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Abstract. Let Es denote the lattice of Medvedev degrees of non-empty Π0
1 subsets of 2ω, and

let Ew denote the lattice of Muchnik degrees of non-empty Π0
1 subsets of 2ω. We prove that the

first-order theory of Es as a partial order is recursively isomorphic to the first-order theory of true
arithmetic. Our coding of arithmetic in Es also shows that the Σ0

3-theory of Es as a lattice and the
Σ0

4-theory of Es as a partial order are undecidable. Moreover, we show that the degree of Es as a
lattice is 0′′′ in the sense that 0′′′ computes a presentation of Es and that every presentation of Es
computes 0′′′. Finally, we show that the Σ0

3-theory of Ew as a lattice and the Σ0
4-theory of Ew as a

partial order are undecidable.

1. Introduction

1.1. Mass problems and reducibilities. A mass problem is a set X ⊆ ωω thought of as an ab-
stract mathematical problem, namely the problem of finding a member of X. Medvedev introduced
his notion of reducibility among the mass problems as a formalization of Kolmogorov’s idea of a
“calculus of problems” [24]. For sets X,Y ⊆ ωω, X ≤s Y (read X Medvedev reduces or strongly
reduces to Y ) if and only if there is a Turing functional Φ such that (∀g ∈ Y )(Φ(g) ∈ X). Under
the interpretation of subsets of ωω as mathematical problems, X ≤s Y means that problem Y is
at least as hard as problem X in a strongly intuitionistic sense: solutions to Y can be converted to
solutions to X by a uniform effective procedure.

Medvedev reducibility induces a degree structure on P(ωω) in the same way that Turing re-
ducibility induces a degree structure on ωω. For sets X,Y ⊆ ωω, X ≡s Y (read X is Medvedev
equivalent or strongly equivalent to Y ) if and only if X ≤s Y and Y ≤s X. Ds denotes the Medvedev
degrees, that is, the set of all ≡s-equivalence classes degs(X) for X ⊆ ωω. The preordering ≤s of
P(ωω) induces a partial ordering of Ds, also named ≤s. Muchnik introduced a non-uniform variant
of Medvedev reducibility [26]. For sets X,Y ⊆ ωω, X ≤w Y (read X Muchnik reduces or weakly
reduces to Y ) if and only if (∀g ∈ Y )(∃f ∈ X)(f ≤T g). Muchnik equivalence (or weak equivalence)
≡w and the Muchnik degrees Dw are defined analogously to ≡s and Ds but with ≤w in place of ≤s.
Ds and Dw extend the Turing degrees DT. The natural maps degT(f) 7→ degs({f}) and

degT(f) 7→ degw({f}) are upper-semilattice embeddings of DT into Ds and Dw respectively. More-
over, the range of each of these embeddings is definable in the corresponding structure. This fact
is due to Dyment for Ds ([12] Corollary 2.1), and the proof for Dw is simpler (see also [41] Theo-
rem 2.2). Ds and Dw enjoy a much richer algebraic structure than DT does. Most importantly, Ds

and Dw are both distributive lattices. In fact, Ds is a Brouwer algebra, and Dw is both a Brouwer
algebra and a Heyting algebra. Heyting and Brouwer algebras provide semantics for propositional
logic, and the interpretation of Ds and Dw as semantics for propositional logic was an original
motivation for their study. This interpretation continues to drive much of the research in this area.
Sorbi’s survey [41] is a good introduction to Ds and Dw.

A classic problem in computability theory is to determine the complexity of the first-order theory
of a given degree structure, such as DT, Ds, or Dw. The benchmarks are theories of arithmetic,
the comparisons are made via recursive isomorphisms, and the results typically express that the
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first-order theories of the degree structures are as complicated as possible. The original result of
this sort, due to Simpson, is that the first-order theory of DT is recursively isomorphic to the
second-order theory of true arithmetic [35]. Lewis, Nies, and Sorbi and independently the author
have determined that the first-order theories of Ds and Dw are both recursively isomorphic to the
third-order theory of true arithmetic [21, 32].

1.2. Substructures of Ds and Dw. Various substructures arise in the study of degree structures,
and the complexities of their first-order theories naturally come into question. In the Turing
degrees, two popular substructures are DT(≤T 0′), the Turing degrees below 0′, and R, the Turing
degrees of r.e. sets. Both DT(≤T 0′) and R have first-order theories that are recursively isomorphic
to the first-order theory of true arithmetic. The DT(≤T 0′) case is due to Shore [33]. The R
case is due to unpublished work of Harrington and Slaman (see also [27]). For degree structures
on the mass problems, substructures naturally arise by restricting the family of mass problems
under consideration to natural topological classes. For instance, restricting to the degrees of closed
subsets of ωω yields Ds,cl, the closed Medvedev degrees, and Dw,cl, the closed Muchnik degrees.
Restricting to the degrees of compact subsets of ωω (or equivalently restricting to closed subsets
of 2ω) yields D01

s,cl, the compact Medvedev degrees, and D01
w,cl, the compact Muchnik degrees. Ds,cl

and D01
s,cl are sublattices of Ds, and Dw,cl and D01

w,cl are sublattices of Dw. These sublattices have

received attention in for example [3, 22, 31, 32, 41]. The author has determined that the four
structures Ds,cl, D01

s,cl, Dw,cl, and D01
w,cl all have first-order theories that are recursively isomorphic

to the second-order theory of true arithmetic [32].
In this paper, we consider Es, the sublattice of Ds consisting of the Medvedev degrees of non-

empty Π0
1 subsets of 2ω. We also consider Ew, the sublattice of Dw consisting of the Muchnik

degrees of non-empty Π0
1 subsets of 2ω, though to a much lesser extent. Es and its sister-structure

Ew are the effective counterparts of D01
s,cl and D01

w,cl. They have enjoyed considerable attention from
many authors, beginning with Simpson’s suggestion to the Foundations of Mathematics discussion
group that Ew is analogous to R but with more natural examples [36]. This analogy with R drives
much of the research on Es and Ew. For example, every non-minimum member of Es and Ew is join-
reducible [4], reflecting Sacks’s splitting theorem for R [28], and Es is dense [7], reflecting Sacks’s
density theorem for R [30]. The question of whether Ew is dense remains open. See the recent
surveys by Simpson [39] and Hinman [14] for an overview of Es and Ew.

1.3. Undecidability in Es and Ew. Our main result is that the first-order theory of Es is recur-
sively isomorphic to the first-order theory of true arithmetic. This result holds in both the language
of lattices and in the language of partial orders because, in any lattice, the lattice operations are
arithmetically definable from the partial order. In light of the analogies between Es and R, our
main result can be seen as a companion to the result that the first-order theory of R is recursively
isomorphic to the first-order theory of true arithmetic. We are able to prove that the first-order
theory of Ew is undecidable, but, beyond that result, the question of the exact complexity of the
first-order theory of Ew remains wide open. Cole and Simpson conjecture that the first-order theory
of Ew is recursively isomorphic to O(ω) (the ωth Turing jump of Kleene’s O), the obvious upper
bound [11].

We also consider the decidability of fragments of the first-order theories of Es and Ew. Here we
need to be careful to specify whether we are working in the language of lattices or in the language
of partial orders. Binns has shown that the Σ0

1-theories of Es and Ew as lattices are identical
and decidable [4]. Cole and Kihara have shown that the Σ0

2-theory of Es as a partial order is
decidable [10]. The corresponding result for Ew is not known. The decidability of the Σ0

2-theories
of Es and Ew as a lattices and the Σ0

3-theories of Es and Ew as partial orders are not known. Our
method of coding arithmetic in distributive lattices proves that the Σ0

3-theories of Es and Ew as
lattices and the Σ0

4-theories of Es and Ew as a partial orders are all undecidable.
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There has been a huge amount of difficult work on the decidability of various fragments of the
first-order theories of DT and R. We summarize the results for R for comparison (see [34] for a
survey of this area). The Σ0

1-theory of R as an upper-semilattice is decidable [29]. The decidability
of the Σ0

2-theory of R as either a partial order or an upper semi-lattice is unknown. However,
the Σ0

3-theory of R as a partial order is undecidable [19]. Moreover, if one extends the partial
infimum function on R (as an upper-semilattice) to any total function, then the Σ0

2-theory of the
resulting structure is undecidable [25]. These two undecidability results for R suggest by analogy
that the Σ0

2-theories of Es and Ew as lattices and the Σ0
3-theories of Es and Ew as partial orders may

all be undecidable. The following table summarizes the current state of knowledge concerning the
decidability of various fragments of the first-order theories of R, Es, and Ew.

Σ0
1 Σ0

2 Σ0
3 Σ0

4

R as a partial order decidable ? undecidable undecidable
R as an upper-semilattice decidable ? undecidable undecidable
Es as a partial order decidable decidable ? undecidable
Es as a lattice decidable ? undecidable undecidable
Ew as a partial order decidable ? ? undecidable
Ew as a lattice decidable ? undecidable undecidable

We also prove that Es is as complicated as possible in terms of degree of presentation. Specifically,
we prove that the degree of Es as a lattice is 0′′′. This means that 0′′′ computes a presentation of
Es as a lattice and that 0′′′ is computable in every presentation of Es as a lattice. A corollary is
that Es has no recursive presentation as a partial order. The natural presentation of Ew has Turing
degree O [11], so it is reasonable to expect that Ew has degree O, though this question remains
open. For comparison, it follows from the results of [27] (though it is not stated explicitly) that

the degree of R as an upper-semilattice is 0(4).
This paper is organized as follows. Section 2 provides the necessary background material. Sec-

tion 3 presents our scheme for coding arithmetic in distributive lattices. Section 4 presents the
theory of meet-irreducibles in Es necessary to implement our coding in Es. Section 5 implements
our coding in Es, thereby proving our results concerning the complexity of the first-order theory of
Es. Section 6 proves that the degree of Es as a lattice is 0′′′. Section 7 proves our undecidability
results concerning the first-order theory of Ew.

2. Background

Here we present the relevant background concerning classical computability theory, distributive
lattices, Π0

1 classes and their Medvedev and Muchnik degrees, and arithmetic. Much of the notation
should be familiar from the standard sources, such as [20] and [40]. Unfortunately, notation for
the Medvedev degrees is far from standardized. We follow [39] in the hope that its notation will
become standard.

2.1. Computability theory. Let n ∈ ω, σ, τ ∈ ω<ω, f, g ∈ ωω, and X,Y ⊆ ωω. Then

• f � n is the initial segment of f of length n,
• |σ| is the length of σ,
• σ ⊆ τ means that σ is an initial segment of τ ,
• σ ⊂ f means that σ is an initial segment of f ,
• σaf is the concatenation of σ and f :

(σaf)(n) =

{
σ(n) if n < |σ|
f(n− |σ|) if n ≥ |σ|,

with naf abbreviating (n)af for sequences (n) of length 1,
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• f ⊕ g is the function defined by

(f ⊕ g)(n) =

{
f(m) if n = 2m

g(m) if n = 2m+ 1,

• σaX = {σaf | f ∈ X}, and
• X ⊗ Y = {f ⊕ g | f ∈ X ∧ g ∈ Y }.

The function 〈·, ·〉 : ω×ω → ω is a fixed recursive bijection. Φe denotes the eth Turing functional.
Φ always denotes a Turing functional, and if f ∈ ωω, then Φ(f) is the partial function computed
when Φ uses f as its oracle. For σ ∈ ω<ω, Φ(σ) is the partial function that, on input n ∈ ω, is
computed by running Φ on input n for at most |σ| steps and using σ to answer oracle queries. The
restriction on the running time of Φ(σ) ensures that oracle queries are only made of numbers < |σ|.
Consequently, if Φ(σ)(n)↓, then Φ(f)(n) = Φ(σ)(n) for all f ⊃ σ.

Let A,B ⊆ ω. A ≤1 B if and only if there is a one-to-one recursive function f such that
∀n(n ∈ A↔ f(n) ∈ B). A and B are recursively isomorphic if and only if there is such an f that
is a bijection. The Myhill isomorphism theorem states that A and B are recursively isomorphic if
and only if A ≡1 B, that is, if and only if A ≤1 B and B ≤1 A (see [40] Section I.5).

2.2. Distributive lattices. The usual options for lattice notation conflict with either the logical
notation (∨ and ∧) or the arithmetic notation (+ and ×). To avoid this conflict, we follow [39] and
write sup for join and inf for meet.

A lattice L is distributive if and only if sup and inf distribute over each other:

• (∀x, y, z ∈ L)(sup(x, inf(y, z)) = inf(sup(x, y), sup(x, z)), and
• (∀x, y, z ∈ L)(inf(x, sup(y, z)) = sup(inf(x, y), inf(x, z)).

An element x of a lattice L is meet-reducible if and only if (∃y, z ∈ L)((y > x) ∧ (z > x) ∧
(x = inf(y, z))). Otherwise x is meet-irreducible. We frequently use the following well-known
characterization without mention:

Lemma 2.1 (see [2] Section III.2). If L is a distributive lattice, then x ∈ L is meet-irreducible if
and only if (∀y, z ∈ L)(x ≥ inf(y, z)→ x ≥ y ∨ x ≥ z).

Proof. Suppose x is meet-irreducible and x ≥ inf(y, z). Then

x = sup(x, inf(y, z)) = inf(sup(x, y), sup(x, z)).

Thus x = sup(x, y) or x = sup(x, z), which means x ≥ y or x ≥ z. Conversely, if x is meet-reducible,
then by definition there are y, z > x with x = inf(y, z). �

Dualizing gives the definitions of join-reducible and join-irreducible, and it gives a characteriza-
tion of join-irreducible in distributive lattices.

Sometimes we want to ignore the lattice operations of a lattice L and consider L as a partial
order. When we do, we write (L;≤L) to indicate that we are considering only the partial order
structure on L. In particular, Th(L) denotes the first-order theory of L as a lattice, and Th(L;≤L)
denotes the first-order theory of L as a partial order.

2.3. Π0
1 classes and their Medvedev and Muchnik degrees. The Π0

1 classes are the Π0
1

subsets of ωω, where a set X ⊆ ωω is Π0
1 if and only if it is of the form X = {f ∈ ωω | ∀nϕ(f, n)}

for some recursive predicate ϕ. The Π0
1 classes have been persistent objects of study throughout

computability theory, due in no small part to their applications to recursive mathematics and
reverse mathematics. The surveys by Cenzer [6] and by Cenzer and Remmel [8] provide an extensive
overview of the theory of the Π0

1 classes, as does the forthcoming book by Cenzer and Remmel [9].
A useful characterization of the Π0

1 classes is as the sets of paths through recursive trees. A tree
is a set T ⊆ ω<ω closed under initial segments: (∀σ, τ ∈ ω<ω)(σ ∈ T ∧ τ ⊆ σ → τ ∈ T ). A function
f ∈ ωω is a path through T if and only if (∀n ∈ ω)(f � n ∈ T ). If T is a tree, then [T ] denotes the



CODING TRUE ARITHMETIC IN THE MEDVEDEV DEGREES OF Π0
1 CLASSES 5

set of all paths through T . A set X ⊆ ωω is a Π0
1 class if and only if X = [T ] for some recursive

tree T (see [8] Lemma 2.2). Recall the usual product topology on ωω. Basic open sets are of the
form I(σ) = {f ∈ ωω | σ ⊂ f} for σ ∈ ω<ω. A set X ⊆ ωω is closed in this topology if and only if
X = [T ] for some (not necessarily recursive) tree T . For this reason, the Π0

1 classes are sometimes
called the effectively closed sets.

For sets X,Y ⊆ ωω, X ≤s Y if and only if there is a Turing functional Φ such that (∀g ∈
Y )(Φ(g) ∈ X), a condition which we abbreviate by Φ(Y ) ⊆ X. Similarly, X ≤w Y if and only
if (∀g ∈ Y )(∃f ∈ X)(f ≤T g). We consider ≤s and ≤w restricted to non-empty Π0

1 subsets of
2ω. Henceforth the term “Π0

1 class” refers exclusively to non-empty Π0
1 subsets of 2ω, and all trees

are subsets of 2<ω. Every Π0
1 class is a closed subset of the compact space 2ω and is therefore

compact. The compactness of the Π0
1 classes is crucial to many of our arguments. As a first

example, compactness allows us to express ≤s arithmetically.

Lemma 2.2. [T0] ≤s [T1] is Σ0
3 relative to the trees T0 and T1.

Proof. For a given Turing functional Φ, we show that

Φ([T1]) ⊆ [T0] if and only if (∀n ∈ ω)(∃s ∈ ω)(∀σ ∈ 2s)(σ ∈ T1 → Φ(σ) � n ∈ T0),

where Φ(σ) � n ∈ T0 includes the provision that (∀i < n)(Φ(σ)(i)↓). It then follows that

[T0] ≤s [T1] if and only if (∃e ∈ ω)(∀n ∈ ω)(∃s ∈ ω)(∀σ ∈ 2s)(σ ∈ T1 → Φe(σ) � n ∈ T0),

which gives our Σ0
3 definition of ≤s.

For the forward direction, let n ∈ ω be given. Let Σ = {σ ∈ 2<ω | Φ(σ) � n ∈ T0}. The condition
Φ([T1]) ⊆ [T0] implies that [T1] ⊆

⋃
σ∈Σ I(σ). By compactness, there is a finite Σ0 ⊆ Σ such that

[T1] ⊆
⋃
σ∈Σ0

I(σ) and an s ∈ ω such that (∀σ ∈ 2s)(σ ∈ T1 → (∃σ0 ∈ Σ0)(σ0 ⊆ σ)). Then
(∀σ ∈ 2s)(σ ∈ T1 → Φ(σ) � n ∈ T0).

For the reverse direction, consider f ∈ [T1]. Given any n ∈ ω, let s ∈ ω be such that (∀σ ∈
2s)(σ ∈ T1 → Φ(σ) � n ∈ T0). Then Φ(f � s) � n ∈ T0, so Φ(f) � n ∈ T0. Thus ∀n(Φ(f) � n ∈ T0).
Hence Φ(f) ∈ [T0], and therefore Φ([T1]) ⊆ [T0]. �

Let Es = {degs(X) | X is a Π0
1 class}. Es is partially ordered by ≤s. If X and Y are both Π0

1

classes, then so are X ⊗ Y and 0aX ∪ 1aY . Given trees T0 and T1, let T0 ⊗ T1 = {σ ⊕ τ | σ ∈
T0 ∧ τ ∈ T1 ∧ |τ | ≤ |σ| ≤ |τ | + 1}. Then T0 ⊗ T1 and 0aT0 ∪ 1aT1 are both trees, [T0] ⊗ [T1] =
[T0 ⊗ T1], and 0a[T0] ∪ 1a[T1] = [0aT0 ∪ 1aT1]. Define sup(degs(X), degs(Y )) = degs(X ⊗ Y ) and
inf(degs(X), degs(Y )) = degs(0

aX ∪ 1aY ). One readily checks that sup(degs(X),degs(Y )) and
inf(degs(X), degs(Y )) are, respectively, the ≤s-least upper bound and ≤s-greatest lower bound of
degs(X) and degs(Y ) and that sup and inf distribute over each other. Thus Es is a distributive
lattice. Es has a least element 0s = degs(2

ω), and a Π0
1 class has least degree if and only if it has a

recursive member. Es also has a greatest element 1s (see [37] Lemma 3.20). Two examples of Π0
1

classes with greatest degree are DNR2 = {f ∈ 2ω | ∀e(f(e) 6= Φe(e))} (DNR stands for diagonally
non-recursive) and the class of all (appropriately Gödel numbered) complete consistent extensions
of Peano arithmetic.

Let Ew = {degw(X) | X is a Π0
1 class}. Ew is a distributive lattice with order ≤w and with joins

and meets computed as in Es. Notice, however, that 0aX ∪ 1aY ≡w X ∪Y , which is not in general
true with ≡s in place of ≡w. Ew has a least element 0w, a greatest element 1w, and the above
examples of Π0

1 classes with least or greatest Medvedev degree also have least or greatest Muchnik
degree. However, it is not the case that every Π0

1 class with greatest Muchnik degree also has
greatest Medvedev degree.

A sequence of trees {Tn}n∈ω is uniformly recursive if and only if the set {〈n, σ〉 | σ ∈ Tn} is
recursive. A recursive sequence of Π0

1 classes is a sequence of Π0
1 classes {Xn}n∈ω for which there

is a uniformly recursive sequence of trees {Tn}n∈ω such that Xn = [Tn] for each n ∈ ω. For
convenience, we also allow indexing over recursive sets A and consider recursive sequences of Π0

1
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classes of the form {Xn}n∈A. Though not strictly necessary for our results, a convenient fact is
that there is a recursive sequence all Π0

1 classes (with many repetitions).

Lemma 2.3 (see [9] Chapter XV and [8] Section 2.7). There is a uniformly recursive sequence of
infinite trees {Te}e∈ω such that for every Π0

1 class X there is an e ∈ ω such that X = [Te].

Proof. In fact, [8] Lemma 2.2 proves that every Π0
1 class is of the form [T ] for a primitive recursive

tree. Let {Pe}e∈ω be a recursive sequence of all primitive recursive functions. Then define T ′e to be
the tree T ′e = {σ ∈ 2<ω | (∀τ ⊆ σ)(Pe(τ) = 1)}. If Pe is the characteristic function of a tree, then
T ′e is that tree. Thus if X is a Π0

1 class, then X = [T ′e] for some e ∈ ω. We just need to make a
final adjustment to ensure that every tree in the sequence is infinite. To this end, let

Te = {σ ∈ 2<ω | σ ∈ T ′e ∨ (∀m ≤ |σ|)(σ � m /∈ T ′e → (∀τ ∈ 2m)(τ /∈ T ′e))}.
If T ′e is infinite, then Te = T ′e. Otherwise, Te consists of T ′e along with all strings that extend a

string in T ′e of maximum length.
�

2.4. Arithmetic. In Section 3, we code structures that model PA− (Peano arithmetic without
induction) in distributive lattices. For reference, we present the axioms of PA− as they appear
in [18].

Definition 2.4 (see [18] Section 2.1). PA− is the theory axiomatized by the following sentences.

(i) ∀x, y, z((x+ y) + z = x+ (y + z))
(ii) ∀x, y(x+ y = y + x)

(iii) ∀x, y, z((x× y)× z = x× (y × z))
(iv) ∀x, y(x× y = y × x)
(v) ∀x, y, z(x× (y + z) = (x× y) + (x× z))

(vi) ∀x(x+ 0 = x ∧ x× 0 = 0)
(vii) ∀x(x× 1 = x)

(viii) ∀x, y, z(x < y ∧ y < z → x < z)
(ix) ∀x¬(x < x)
(x) ∀x, y(x < y ∨ x = y ∨ y < x)
(xi) ∀x, y, z(x < y → x+ z < y + z)
(xii) ∀x, y, z(0 < z ∧ x < y → x× z < y × z)

(xiii) ∀x, y(x < y → ∃z(x+ z = y))
(xiv) 0 < 1 ∧ ∀x(0 < x→ x = 1 ∨ 1 < x)
(xv) ∀x(x = 0 ∨ 0 < x)

To reduce the quantifier complexity of axiom (xiii) for when we analyze the fragments of Th(Es),
we introduce the monus symbol “´” and Skolemize. We call the resulting theory PA´.

Definition 2.5. PA´ is the theory whose axioms are the same as PA− but with axiom (xiii)
replaced by the axiom ∀x, y(x < y → x+ (y ´ x) = y).

The standard relational model of arithmetic is the structure N = (ω;<,+,×, 0, 1), where < is a
2-ary relation on ω, + and × are 3-ary relations on ω, and 0 and 1 are constants in ω interpreted
as the usual less-than, plus, times, zero, and one respectively. Th(N ) denotes the first-order theory
of N . We use the relational versions of + and × instead of the usual functional versions because
our coding techniques most naturally code relations. Any formula in which + and × are relation
symbols can be trivially translated into an equivalent formula in which + and × are function
symbols. Translations in the other direction require unnesting. In general, a formula is said to be
unnested if and only if every atomic subformula is of the form x = y, c = y, f(x1, . . . , xn) = y, or
R(x1, . . . , xn), where x, y, and the xi for i ≤ n are variables, c is a constant symbol, f is a function
symbol, and R is a relation symbol. Every formula can be recursively translated into an equivalent



CODING TRUE ARITHMETIC IN THE MEDVEDEV DEGREES OF Π0
1 CLASSES 7

unnested formula (see [15] section 2.6). When unnesting is applied to a first-order formula in the
functional language of arithmetic, we get an equivalent formula in which every atomic subformula
is of the form x = y, 0 = y, 1 = y, x < y, x + y = z, or x × y = z. That is, we get an equivalent
formula in the relational language of arithmetic. Therefore the relational and functional versions
of Th(N ) are recursively isomorphic.

We also make use of the structure N´ = (ω;<,+,×,´, 0, 1), where <, +, ×, 0, and 1 are as for
N , and ´ is the 3-ary relation on ω corresponding to the function

x´ y =

{
x− y if x ≥ y
0 if x < y.

Clearly, N |= PA−, N´ |= PA´, and PA´ ` PA−.
Let M |= PA−. An initial segment of M is a <-downward-closed substructure M′ of M:

(∀x ∈ M′)(∀y ∈ M)((M |= y < x)→ (y ∈ M′)). An initial interval of M is a subset of M of the
form {y ∈ M | M |= y < x ∨ y = x} for some x ∈ M. The following fact ensures that our coding
in the next section correctly codes structures isomorphic to N .

Lemma 2.6 (see [18] Theorem 2.2). If M |= PA−, then there is an initial segment of M that is
isomorphic to N . In particular, N is the unique model of PA−, up to isomorphism, in which every
initial interval is finite.

For the undecidability of Σ0
3-Th(Es), we also need the following fact.

Lemma 2.7 (see [18] Corollary 2.9). If ϕ is a Σ0
1 sentence and N |= ϕ, then PA− ` ϕ.

3. Coding arithmetic in distributive lattices

We present our scheme for coding arithmetic in distributive lattices. Although the definitions
below make sense in any lattice, they were designed with the particular goal of coding N into Ds,
Dw, and their sublattices in mind. For example, meet-irreducible elements play a major role in the
coding. One may dualize the coding to replace meet-irreducible by join-irreducible, but this would
not suffice for our purposes because all non-zero elements of Es are join-reducible [4]. The coding
presented here has been slightly modified from the original version developed in [32] in order to
reduce the quantifier complexity of coded relations.

3.1. Coding relations.

Definition 3.1. For elements s and w of a lattice, s meets to w if and only if ∃y(y > w∧ inf(s, y) =
w).

Definition 3.2. For a lattice L and a w ∈ L,

E(w) = {s ∈ L | s is meet-irreducible ∧ s meets to w}.

The next two lemmas prove important properties of E in distributive lattices.

Lemma 3.3. If L is a distributive lattice, then E(w) is an antichain for every w ∈ L.

Proof. Suppose for a contradiction that there are s, s′ ∈ E(w) with s > s′. Let y > w be such that
inf(s, y) = w. Then s′ ≥ y because s′ is meet-irreducible, s′ ≥ inf(s, y), and s′ � s. Therefore
s > s′ ≥ y > w, giving the contradiction inf(s, y) = y > w. �

Lemma 3.4. If L is a distributive lattice and {si}i<n ⊆ L is a finite antichain of meet-irreducible
elements, then E(infi<n si) = {si}i<n.
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Proof. Let w = infi<n si. First we show that si ∈ E(w) for each i < n. Fix i < n and let
ti = inf{sj | j < n∧ j 6= i}. Clearly ti ≥ w and inf(si, ti) = w. Moreover, si � ti because otherwise
the meet-irreducibility of si implies that si ≥ sj for some j 6= i, contradicting that {si}i<n is an
antichain. Thus in fact ti > w, so ti witnesses that si meets to w. Hence si ∈ E(w). Conversely, if
x ∈ E(w), then x is meet-irreducible and x ≥ w. Thus x ≥ si for some i < n, so x = si because
E(w) is an antichain by Lemma 3.3. Thus E(w) = {si}i<n. �

Given an element w of a lattice, we think of w as code for the set E(w). The symbol “E” stands
for “elements,” as in the elements of the set coded by w.1

Now we code 2-ary and 3-ary relations on E(w0) for an element w0 of a lattice L. The same
scheme can code n-ary relations for any n ∈ ω, but we only need to code 2-ary and 3-ary relations
to code N . The intuition behind the following definition is that if s0, u0 ∈ E(w0), then sup(s0, u0)
should code the pair (s0, u0). However, this coding makes the pairs (s0, u0) and (u0, s0) indistin-
guishable because sup(s0, u0) = sup(u0, s0). To solve this problem, we fix additional parameters
w1, w2,m ∈ L. Once w0, w1, w2,m ∈ L are fixed, any c ∈ L can be interpreted as coding a 2-ary
relation R2

c on E(w0) and a 3-ary relation R3
c on E(w0).

Definition 3.5. Let L be a lattice and fix elements w0, w1, w2,m ∈ L. Then any c ∈ L defines a
2-ary relation R2

c on E(w0) and a 3-ary relation R3
c on E(w0) by

R2
c(s0, u0) if and only if s0 ∈ E(w0) ∧ u0 ∈ E(w0)

∧ ∃u1(u1 meets to w1 ∧ sup(u0, u1) ≥ m ∧ sup(s0, u1) ≥ c)
R3
c(s0, u0, v0) if and only if s0 ∈ E(w0) ∧ u0 ∈ E(w0) ∧ v0 ∈ E(w0)

∧ ∃u1∃v2(u1 meets to w1 ∧ v2 meets to w2

∧ sup(u0, u1) ≥ m ∧ sup(v0, v2) ≥ m ∧ sup(s0, u1, v2) ≥ c).

3.2. Coding arithmetic. With Definition 3.5 in hand, we can define codes for models of various
theories. For PA− we have the following definitions.

Definition 3.6. In a lattice L, a code (for a structure in the language of arithmetic) is a sequence
of elements

~w = (w0, w1, w2,m, `, p, t, z, o)

from L interpreted as coding the structure

M~w = (E(w0);R2
` , R

3
p, R

3
t , z, o)

where R2
` , R

3
p, and R3

t are the relations on E(w0) defined from `, p, and t, respectively, as in
Definition 3.5.

In Definition 3.6, w is for “ω,” m is for “match,” ` is for “less,” p is for “plus,” t is for “times,”
z is for “zero,” and o is for “one.”

If ~w is a code in a lattice L, then sentences in the language of arithmetic are interpreted in M~w

in the obvious way.

Definition 3.7. Let ϕ be a sentence in the language of arithmetic. The translation of ϕ is the
formula ϕ′(w0, w1, w2,m, `, p, t, z, o) (with the displayed variables free) in the language of lattices
obtained from ϕ by making the following replacements.

• Replace < by the formula defining R2
` ,

• replace + by the formula defining R3
p,

• replace × by the formula defining R3
t ,

1In [32], E(w) was called Ẽ(w) (see [32] Definition 4.4) and its definition required that the s ∈ Ẽ(w) also be minimal
with respect being meet-irreducible and meeting to w. The minimality requirement is unnecessary by Lemma 3.3.
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• replace 0 by z,
• replace 1 by o,
• replace ∃x by the formula expressing ∃x ∈ E(w0), and
• replace ∀x by the formula expressing ∀x ∈ E(w0).

If ~w is a code in a lattice L, then M~w |= ϕ means that L |= ϕ′(~w).

Definition 3.8. In a lattice L, a code for a model of PA− is a code ~w such that M~w |= PA−.

If ϕ is a first-order sentence in the language of arithmetic, then its translation ϕ′ is a first-order
formula in the language of lattices. Thus for such a sentence ϕ, the property “~w is a code such that
M~w |= ϕ” is first-order. The property “~w is a code for a model of PA−” is therefore expressible by
a first-order formula in the language of lattices.

To code N , we add extra conditions to Definition 3.8 ensuring that the coded structure is
isomorphic to N . Ultimately, these extra conditions express that every initial interval of the coded
structure is finite, which suffices by Lemma 2.6. The following definitions allows us to compare the
cardinalities of initial intervals of coded models of PA−.

Definition 3.9. Let L be a lattice and let ~w be a code for a model of PA−. An a ∈ L codes an
initial interval of M~w if and only if (∃s ∈ E(w0))(∀b ∈ L)(b ∈ E(a)↔ R2

` (b, s) ∨ b = s).

Definition 3.10. For a lattice L and elements r, q ∈ L, E(r) matches E(q) if and only if there is
a z ∈ L such that

(i) (∀x ∈ E(q))(∃!y ∈ E(r))(sup(x, y) ∈ E(z)), and
(ii) (∀x ∈ E(r))(∃!y ∈ E(q))(sup(x, y) ∈ E(z)).

Clearly if E(r) matches E(q), then |E(r)| = |E(q)|. The next definition enforces a weak converse
of this fact.

Definition 3.11. A lattice L has the finite matching property if and only if whenever q, q′ ∈ L are
such that |E(q)| = |E(q′)| = n for some n ∈ ω then there is an r ∈ L such that E(r) matches both
E(q) and E(q′).

We can now define a code for N in a lattice L and prove that codes for N always code structures
isomorphic to N provided that L is distributive, that L has the finite matching property, and that
some code in L codes a structure isomorphic to N . It follows that Th(N ) ≤1 Th(L).

Definition 3.12. In a lattice L, a code for N is a code ~w such that

(i) ~w is a code for a model of PA−,
(ii) (∀s ∈ E(w0))(∃a ∈ L)(∀b ∈ L)(b ∈ E(a) ↔ R2

` (b, s) ∨ b = s) (that is, every initial interval
of M~w is coded by some a ∈ L), and

(iii) For every a ∈ L that codes an initial interval ofM~w and every code ~w′ that satisfies items (i)
and (ii) above, there is an a′ ∈ L that codes an initial interval of M~w′ and an r ∈ L such
that E(r) matches both E(a) and E(a′).

Again, the property “~w is a code for N” can be expressed by a first-order formula in the language
of lattices.

Lemma 3.13. Let L be a distributive lattice with the finite matching property, and let ~w be a code
such that M~w

∼= N . Then ~w is a code for N and, moreover, M~w′ ∼= N for every ~w′ that is a code
for N in L.

Proof. First let ~w be as in the statement of the lemma and show that ~w satisfies Definition 3.12.
Item (i) is satisfied by the assumption M~w

∼= N . For item (ii), let s ∈ E(w0) and notice that
{b | R2

` (b, s) ∨ b = s} is finite because it is an initial interval of a structure isomorphic to N and
that it is an antichain because it is a subset of E(w0) which is an antichain by Lemma 3.3. Thus
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a = inf{b | R2
` (b, s) ∨ b = s} witnesses item (ii) for s because E(a) = {b | R2

` (b, s) ∨ b = s}
by Lemma 3.4. For item (iii), let a ∈ L code an initial interval of M~w and let ~w′ be a code
satisfying items (i) and (ii) of Definition 3.12. |E(a)| = n for some n ∈ ω because E(a) is an initial
interval of a structure isomorphic to N . M~w′ |= PA−, so by Lemma 2.6 there is an initial interval
of M~w′ of cardinality n and, by item (ii), there is an a′ ∈ L coding this initial interval. Thus
|E(a)| = |E(a′)| = n, so by the finite matching property there is an r ∈ L such that E(r) matches
both E(a) and E(a′). Thus ~w is indeed a code for N .

Now suppose that ~w′ is a code for N in L. We show thatM~w′ ∼= N . By Definition 3.12 item (i),
M~w′ |= PA−. So by Lemma 2.6, it suffices to show that every initial intervalM~w′ is finite. Thus let
s′ ∈ E(w′0), let {b′ | R2

`′(b
′, s′)∨b′ = s′} be the corresponding initial interval, and, by Definition 3.12

item (ii), let a′ ∈ L code this initial interval. By Definition 3.12 item (iii) there is an a ∈ L coding
an initial interval of M~w

∼= N such that |E(a)| = |E(a′)|. E(a) is finite, hence the initial interval
{b′ | R2

`′(b
′, s′) ∨ b′ = s′} is finite. �

Lemma 3.14. Let L be a distributive lattice with the finite matching property such that there exists
a code ~w such that M~w

∼= N . Then Th(N ) ≤1 Th(L;≤L).

Proof. Let ϕ be a sentence in the language of arithmetic. Let θ be the sentence

θ = ∃~w(~w is a code for N ∧M~w |= ϕ)

in the language of lattices. By Lemma 3.13, there are codes for N in L and every code for
N in L codes a structure isomorphic to N . Thus N |= ϕ if and only if L |= θ. This proves
Th(N ) ≤1 Th(L). We always have Th(L) ≤1 Th(L;≤L) because the lattice operations sup and inf
are first-order definable from the partial order. �

3.3. Counting quantifiers. An analysis of the quantifier complexity of our coding scheme shows
that to determine the truth of existential sentences in N we only need to determine the truth of
Π0

3 sentences in L.
We switch to coding models of PA´ because the axioms of PA´ are all of the form ∀~xψ(~x) for

quantifier-free ψ. Here code now means a code for a structure in the language of N´. A code is
now a sequence

~w = (w0, w1, w2,m, `, p, t, d, z, o)

(with “d” for “difference”) interpreted as coding the structure

M´
~w = (E(w0);R2

` , R
3
p, R

3
t , R

3
d, z, o).

As in Definition 3.7, sentences in the language of N´ translate to formulas in the language of
lattices. The new ´ relation is replaced by the formula defining R3

d in the translation. A code for

a model of PA´ is a code ~w such that M´
~w |= PA´.

In the language of lattices, “s is meet-irreducible” is a Π0
1 property and “s meets to w” is a

Σ0
1 property, so “s ∈ E(w)” is a ∆0

2 property. Hence R2
c(s0, u1) and R3

c(s0, u1, v2) are both ∆0
2

properties of s0, u1, v2, and the coding parameters w0, w1, w2, m, and c. Therefore, our coding
translates atomic formulas in the language of N´ to ∆0

2 properties of lattices. Every Boolean
combination of ∆0

2 properties is again a ∆0
2 property, so our coding also translates quantifier-free

formulas in the language of N´ to ∆0
2 properties of lattices. Thus if ϕ = ∃~xψ(~x) is a sentence in

the language of N´ where ψ is quantifier-free, then the translation ϕ′(~w) may be taken to be a
Σ0

2 formula in the language of lattices. Similarly, if ϕ = ∀~xψ(~x), then the translation ϕ′(~w) is Π0
2.

Thus “M´
~w |= PA´” can be expressed by a Π0

2 formula in the language of lattices. The axioms of

PA´ need to be unnested before they are translated, but this can be done in such a way that they
all remain of the form ∀~xψ(~x) for quantifier-free ψ.

In a lattice, the relations sup(x, y) = z and inf(x, y) = z are definable by Π0
1 formulas in the

language of partial orders. This translation increases the quantifier-complexities calculated in the
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previous paragraph by one alternation. Existential sentences in the language of N´ translate to Σ0
3

formulas in the language of partial orders, and universal sentences in the language of N´ translate
to Π0

3 formulas in the language of partial orders. The property “M´
~w |= PA´” is a Π0

3 property of
~w in the language of partial orders.

Lemma 3.15. Let L be a lattice, and let ~w be a code such that M´
~w
∼= N´. Then Σ0

3-Th(L) and

Σ0
4-Th(L;≤L) are undecidable.

Proof. We prove

{∃~xψ(~x) | ψ is quantifier-free ∧N |= ∃~xψ(~x)} ≤1 Π0
3-Th(L).

It is well-known that the problem of determining whether N |= ∃~xψ(~x) for quantifier-free ψ is
undecidable.2 Clearly Σ0

3-Th(L) ≡1 Π0
3-Th(L).

Let ϕ = ∃~xψ(~x) be a sentence in the language of arithmetic where ψ is quantifier-free. Let θ be
the sentence

θ = ∀~w(M´
~w |= PA´ →M´

~w |= ϕ)

in the language of lattices. As calculated above, M´
~w |= PA´ is a Π0

2 property of ~w, and M´
~w |= ϕ

is a Σ0
2 property of ~w. Thus θ is a Π0

3 sentence in the language of lattices. We need to show
N |= ϕ if and only if L |= θ. Suppose N |= ϕ. Then PA´ ` ϕ by Lemma 2.7, which implies that
L |= θ. Suppose N 6|= ϕ. Then by assumption there is a code ~w such that M´

~w
∼= N´. For this ~w,

M´
~w |= PA´ but M´

~w 6|= ϕ, which implies L 6|= θ.

The proof that Σ0
4-Th(L;≤L) is undecidable is the same. The above sentence θ is Π0

4 in the
language of partial orders. �

4. Meet-irreducibles in Es and r.e. separating degrees

In this section we present facts about meet-irreducibles in Es that allow us to implement our
coding in Es. We begin with a characterization of the meet-irreducibles.

Lemma 4.1 ([1] Corollary 3.5). Let Q be a Π0
1 class. Then degs(Q) is meet-irreducible if and only

if for every clopen C ⊆ 2ω either Q ∩ C ≡s Q or Q ∩ Cc ≡s Q.

Proof. We prove the contrapositive in both directions. First, suppose C ⊆ 2ω is clopen, Q∩C 6≡s Q,
and Q ∩ Cc 6≡s Q. Q ∩ C ≥s Q and Q ∩ Cc ≥s Q by the identity functional, so it must be that
Q ∩ C >s Q and Q ∩ Cc >s Q. C is clopen, so there is a finite set of strings {σi}i<n ⊆ 2<ω such
that C =

⋃
i<n I(σi). Then 0a(Q ∩ C) ∪ 1a(Q ∩ Cc) ≤s Q by the functional

f 7→

{
0af if (∃i < n)(σi ⊂ f)

1af otherwise.

So degs(Q∩C) >s degs(Q), degs(Q∩Cc) >s degs(Q), and inf(degs(Q∩C),degs(Q∩Cc)) ≤s degs(Q).
Hence degs(Q) is meet-reducible.

Conversely, suppose degs(Q) is meet-reducible, and let X and Y be Π0
1 classes such that X >s Q,

Y >s Q, and Q ≡s 0aX ∪ 1aY . Let Φ be such that Φ(Q) ⊆ 0aX ∪ 1aY . Consider the set X̂ =

{f ∈ Q | Φ(f)(0) = 0}. Φ(f) is total for all f ∈ Q, so we can write X̂ = Q∩{f ∈ 2ω | Φ(f)(0) 6= 1}
(where Φ(f)(0) 6= 1 includes the possibility that Φ(f)(0) diverges), which is the intersection of two

closed subsets of 2ω. Hence X̂ is compact. Let Σ = {σ ∈ 2<ω | Φ(σ)(0) = 0}. Then X̂ ⊆
⋃
σ∈Σ I(σ),

so by compactness there is a finite Σ0 ⊆ Σ such that X̂ ⊆
⋃
σ∈Σ0

I(σ). Let C =
⋃
σ∈Σ0

I(σ) be this

2For example, undecidability is implied by Matiyasevich’s solution to Hilbert’s tenth problem [23]. It is a standard
fact in computability theory that determining whether N |= ∃~xψ(~x) is undecidable if ψ is allowed bounded quantifiers,
but allowing bounded quantifiers in ψ increases the quantifier complexity of the translated formula.
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clopen set. Φ witnesses that Q ∩ C ≥s 0aX and that Q ∩ Cc ≥s 1aY . As 0aX ≡s X >s Q and
1aY ≡s Y >s Q, we have the desired clopen set C ⊆ 2ω such that Q∩C 6≡s Q and Q∩Cc 6≡s Q. �

Degrees of r.e. separating classes are the main examples of meet-irreducibles in Es.

Definition 4.2. For A,B ⊆ ω, define

S(A,B) = {f ∈ 2ω | ∀n((n ∈ A→ f(n) = 1) ∧ (n ∈ B → f(n) = 0))}.
An f ∈ S(A,B) is said to separate A from B. S ⊆ 2ω is an r.e. separating class if and only if there
are disjoint r.e. sets A,B ⊆ ω such that S = S(A,B).

From the definition, an r.e. separating class is always a Π0
1 class. An s ∈ Es is an r.e. separating

degree if and only if s = degs(S) for an r.e. separating class S.

Lemma 4.3 ([7] Lemma 6). If S is an r.e. separating class and C ⊆ 2ω is a clopen set such that
S ∩ C 6= ∅, then S ∩ C ≡s S.

Proof. Let S = S(A,B) be an r.e. separating class and let C ⊆ 2ω be a clopen set such that
S ∩ C 6= ∅. S ≤s S ∩ C by the identity functional. To see S ≥s S ∩ C, let I(σ) be such that
I(σ) ⊆ C and S ∩ I(σ) 6= ∅. For any f ∈ 2ω, let fσ be the function obtained from f by replacing
the initial segment of f of length |σ| by σ:

fσ(n) =

{
σ(n) if n < |σ|
f(n) if n ≥ |σ|.

The condition S∩I(σ) 6= ∅ implies that σ separates {n ∈ A | n < |σ|} from {n ∈ B | n < |σ|}. Thus
if f separates A from B, then so does fσ. Therefore the functional f 7→ fσ witnesses S ≥s S∩C. �

Lemma 4.1 and Lemma 4.3 imply that every r.e. separating degree is meet-irreducible. It is
important to note (as in [7]) that the r.e. separating classes are closed under ⊗ and consequently
that the r.e. separating degrees are closed under sup: if S(A0, B0) and S(A1, B1) are r.e. separating
classes then S(A0, B0) ⊗ S(A1, B1) = S(A0 ⊕ A1, B0 ⊕ B1). Thus the sup of two r.e. separating
degrees is meet-irreducible. In fact, the sup of any r.e. separating degree and any meet-irreducible
degree is again meet-irreducible.

Lemma 4.4. Let q ∈ Es be meet-irreducible and let s ∈ Es be an r.e. separating degree. Then
sup(q, s) is meet-irreducible.

Proof. Suppose sup(q, s) ≥s inf(x,y) for some x,y ∈ Es. We show sup(q, s) ≥s x or sup(q, s) ≥s y.
Let Q, X, and Y be Π0

1 classes such that degs(Q) = q, degs(X) = x, and degs(Y ) = y, and let S
be an r.e. separating class such that degs(S) = s. Let Φ be such that Φ(Q⊗ S) ⊆ 0aX ∪ 1aY . By
compactness, choose a σ ∈ 2<ω such that S ∩ I(σ) 6= ∅ and an n ∈ ω such that

(∀τ ∈ 2n)((∃f ∈ Q)(τ ⊂ f)→ Φ(τ ⊕ σ)(0)↓).
Let C =

⋃
{I(τ) | τ ∈ 2n ∧ Φ(τ ⊕ σ)(0) = 0}. Then C is clopen, and Φ witnesses that (Q ∩ C) ⊗

(S ∩ I(σ)) ≥s 0aX ≡s X and that (Q ∩ Cc) ⊗ (S ∩ I(σ)) ≥s 1aY ≡s Y . Since S ∩ I(σ) ≡s S by
Lemma 4.3 and either Q ∩ C ≡s Q or Q ∩ Cc ≡s Q by Lemma 4.1, we have either Q⊗ S ≥s X or
Q⊗ S ≥s Y as desired. �

Our proof that Es has the finite matching property uses the following lemma of Cole and Kihara.
It is the main tool in their proof that the Σ0

2-theory of Es as a partial order is decidable.

Lemma 4.5 ([10] Lemma 1). Let {qi}i<n ⊆ Es and let m ∈ ω. Then there is a set {ri}i<m ⊆ Es

such that(
∀I ⊆ m

)(
∀J,K ⊆ n

)[
J ∩K = ∅ ∧ sup

i∈J
qi �s inf

i∈K
qi → sup

(
sup
i∈J

qi, sup
i∈I

ri

)
�s inf

(
inf
i∈K

qi, inf
i/∈I

ri

)]
(where supi∈∅ xi = 0s and infi∈∅ xi = 1s).
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Cole and Kihara note that the {ri}i<m that they construct in Lemma 4.5 are all r.e. separating
degrees. Their proof of Lemma 4.5 is an elaboration of Cenzer and Hinman’s proof that Es is
dense [7]. Cenzer and Hinman prove that if p,q ∈ Es are such that q �s p, then there is an
r.e. separating degree r ∈ Es such that inf(q, r) �s p and q �s sup(p, r). Thus if p <s q, then
p <s inf(sup(p, r),q) <s q, yielding density. To make Lemma 4.5 somewhat easier to read and
apply, we note that we only need the following special case.

Lemma 4.6. Let {qi}i<n ⊆ Es \ {1s} and let m ∈ ω. Then there is a set of r.e. separating degrees
{ri}i<m ⊆ Es such that

(i) (∀i, i′ < n)(∀j < m)(qi �s qi′ → sup(qi, rj) �s qi′) and
(ii) (∀i < n)(∀j, j′ < m)(j 6= j′ → sup(qi, rj) �s rj′).

We can now show that Es has the finite matching property.

Lemma 4.7. Es has the finite matching property. That is, if q,q′ ∈ Es are such that |E(q)| =
|E(q′)| = n for some n ∈ ω, then there is an r ∈ Es such that E(r) matches both E(q) and E(q′).

Proof. If n = 0, then let r = q. Any degree z vacuously witnesses that E(r) matches E(q) and
that E(r) matches E(q′). So suppose n > 0, let E(q) = {qi}i<n, and let E(q′) = {q′i}i<n. Apply
Lemma 4.6 to {qi}i<n ∪ {q′i}i<n with m = n, noting that {qi}i<n and {q′i}i<n are both antichains
by Lemma 3.3, to get r.e. separating degrees {ri}i<n such that

(i) sup(qi, rj) �s qk and sup(q′i, rj) �s q′k whenever i, j, k < n are such that i 6= k, and
(ii) sup(qi, rj) �s rk and sup(q′i, rj) �s rk whenever i, j, k < n are such that j 6= k.

(Lemma 4.6 applies because, by definition, 1s does not meet to any degree and so cannot be in
E(q) or E(q′).)

Put r = infi<n ri, z = infi<n sup(qi, ri), and z′ = infi<n sup(q′i, ri). We show that z witnesses
that E(r) matches E(q). The proof that z′ witnesses that E(r) matches E(q′) is similar. Item (ii)
implies that {ri}i<n and {sup(qi, ri)}i<n are both antichains. Lemma 4.4 implies that sup(qi, ri)
is meet-irreducible for each i < n. Therefore E(r) = {ri}i<n and E(z) = {sup(qi, ri)}i<n by
Lemma 3.4. Suppose sup(qi, rj) ≥s z for some i, j < n. Then sup(qi, rj) ≥s sup(qk, rk) for
some k < n because sup(qi, rj) is meet-irreducible by Lemma 4.4. Item (i) implies that i = k,
and item (ii) implies that j = k. Thus for each i < n, ri is the unique y ∈ E(r) such that
sup(qi,y) ∈ E(z), and qi is the unique y ∈ E(q) such that sup(ri,y) ∈ E(z). Thus z witnesses
that E(r) matches E(q). �

We need one last fact about the r.e. separating classes to implement our coding in Es. Let
{fn}n∈ω ⊆ 2ω be a sequence of functions, and let m ∈ ω. Define

⊕
n∈ω fn and

⊕
n∈ω\{m} fn by

(
⊕
n∈ω

fn)(〈i, j〉) = fi(j) and

(
⊕

n∈ω\{m}

fn)(〈i, j〉) =

{
fi(j) if i 6= m

0 if i = m.

Definition 4.8. A sequence of functions {fn}n∈ω ⊆ 2ω is strongly independent if and only if
∀m(fm �T

⊕
n∈ω\{m} fn). A sequence of Π0

1 classes {Xn}n∈ω is strongly independent if and only if

{fn}n∈ω is strongly independent whenever ∀n(fn ∈ Xn).

Lemma 4.9 ([17] Theorem 4.1). There is a recursive sequence {Sn}n∈ω r.e. separating classes that
is strongly independent.
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5. Interpreting true arithmetic in Es

In this section we prove that Th(Es;≤s) ≡1 Th(N ) and that Π0
3-Th(Es) and Π0

4-Th(Es;≤s) are
undecidable. By Lemma 3.14, Lemma 3.15, and Lemma 4.7 it suffices to find a code ~w in Es such
thatM´

~w
∼= N´. This section is analogous to [32] Section 5, in which it is proved that the first-order

theories of Ds,cl and D01
s,cl are recursively isomorphic to true second-order arithmetic.

Definition 5.1. Let Q be a Π0
1 class with no recursive member. Let A be an infinite recursive set,

and let {σn}n∈A be a recursive sequence of pairwise incomparable strings such that
⋃
n∈A I(σn) =

2ω \ Q (for example, let T be a recursive tree such that Q = [T ] and let {σn}n∈A be the strings
σ /∈ T of minimal length). Let {Sn}n∈A be an infinite recursive sequence of Π0

1 classes. Define
spine(Q, {Sn}n∈A) to be the Π0

1 class

spine(Q, {Sn}n∈A) = Q ∪
⋃
n∈A

σn
aSn.

The next lemma gives the analog of Lemma 3.4 for spines.

Lemma 5.2. Let Q be a Π0
1 class with no recursive member. Let {Sn}n∈A be an infinite recursive

sequence of r.e. separating classes (indexed by a recursive set A) that is an antichain and is such
that Q �s Sn for all n ∈ A. Let w = degs(spine(Q, {Sn}n∈A)).

(i) If x ∈ Es meets to w, then x ≤s degs(Sn) for some n ∈ A.
(ii) E(w) = {degs(Sn) | n ∈ A}.

Proof. Let W = spine(Q, {Sn}n∈A).
(i) Let x ∈ Es be such that x meets to w. Suppose for a contradiction that x �s degs(Sn)

for all n ∈ A. Let X be a Π0
1 class such that x = degs(X), and let Y be a Π0

1 class such that
degs(Y ) witnesses that x meets to w. That is, Y >s W and W ≡s 0aX ∪ 1aY . Let Φ be such that
Φ(Q ∪

⋃
n∈A σn

aSn) ⊆ 0aX ∪ 1aY .

Claim.

(a) Φ(σn
aSn) ⊆ 1aY for all n ∈ A and

(b) Φ(Q) ⊆ 1aY .

Proof of claim. If item (a) fails, then for some n ∈ A there is a clopen C ⊆ 2ω such that (σn
aSn)∩

C 6= ∅ and Φ((σn
aSn) ∩ C) ⊆ 0aX. So (σn

aSn) ∩ C ≥s 0aX ≡s X. The class σn
aSn is an r.e.

separating class because Sn is, so (σn
aSn) ∩ C ≡s σn

aSn ≡s Sn, where the first equivalence is by
Lemma 4.3. Thus the contradiction X ≤s Sn.

If item (b) fails, then there is an f ∈ Q and a σ ⊂ f such that Φ(σ)(0) ↓= 0. Since I(σ) * Q,

there is an n ∈ A such that σn ⊇ σ. Hence Φ(σn
aSn) * 1aY , contradicting item (a). �

The claim shows that Φ(Q ∪
⋃
n∈ω σn

aSn) ⊆ 1aY . Thus Y ≤s W , which contradicts Y >s W .

(ii) Let n ∈ A. To see that degs(Sn) ∈ E(w), let Y = Q ∪
⋃
i∈A\{n} σi

aSi.

Claim. Sn �s Y

Proof of claim. Suppose for a contradiction that Φ is such that Φ(Sn) ⊆ Y . If there is an i ∈ A\{n}
such that Φ(Sn)∩(σi

aSi) 6= ∅, then there is a clopen C ⊆ 2ω such that Sn∩C 6= ∅ and Φ(Sn∩C) ⊆
σi
aSi. Hence Sn ≡s Sn ∩ C by Lemma 4.3, and Sn ∩ C ≥s σi

aSi ≡s Si. This contradicts that
{Sn}n∈A is an antichain. Thus Φ(Sn) ∩ (σi

aSi) = ∅ for all n ∈ A. Therefore Φ(Sn) ⊆ Q. This
contradicts Q �s Sn. �

It is easy to check that W ≡s 0aSn ∪ 1aY , so, by the claim, degs(Y ) witnesses that degs(Sn)
meets to w. The degree degs(Sn) is meet-irreducible because it is an r.e. separating degree. Thus
degs(Sn) ∈ E(w).
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We have shown that {degs(Sn) | n ∈ A} ⊆ E(w). To see equality, let x ∈ E(w). By item (i),
x ≤s degs(Sn) for some n ∈ A. E(w) is an antichain by Lemma 3.3 and degs(Sn) ∈ E(w), so it
must be that x = degs(Sn). �

We now have all the ingredients to find a code for N in Es.

Lemma 5.3. There is a code ~w in Es such that M´
~w
∼= N´.

Proof. By Lemma 4.9, let Q be an r.e. separating class and let {S0,n}n∈ω, {S1,n}n∈ω, and {S2,n}n∈ω
be recursive sequences of r.e. separating classes such that {Q} ∪ {S0,n}n∈ω ∪ {S1,n}n∈ω ∪ {S2,n}n∈ω
is strongly independent. Then let

w0 = degs(W0) for W0 = spine(Q, {S0,n}n∈ω),

w1 = degs(W1) for W1 = spine(Q, {S1,n}n∈ω),

w2 = degs(W2) for W2 = spine(Q, {S2,n}n∈ω),

m = degs(M) for M = spine(Q, {S0,n ⊗ S1,n}n∈ω ∪ {S0,n ⊗ S2,n}n∈ω),

` = degs(L) for L = spine(Q, {S0,i ⊗ S1,j | i < j}),
p = degs(P ) for P = spine(Q, {S0,i ⊗ S1,j ⊗ S2,k | i+ j = k}),
t = degs(T ) for T = spine(Q, {S0,i ⊗ S1,j ⊗ S2,k | i× j = k}),
d = degs(D) for D = spine(Q, {S0,i ⊗ S1,j ⊗ S2,k | i´ j = k}),
z = degs(S0,0), and

o = degs(S0,1).

By Lemma 5.2 item (ii), E(w0) = {degs(S0,n)}n∈ω. The map degs(S0,n) 7→ n is the isomorphism
witnessing M´

~w
∼= N´. Clearly z 7→ 0 and o 7→ 1. We show that the map preserves <. The

proofs that the map preserves +, ×, and ´ are similar. Let i, j ∈ ω. If i < j, then degs(S1,j)
meets to w1 by Lemma 5.2 item (ii), and it is easy to see that sup(degs(S0,j), degs(S1,j)) ≥s m
and that sup(degs(S0,i), degs(S1,j)) ≥s `. Thus R2

`(degs(S0,i),degs(S0,j)). Conversely, suppose that
R2

`(degs(S0,i), degs(S0,j)). Let u1 ∈ Es be such that u1 meets to w1, sup(degs(S0,j),u1) ≥s m,
and sup(degs(S0,i),u1) ≥s `. Since u1 meets to w1, it must be that u1 ≤s degs(S1,k) for some
k ∈ ω by Lemma 5.2 item (i). Thus sup(degs(S0,j), degs(S1,k)) ≥s m. However, if k 6= j, then no
member of S0,j ⊗S1,k computes any member of M by strong independence. Thus u1 ≤s degs(S1,j),
which implies that sup(degs(S0,i), degs(S1,j)) ≥s `. Again by strong independence, if i ≮ j, then
no member of S0,i ⊗ S1,j computes any member of L. Hence i < j. �

Higuchi also used spines of recursive sequences of independent r.e. separating classes to prove
that Es is not a Brouwer algebra [13].

Theorem 5.4. Th(Es;≤s) ≡1 Th(N ).

Proof. We first prove Th(Es;≤s) ≤1 Th(N ). Let {Te}e∈ω be a uniformly recursive sequence of trees
representing all Π0

1 classes as in Lemma 2.3. Given a sentence θ in the language of partial orders,
produce an equivalent sentence in the language of partial orders by replacing every atomic formula
x = y by the formula x ≤ y ∧ y ≤ x. Then produce a sentence ϕ in the language of arithmetic by
replacing every atomic formula x ≤ y by the Σ0

3 formula from Lemma 2.2 expressing [Tx] ≤s [Ty].
Then Es |= θ if and only if N |= ϕ.

For Th(N ) ≤1 Th(Es;≤s), by Lemma 5.3 let ~w be a code in Es such thatM´
~w
∼= N´. Removing

the degree d from the code ~w gives a code ~v such that M~v
∼= N . Es has the finite matching

property by Lemma 4.7, thus Th(N ) ≤1 Th(Es;≤s) by Lemma 3.14. �

Theorem 5.5. Σ0
3-Th(Es) and Σ0

4-Th(Es;≤s) are undecidable.
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Proof. There is a code ~w in Es such that M´
~w
∼= N´ by Lemma 5.3. The results then follow from

Lemma 3.15. �

Fragments of first-order theories were not considered in [32]. The refined coding scheme used
here also shows that Σ0

3-Th(L) and Σ0
4-Th(L;≤L) are undecidable for L = Ds, Dw, Ds,cl, Dw,cl,

D01
s,cl, and D01

w,cl.

6. The degree of Es is 0′′′

In this section, we consider the complexities of presentations of Es.

Definition 6.1. A presentation of Es as a partial order consists of a relation ≤P⊆ ω×ω such that
the structure P = (ω;≤P) is isomorphic to (Es;≤s). A presentation of Es as a lattice consists of a
relation ≤L⊆ ω × ω and functions supL : ω × ω → ω and infL : ω × ω → ω such that the structure
L = (ω;≤L, supL, infL) is isomorphic to Es.

We measure the complexities of presentations by their Turing degrees.

Definition 6.2. The degree of a presentation P of Es as a partial order is degT(P) = degT(≤P).
The degree of a presentation L of Es as a lattice is degT(L) = degT(≤L ⊕ supL⊕ infL).

Equivalently, the degree of a presentation is the Turing degree of its atomic diagram, suitably
Gödel numbered.

Lemma 6.3. There is a presentation L of Es as a lattice with degT(L) ≤T 0′′′.

Proof. Let {Te}e∈ω be a uniformly recursive sequence of trees representing all Π0
1 classes as in

Lemma 2.3. Since [Ti] ≤s [Tj ] is a Σ0
3 property of 〈i, j〉 by Lemma 2.2, we can use 0′′′ to make

a new sequence of trees {T ′e}e∈ω such that {[T ′e]}e∈ω contains exactly one representative for each
degree in Es. Inductively, let T ′e be Ti for the least i ∈ ω such that (∀j < e)([Ti] 6≡s [T ′j ]). Again

using 0′′′, for i, j ∈ ω define i ≤L j if and only if [T ′i ] ≤s [T ′j ], define supL(i, j) to be the k ∈ ω such

that [T ′k] ≡s [T ′i ⊗ T ′j ], and define infL(i, j) to be the k ∈ ω such that [T ′k] ≡s [0aT ′i ∪ 1aT ′j ]. Then

L ∼= Es and degT(L) ≤T 0′′′. �

We prepare to show that every presentation of Es as a lattice computes 0′′′. Let {Xn}n∈ω be a
recursive sequence of Π0

1 classes, and let m ∈ ω. Define
⊗

n∈ωXn and
⊗

n∈ω\{m}Xn by⊗
n∈ω

Xn =
{⊕
n∈ω

fn

∣∣∣ ∀n(fn ∈ Xn)
}

and

⊗
n∈ω\{m}

Xn =
{ ⊕
n∈ω\{m}

fn

∣∣∣ ∀n(n 6= m→ fn ∈ Xn)
}
.

The predicates ∀n(fn ∈ Xn) and ∀n(n 6= m → fn ∈ Xn) are Π0
1 because the sequence {Xn}n∈ω

is recursive. Hence
⊗

n∈ωXn and
⊗

n∈ω\{m}Xn are Π0
1 classes. If {S(An, Bn)}n∈ω is a recursive

sequence of r.e. separating classes, then one checks that⊗
n∈ω

S(An, Bn) = S
(⊕
n∈ω

An,
⊕
n∈ω

Bn

)
and

⊗
n∈ω\{m}

S(An, Bn) = S
( ⊕
n∈ω\{m}

An,
( ⊕
n∈ω\{m}

Bn

)
∪ {〈m, k〉 | k ∈ ω}

)
.

These two Π0
1 classes are in fact r.e. separating classes because any Π0

1 class that is a separating
class must be an r.e. separating class. If T is a recursive tree such that [T ] = S(A,B) for A,B ⊆ ω,
then A = {n | (∃s > n)(∀σ ∈ 2s)(σ ∈ T → σ(n) = 1)} and B = {n | (∃s > n)(∀σ ∈ 2s)(σ ∈ T →
σ(n) = 0)}, both of which are r.e.
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Lemma 6.4. Let Q be an r.e. separating class, and let ϕ(e,m, k, `) be a recursive predicate. Then
there is a recursive sequence of Π0

1 classes {X〈e,m〉}〈e,m〉∈ω such that for all e,m ∈ ω

degs

(
X〈e,m〉

)
=

{
0s if ∀k∃`ϕ(e,m, k, `)

degs(Q) if ∃k∀`¬ϕ(e,m, k, `).

Proof. Let A and B be disjoint r.e. sets such that Q = S(A,B). Let {As}s∈ω and {Bs}s∈ω be
recursive stage enumerations of A and B respectively. For e,m ∈ ω, let X〈e,m〉 be the r.e. separating

class X〈e,m〉 = S
(
C〈e,m〉, D〈e,m〉

)
where

C〈e,m〉 = {〈k, x〉 | ∃s(x ∈ As ∧ (∀` < s)(¬ϕ(e,m, k, `)))} and

D〈e,m〉 = {〈k, x〉 | ∃s(x ∈ Bs ∧ (∀` < s)(¬ϕ(e,m, k, `)))}.

For all k ∈ ω, the kth column of C〈e,m〉 is a subset of A, and the kth column of D〈e,m〉 is a subset
of B. Thus C〈e,m〉 and D〈e,m〉 are disjoint. The sequences {C〈e,m〉}〈e,m〉∈ω and {D〈e,m〉}〈e,m〉∈ω are

uniformly r.e., which implies that the sequence {X〈e,m〉}〈e,m〉∈ω is a recursive sequence of Π0
1 classes.

To see that X〈e,m〉 has the desired degree, first suppose that ∀k∃`ϕ(e,m, k, `). In this case, the
set C〈e,m〉 is recursive. To determine if 〈k, x〉 ∈ C〈e,m〉, search for the least ` such that ϕ(e,m, k, `),
which must exist by assumption. Once ` is found, enumerate A up to stage `. Then 〈k, x〉 ∈ C〈e,m〉
if and only if x ∈ A`. X〈e,m〉 contains the characteristic function of C〈e,m〉, which we have just shown

is recursive, so degs

(
X〈e,m〉

)
= 0s. On the other hand, if ∃k∀`¬ϕ(e,m, k, `), then fix a witnessing k.

In this case, the kth column of C〈e,m〉 is A, and the kth column of D〈e,m〉 is B. Given f ∈ 2ω, let fk
be the function fk(x) = f(〈k, x〉). If f separates C〈e,m〉 from D〈e,m〉, then fk separates A from B.
Thus the functional f 7→ fk witnesses X〈e,m〉 ≥s Q. The functional f 7→ g where g(〈i, x〉) = f(x)

always witnesses Q ≥s X〈e,m〉. Hence degs

(
X〈e,m〉

)
= degs(Q). �

Lemma 6.5. If L is a presentation of Es as a lattice, then 0′′′ ≤T degT(L).

Proof. Let L = (ω;≤L, supL, infL) be a presentation of Es. Let f : Es → L be an isomorphism. Fix
a Σ0

3-complete set C ⊆ ω. We show how to compute C from ≤L ⊕ supL⊕ infL.
By Lemma 4.9, let Q be an r.e. separating class and let {S0,n}n∈ω and {S1,n}n∈ω be recursive

sequences of r.e. separating classes such that {Q} ∪ {S0,n}n∈ω ∪ {S1,n}n∈ω is strongly independent.
Then let

w0 = degs(W0) for W0 = spine(Q, {S0,n}n∈ω),

w1 = degs(W1) for W1 = spine(Q, {S1,n}n∈ω),

v = degs(V ) for V =
⊗
n∈ω

S0,n,

r = degs(R) for R = spine(Q, {Rn}n∈ω), where Rn =
⊗

m∈ω\{n}

S0,m,

m = degs(M) for M = spine(Q, {S0,n ⊗ S1,n}n∈ω), and

p = degs(P ) for P = spine(Q, {S0,n ⊗ S1,n+1}n∈ω).

Let {Ze}e∈ω be a recursive sequence containing all Π0
1 classes as in Lemma 2.3. Let D ⊆ ω be

the set

D = {e | ∃n(n ∈ C ∧ Ze ≤s S0,n ∧ V ≤s Ze ⊗Rn)}.

D is Σ0
3 because C is Σ0

3, the sequences {Ze}e∈ω, {S0,n}n∈ω, and {Rn}n∈ω are recursive, and ≤s is Σ0
3

by Lemma 2.2. Let ϕ(e,m, k, `) be a recursive predicate such that D = {e | ∃m∀k∃`ϕ(e,m, k, `)}.
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By Lemma 6.4, let {X〈e,m〉}〈e,m〉∈ω be a recursive sequence of Π0
1 classes such that for all e,m ∈ ω

degs

(
X〈e,m〉

)
=

{
0s if ∀k∃`ϕ(e,m, k, `)

degs(Q) if ∃k∀`¬ϕ(e,m, k, `).

Let x = degs(X) for X = spine
(
Q, {Ze ⊗X〈e,m〉}〈e,m〉∈ω

)
.

The procedure for determining whether n ∈ C from ≤L ⊕ supL⊕ infL uses the fixed parameters
f(w0), f(w1), f(r), f(v), f(m), f(p), f(degs(S0,0)), and f(x). Given n ∈ ω search L for elements
ai,j for i < 2 and 1 ≤ j ≤ n and for an element b satisfying the conditions

(i) ai,j meets to f(wi) for all i < 2 and all 1 ≤ j ≤ n,
(ii) supL(a0,j , a1,j) ≥L f(m) for all 1 ≤ j ≤ n,

(iii) supL(a0,j , a1,j+1) ≥L f(p) for all 0 ≤ j ≤ n− 1 (where a0,0 = f(degs(S0,0))),
(iv) b meets to f(r), and
(v) supL(a0,n, b) ≥L f(v).

When the search is completed, output “yes” if f(x) ≤L a0,n and output “no” otherwise.
First, observe that the above search is recursive in ≤L ⊕ supL⊕ infL because the “meets to”

relation is r.e. in ≤L ⊕ supL⊕ infL. Furthermore, the search will always terminate because the
elements ai,j = f(degs(Si,j)) for all i < 2 and all 1 ≤ j ≤ n and the element b = f(degs(Rn))
satisfy conditions (i)–(v), and the search will eventually find them. Conditions (i) and (iv) follow
from Lemma 5.2 item (ii), which says that the meet-irreducibles that meet to wi are exactly the
degs(Si,j) and that the meet-irreducibles that meet to r are exactly the degs(Rn). Notice that Q
and {Rj}j∈ω satisfy the hypothesis of Lemma 5.2 because {Q}∪{S0,j}j∈ω is strongly independent.
Conditions (ii) and (iii) are easy to see. For condition (v), it is also easy to see that S0,n⊗Rn ≡s V .

We need to show that the procedure outputs “yes” on input n if and only if n ∈ C. Let ai,j for
i < 2 and 1 ≤ j ≤ n and b be the elements found in the search performed on input n.

Claim. For all i < 2 and all 1 ≤ j ≤ n, ai,j ≤L f(degs(Si,j)).

Proof of claim. For each i < 2 and each 1 ≤ j ≤ n, let Ai,j be a Π0
1 class such that degs(Ai,j) =

f−1(ai,j). By condition (i) of the search and Lemma 5.2 item (i), A0,1 ≤s S0,m and A1,1 ≤s S1,k for
some m, k ∈ ω. Condition (iii) implies that S0,0⊗S1,k ≥s P , which is false by strong independence
unless k = 1. So A1,1 ≤s S1,1. Knowing this, condition (ii) implies that S0,m ⊗ S1,1 ≥s M , which
is false by strong independence unless m = 1. So A0,1 ≤s S0,1. Now proceed by induction. Let
1 ≤ j < n and assume that A0,j ≤s S0,j and that A1,j ≤s S1,j . Just as in the argument for the base
case, A0,j+1 ≤s S0,m and A1,j+1 ≤s S1,k for some m, k ∈ ω. S0,j⊗S1,k ≥s P by condition (iii), which
implies that k = j + 1. S0,m ⊗ S1,j+1 ≥s M by condition (ii), which implies that m = j + 1. �

At the end of the search, a0,n ≤L f(degs(S0,n)) by the claim, b meets to f(r) by condition (iv),
and supL(a0,n, b) ≥L f(v) by condition (v). By Lemma 5.2 item (i), b ≤L f(degs(Rm)) for some
m ∈ ω. However, if m 6= n, then S0,n ≤s Rm, in which case S0,n ⊗ Rm ≡s Rm �s V . Thus it must
be that b ≤L f(degs(Rn)).

Suppose n ∈ C. Since {Ze}e∈ω lists all the Π0
1 classes, there is an e ∈ ω such that degs(Ze) =

f−1(a0,n). This e satisfies ∃n(n ∈ C ∧ Ze ≤s S0,n ∧ V ≤s Ze ⊗ Rn). Thus e ∈ D, which means
∃m∀k∃`ϕ(e,m, k, `). If m is such that ∀k∃`ϕ(e,m, k, `), then we have that degs(X〈e,m〉) = 0s and
Ze ⊗X〈e,m〉 ≡s Ze. Thus X ≤s Ze, which means f(x) ≤L a0,n. Thus “yes” was the output.

Suppose n /∈ C. We show X �s S0,n.

Claim. For all e,m ∈ ω, S0,n �s Ze ⊗X〈e,m〉.

Proof of claim. If degs(X〈e,m〉) = degs(Q), then S0,n �s Ze ⊗ X〈e,m〉 because S0,n �s Q by strong
independence. If degs(X〈e,m〉) = 0s, then ∀k∃`ϕ(e,m, k, `). Therefore e ∈ D, so there is an n′ such
that n′ ∈ C, Ze ≤s S0,n′ , and V ≤s Ze ⊗ Rn′ . Notice that n 6= n′ because n /∈ C and n′ ∈ C.



CODING TRUE ARITHMETIC IN THE MEDVEDEV DEGREES OF Π0
1 CLASSES 19

Therefore S0,n ≤s Rn′ . So if S0,n ≥s Ze, then Rn′ ≥s Ze. So V �s Rn′ ≡s Ze⊗Rn′ , a contradiction.
Hence S0,n �s Ze ⊗X〈e,m〉. �

Suppose for a contradiction that Φ is such that Φ(S0,n) ⊆ X. If there are n,m ∈ ω such that

Φ(S0,n) ∩
(
σ〈e,m〉

a
(
Ze ⊗ X〈e,m〉

))
6= ∅, then there is a clopen C ⊆ 2ω such that S0,n ∩ C 6= ∅ and

Φ(S0,n∩C) ⊆ σ〈e,m〉a
(
Ze⊗X〈e,m〉

)
. S0,n ≡s S0,n∩C by Lemma 4.3, and S0,n∩C ≥s

(
σ〈e,m〉

a
(
Ze⊗

X〈e,m〉
))
≡s Ze ⊗ X〈e,m〉. This contradicts the claim. Thus Φ(S0,n) ∩

(
σ〈e,m〉

a
(
Ze ⊗ X〈e,m〉

))
= ∅

for all e,m ∈ ω. Therefore Φ(S0,n) ⊆ Q. This contradicts Q �s Sn. Hence X �s S0,n. It follows
that f(x) �L a0,n because a0,n ≤L f(degs(S0,n)). Thus “no” was the output. �

Theorem 6.6. The degree of Es as a lattice is 0′′′. That is, there is a presentation of Es as a lattice
recursive in 0′′′ and 0′′′ is recursive in every presentation of Es as a lattice.

Proof. Lemma 6.3 proves that there is a presentation recursive in 0′′′, and Lemma 6.5 proves that
0′′′ is recursive in every presentation. �

Corollary 6.7. Es has no presentation as a partial order recursive in 0′.

Proof. In any lattice, the relations sup(x, y) = z and inf(x, y) = z are definable from the partial
order by Π0

1 formulas. Thus if Es had a presentation as a partial order recursive in 0′, it would have
a presentation as a lattice recursive in 0′′. This contradicts the theorem. �

Of course the same argument shows that Es cannot have a presentation as a partial order recursive
in any degree d such that d′ <T 0′′′.

7. Undecidability in Ew

In this section, we code N´ in Ew, thereby showing that Σ0
3-Th(Ew) and Σ0

4-Th(Ew;≤w) are
undecidable. In place of separating classes, our coding of N´ in Ew uses Simpson’s Σ0

3 embedding
lemma and his embedding of R into Ew.

Lemma 7.1 (Σ0
3 embedding lemma [38] Lemma 3.3). Let S ⊆ ωω be Σ0

3 and let P ⊆ 2ω be a Π0
1

class. Then there is a Π0
1 class Q ⊆ 2ω such that Q ≡w S ∪ P .

In the Muchnik case, inf(degw(S), degw(P )) = degw(S ∪ P ) for any S, P ⊆ ωω. For this
reason, the Σ0

3 embedding lemma may be phrased as “if S is Σ0
3 and P is a Π0

1 class then
inf(degw(S),degw(P )) ∈ Ew.” For our purposes, P is always DNR2, so degw(P ) = degw(DNR2) =
1w, the greatest element of Ew.

If A is an r.e. set, then {A} is a Σ0
3 (in fact a Π0

2) subset of 2ω. One of Simpson’s original
applications of his Σ0

3 embedding lemma is to show that the map degT(A) 7→ inf(degw({A}),1w)
is an upper-semilattice embedding of R into Ew preserving the least and greatest elements [38]. To
show that this map is indeed an embedding, Simpson uses the following variant of the Arslanov
completeness criterion, which we also employ.

Lemma 7.2 (see [16] Lemma 4.1 and [40] Theorem V.5.1). If A is an r.e. set, then DNR2 ≤w {A}
if and only if A ≡T 0′.

Proof. It is easy to compute a function in DNR2 from 0′. Conversely, if A computes a function
in DNR2, then A computes a function f such that ∀e(Wf(e) 6= We), where here {We}e∈ω is the
standard enumeration of the r.e. sets (such an f is called fixed-point free; see [16] Lemma 4.1). Thus
A ≡T 0′ by the Arslanov completeness criterion (see [40] Theorem V.5.1). �

For comparison, it is not known whether R embeds into Es. See [5] for further results concerning
embedding distributive lattices in Es and Ew.

For us, the key property of the degrees inf(degw({A}),1w) for r.e. sets A is that they are all
meet-irreducible in Ew (of course these degrees are generally meet-reducible in Dw).
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Lemma 7.3. If A is an r.e. set, then inf(degw({A}),1w) is meet-irreducible in Ew.

Proof. Suppose x,y ∈ Ew are such that inf(degw({A}),1w) ≥w inf(x,y). Either degw({A}) ≥w x
or degw({A}) ≥w y because degw({A}) is the degree of a singleton. As 1w ≥w x and 1w ≥w y,
either inf(degw({A}),1w) ≥w x or inf(degw({A}),1w) ≥w y. �

If {An}n∈B is a uniformly r.e. sequence of r.e. sets indexed by a recursive set B (i.e., the set
{〈n,m〉 | n ∈ B ∧ m ∈ An} is r.e.), then {An}n∈B is a Σ0

3 subset of 2ω and it follows that
inf
(
degw

(
{An}n∈B

)
,1w

)
∈ Ew. In place of Lemma 4.9, we use the following simpler fact.

Lemma 7.4 (see [40] Section VII.2). There is a uniformly r.e. sequence of r.e. sets {An}n∈ω that
is strongly independent.

Notice that Lemma 7.4 is also a consequence of Lemma 4.9. If {S(An, Bn)}n∈ω is a recursive
sequence of r.e. separating classes that is strongly independent, then {An}n∈ω and {Bn}n∈ω are
both uniformly r.e. sequences of r.e. sets that are strongly independent.

Now we have the following analog of Lemma 5.2.

Lemma 7.5. Let {An}n∈B be an infinite uniformly r.e. sequence of r.e. sets (indexed by a recursive
set B) that is a ≤T-antichain. Let w = inf

(
degw

(
{An}n∈B

)
,1w

)
.

(i) If x ∈ Ew meets to w, then x ≤w inf(degw({An}),1w) for some n ∈ B.
(ii) E(w) = {inf(degw({An}),1w) | n ∈ B}.

Proof. (i) Let x ∈ Ew be such that x meets to w, and suppose that x �w inf(degw({An}),1w) for
all n ∈ B for a contradiction. Since x ≤w 1w, it must be that x �w degw({An}) for all n ∈ B. Let
y ∈ Ew witness that x meets to w. That is, y >w w and inf(x,y) = w. Let X and Y be Π0

1 classes
such that x = degw(X) and y = degw(Y ). Then X ∪ Y ≤w {An} for all n ∈ B. Thus Y ≤w {An}
for all n ∈ B because X �w {An} for all n ∈ B. Therefore Y ≤w {An}n∈B, which implies that
y ≤w w, a contradiction.

(ii) Let n ∈ B. To see that inf(degw({An}),1w) ∈ E(w), let y = inf
(
degw

(
{Ai}i∈B\{n}

)
,1w

)
.

It is easy to check that inf(inf(degw({An}),1w),y) = w. Moreover, inf(degw({An}),1w) �w y.
This is because {An} �w {Ai}i∈B\{n} as {Ai}i∈B is a ≤T-antichain and because {An} �w DNR2 by
Lemma 7.2 (note that An <T 0′ because {Ai}i∈B is a ≤T-antichain). Thus y >w w, and therefore y
witnesses that inf(degw({An}),1w) meets to w. The degree inf(degw({An}),1w) is meet-irreducible
in Ew by Lemma 7.3. Thus inf(degw({An}),1w) ∈ E(w).

We have shown that {inf(degw({An}),1w) | n ∈ B} ⊆ E(w). To see equality, let x ∈ E(w).
By item (i), x ≤w inf(degw({An}),1w) for some n ∈ B. E(w) is an antichain by Lemma 3.3 and
inf(degw({An}),1w) ∈ E(w), so it must be that x = inf(degw({An}),1w). �

We are now able to code N´ in Ew.

Lemma 7.6. There is a code ~w in Ew such that M´
~w
∼= N´.

Proof. The proof is very similar to the proof of Lemma 5.3. By Lemma 7.4, let {A0,n}n∈ω,
{A1,n}n∈ω, and {A2,n}n∈ω be uniformly r.e. sequences of r.e. sets such that {A0,n}n∈ω∪{A1,n}n∈ω∪
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{A2,n}n∈ω is strongly independent. Let

w0 = inf(degw(W0),1w) for W0 = {A0,n}n∈ω,
w1 = inf(degw(W1),1w) for W1 = {A1,n}n∈ω,
w2 = inf(degw(W2),1w) for W2 = {A2,n}n∈ω,
m = inf(degw(M),1w) for M = {A0,n ⊕A1,n}n∈ω ∪ {A0,n ⊕A2,n}n∈ω,
` = inf(degw(L),1w) for L = {A0,i ⊕A1,j | i < j},
p = inf(degw(P ),1w) for P = {A0,i ⊕A1,j ⊕A2,k | i+ j = k},
t = inf(degw(T ),1w) for T = {A0,i ⊕A1,j ⊕A2,k | i× j = k},
d = inf(degw(D),1w) for D = {A0,i ⊕A1,j ⊕A2,k | i´ j = k},
z = inf(degw({A0,0}),1w), and

o = inf(degw({A0,1}),1w).

To aid readability, let ai,j = degw({Ai,j}) for all i < 3 and j ∈ ω. By Lemma 7.5 item (ii),
E(w0) = {inf(a0,n,1w)}n∈ω. The map inf(a0,n,1w) 7→ n is the isomorphism witnessingM´

~w
∼= N´.

Clearly z 7→ 0 and o 7→ 1. We show that the map preserves <. The proofs that the map preserves
+, ×, and ´ are similar. Let i, j ∈ ω. If i < j, then inf(a1,j ,1w) meets to w1 by Lemma 7.5
item (ii), and by distributivity

sup(inf(a0,j ,1w), inf(a1,j ,1w)) = inf(sup(a0,j ,a1,j),1w)

= inf(degw({A0,j ⊕A1,j}),1w)

≥w m, and

sup(inf(a0,i,1w), inf(a1,j ,1w)) = inf(sup(a0,i,a1,j),1w)

= inf(degw({A0,i ⊕A1,j}),1w)

≥w `.

Thus R2
`(inf(a0,i,1w), inf(a0,j ,1w)). Conversely, suppose that R2

`(inf(a0,i,1w), inf(a0,j ,1w)). Let
u1 ∈ Ew be such that u1 meets to w1, sup(inf(a0,j ,1w),u1) ≥w m, and sup(inf(a0,i,1w),u1) ≥w `.
Since u1 meets to w1, it must be that u1 ≤w inf(a1,k,1w) for some k ∈ ω by Lemma 7.5 item (i).
Thus sup(inf(a0,j ,1w), inf(a1,k,1w)) ≥w m, so by distributivity

inf(degw({A0,j ⊕A1,k}),1w) = inf(sup(a0,j ,a1,k),1w) = sup(inf(a0,j ,1w), inf(a1,k,1w)) ≥w m.

However, if k 6= j, then {A0,j ⊕ A1,k} �w M by strong independence and {A0,j ⊕ A1,k} �w DNR2

by Lemma 7.2. This implies that inf(degw({A0,j ⊕ A1,k}),1w) �w m, so it must be that k = j.
Thus u1 ≤w inf(a1,j ,1w), which implies that sup(inf(a0,i,1w), inf(a1,j ,1w)) ≥w `. Then

inf(degw({A0,i ⊕A1,j}),1w) = inf(sup(a0,i,a1,j),1w) = sup(inf(a0,i,1w), inf(a1,j ,1w)) ≥w `.

So if i ≮ j, then {A0,i ⊕ A1,j} �w L by strong independence and {A0,i ⊕ A1,j} �w DNR2 by
Lemma 7.2, giving the contradiction inf(degw({A0,i ⊕A1,j}),1w) �w `. Hence i < j. �

Theorem 7.7. Σ0
3-Th(Ew) and Σ0

4-Th(Ew;≤w) are undecidable.

Proof. There is a code ~w in Ew such that M´
~w
∼= N´ by Lemma 7.6. The results then follow from

Lemma 3.15. �

Clearly then Th(Ew;≤w) is undecidable. Unfortunately we do not yet know how to prove anything
like the finite matching property for Ew to obtain Th(N ) ≤1 Th(Ew;≤w). The proof of the finite
matching property for Es (Lemma 4.7 above) appeals to a lemma of Cole and Kihara that grew out
of Cenzer and Hinman’s proof that Es is dense. By analogy, perhaps progress must be made on the
density of Ew before further progress is made on the complexity of Th(Ew;≤w).
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25. Russell G. Miller, André Nies, and Richard A. Shore, The ∀∃-theory of R(≤,∨,∧) is undecidable, Transactions

of the American Mathematical Society 356 (2004), no. 8, 3025–3067.
26. Albert A. Muchnik, On strong and weak reducibilities of algorithmic problems, Sibirskii Matematicheskii Zhurnal

4 (1963), 1328–1341.
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