively construct the sequence (X; | i € w). At the start of step n + 1 we have
<X |i<mn) satisfying (i)- (iv) for i,j < n, and we have indices eo, ..., e, such that, for i < n,
X, ={few- U]QX\(I%Z —O}andW UJ<Z ={few- UJ<1X|<P )=1}.
We first show W =y XO X +ee X X X (W Ul<n ) The meet is >y W because each term is a
subset of W. To see the reverse inequality, write the meet as Uign z“Xi U (n + 1) (W - Uz‘gn Z)
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Then apply the following reduction: For each ¢ < n in order, check if q)f (0) is 0 or 1. If it is O,
send f to " f. If it is 1, go to the next 4. If<1>f( 0) =1 for each i < n, then send f to (n+1) I
We now have X, 1 >y W= =X XX Xy, X (W U2<n X-). We cannot have X141 >\ X, for

any ¢ < n because ?/(\Z =M A&; and the A&;’s are incomparable by minimality. However, &}, has meet-
irreducible degree. Therefore A, 11 >p W — Ui<n X;. Moreover, by distributivity [Xn+1] meets to

[W Ul<n A] because [Xn+1] meets to [W] and [ TL-I-l] >M [W U1<n ]>M [W] Thus, as
in Lemma 5.2, there is an Xn+1 - W Ul<n/l’ clopen in W — UZ<nX and an en+1 Such that
Xn—s—l ={few- Uz<nX ‘ (I)en+1 =0}, W~ Uz<n+1 X, ={few- U7,<nX | (I)enﬂ =1},
Xn+1 =m Apt1, and Xn+1 2M W — Ul<n+1 X Clearly n+1 18 disjoint from X for 7 < n. Xn+1 is
X; which is clopen in W. Finally, X1 FuW— Xn+1
because /./t‘\n+1 has meet-irreducible degree, /i’\nﬂ ;éM /E for i < n, i’\nﬂ ?fMW — Uign 11 /'E-, and
W_)?TZ-I—IEM‘)?OX"'anX(W_Ui§n+1‘)?i)- O

clopen in W because it is clopen in W — Uign

The next lemma implies that every subset of w has a code. That is, if w is closed (compact) and
S C E(w) then there is a closed (compact) a such that F'(a) N E(w) = S.

Lemma 5.5. Let w € 9 and let W be a representative for w. Then for any S C E(W) there is
an A CW closed in W such that F([A]) N E(w) = S.

Proof. We only consider the case in which E(w) is infinite. By Corollary 5.3, E(w) is countable.
Let (X; | i € w) be a list of representatives for the degrees in E(w). Apply Lemma 5.4 to W
and (&; | i € w) to get a new set of representatives (&; | i € w) disjoint and clopen in W with

X, ;EMW X; for each i. Put A=W - U{X | X)) ¢ S} and note that A is closed in W. We
showX>MA1fandonly1f[ ]ES If [, Y] € S then X; CAandsz>MA If [X;] ¢ S then
ACW — X, and so A>yW — X;. Thus X; Fu A because X; FuW — X,. O

5.2. Finding a code for 91 in 9, and in 931211 The following lemma is the 91, analog to
Lemma 3.7 and Lemma 4.9:

Lemma 5.6. If W is an effectively discrete Turing antichain, then E(W)) = {{{f}] | f € W}.

Proof. First, let f € W and suppose B>y W has meet-irreducible degree. We claim B #v{f}
implies {f} 2m B. To see this, use the effectively discreteness of W to show W=y {f} x(W —
{f}). If B#m{f}, then it must be that B>y W — {f} because B has meet-irreducible degree and
B2u{f} XV = {f}). Hence {f} #y B because {1} 2uW — {f}.

Now, if f € W, it is clear that [{f}] is meet-irreducible and meets to [W]. To see that [{f}] is
minimal, suppose B is closed, has meet-irreducible degree, and W <y B <yi{f}. The contrapositive
of the claim tells us {f} <y B. Thus [{f}] is minimal, making [{f}] € E(]W)).

Conversely, suppose for a contradiction that B is closed and [B] € E([W]), but B Fm{f} for all
f € W. By the claim, we also have {f} #u B for all f € W. So if W=y B x C for some C, we must
have W >)1 C because no ¢ can send a member of W to a member of B. This contradicts that [B]
meets to [W]. So if b € E(WV]), we must have b >\[{f}] for some f € W. But [{f}] € E(WV)]),
hence b = [{f}] by minimality. O

We also need the compact version of Lemma 5.6 for 9t

Lemma 5.7. If W = {g} U{o;"fi | i € X} is a g-spine that is a Turing antichain, then E(]W)]) =
{{fi}] lie X}
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Proof. One can check W =y{f;} x(W—{0;" fi}) for each i € X. So if B>y W has meet-irreducible
degree and B #m{fi}, we have both B>y W — {o;" fi} and {f;} M B. The proof that [{f;}] €
E(]W)) is then the same as in Lemma 5.6.

Conversely, suppose for a contradiction that [B] € E([W]) but B Fwm{fi} for all i € X. Therefore
{fi} 2m B for all i« € X. Suppose then that W=y B x C for some C, and let ® be such that
®(W) C 0°BU1°C. We must have ®" /i € 1°C for each i € X because otherwise {f;} >\ B
for some i. We must also have ®9 € 17°C: If not, ®9(0) = 0 and there is some 7 C g such that
®7(0) = 0. Choose i € X with i > |7|. Then 7 C 0;, and we have the contradiction ®7¢"/i(0) = 0.
We must therefore have W >y C. This contradicts that [B] meets to [W]. So if b € E(W]), we
must have b >y [{f;}] for some i. But [{f;}] € E(]W]), hence b = [{f;}] by minimality. O

Notice the difference between Lemma 4.9 and Lemma 5.7. If A is a g-spine that is a Turing
antichain, then in MY’ ;| we have [{g}]w € E([Alw), but in MY we have [{g}] ¢ E([A]).

cl

Lemma 5.8. There is a code for No in M.

Proof. As in Lemma 4.12. Use Lemma 5.6 in place of Lemma 4.9. O
Lemma 5.9. Th(92) <; Th(My).
Proof. As in Lemma 4.13. O

Lemma 5.10. There is a code for My in MY}

Proof. Let g, Wy = {foi | i € w}, Wi = {f1: | i € w}, and Wy = {fa; | i € w} be such that
{g} UW UW; UW) C 2¢ is independent. Then let

e W, = spine(g, W), Wi = spine(g, Wy), W, = spine(g, Wa),

o M = spine(g, {fo; ® fri | i € w} U{foi® fai|i€w}),

o L = spine(g,{fo; ® f1, |1 <j}),

o P =spine(g, {foi ® f1; © for | i+ =k}),

o T =spine(g, {foi ® f1.; & for | i x j =k}).
The above mass problems are g-spines that are Turing antichains. Put wg = Wy, w1 = W],
wo = Wa], m = [M],1=[L], p=[P], t =[T]. The verification that these degrees satisfy
Definition 4.6 is the same as the verification that the corresponding degrees defined in Lemma 3.11

satisfy case (ii) of Definition 3.8. Use Lemma 5.7 in place of Lemma 3.7. O
Lemma 5.11. Th(9y) <; Th(MY}).

Proof. As in Lemma 4.13. O
Theorem 5.12. Th(My,1) =1 Th(MY ) =1 Th(Me1) =, Th(MY' ) =1 Th(Ny).

Proof. First Th(Mc), Th(MY), Th(My.a), Th(MY' ;) <1 Th(Nz) by Lemma 2.2. Next we have
Th(M2) <1 Th(My q1), Th(imgv{cl) by Lemma 4.13 and Lemma 4.17. Finally Th(92) <; Th("My),
Th(MY') by Lemma 5.9 and Lemma 5.11. O

01

6. A FIRST-ORDER SENTENCE DISTINGUISHING Mg AND MY FROM My o1 AND M

We have seen in Lemma 4.7 that 9y o and E)ﬁgvl’d are countably meet-complete. In contrast,
Dyment proved that in 991 there are countable collections of degrees which do not have greatest
lower bounds [3]. This result holds for 9t and MY as well.

Definition 6.1. In a lattice £, a set X C £ is called strongly meet-incomplete if for any finite
{yi|i<n}C X thereis an x € X such that x 2 y1 X y2 X -+ X yp.
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Lemma 6.2 (Dyment [3]; See also [22]). No countable strongly meet-incomplete X C 9 has a
greatest lower bound.

The proof of Lemma 6.2 works in 1., and it only requires a slight modification for imgll

We have shown that if wg is as in a code for 91 in any of Mg, 9)?211, My cls fmg,{d, then E(wyq)
is countable. This observation gives us the following theorem:

01

Theorem 6.3. Neither 9. nor 931211 is elementarily equivalent to either My o or imwvd.

Proof. Let ¢ be the first-order sentence that says “for all wo, if wp is as in a code for Ny, then
E(wp) has a greatest lower bound.” The sentence ¢ is true in both 9, o and mt?v{d because such

an E (wo) is countable and these lattices are countably meet-complete. On the other hand, ¢ fails
in both 9. and zmgll If wg is as in the code for 915 produced in either Lemma 5.8 or Lemma 5.10,

then E(wo) = {[{f}i | i € w} where {f; | i € w} is a Turing antichain. It is then easy to check
that E(wg) is strongly meet-incomplete and hence has no greatest lower bound. O
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