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Abstract. A cohesive power of a computable structure is an effective ultrapower of the structure,
where a cohesive set plays the role of an ultrafilter. Let ω, ζ, and η denote the respective order-types of
the natural numbers, the integers, and the rationals. We study cohesive powers of computable copies
of ω over ∆2 cohesive sets. We show that there is a computable copy L of ω such that, for every ∆2

cohesive set C, the cohesive power of L over C has order-type ω + η. This improves an earlier result of
Dimitrov, Harizanov, Morozov, Shafer, A. Soskova, and Vatev by generalizing from Σ1 cohesive sets
to ∆2 cohesive sets and by computing a single copy of ω that has the desired cohesive power over all
∆2 cohesive sets. Furthermore, our result is optimal in the sense that ∆2 cannot be replaced by Π2.
More generally, we show that if X ⊆ N \ {0} is a Boolean combination of Σ2 sets, thought of as a
set of finite order-types, then there is a computable copy L of ω where the cohesive power of L over
any ∆2 cohesive set has order-type ω + σ(X ∪ {ω + ζη + ω∗}). If X is finite and non-empty, then
there is also a computable copy L of ω where the cohesive power of L over any ∆2 cohesive set has
order-type ω + σ(X). Here σ denotes the shuffle operation. An unexpected byproduct of our work
is a new method for constructing infinite Π1 sets that do not have ∆2 cohesive subsets. In fact, we
construct an infinite Π1 set that does not have a ∆2 p-cohesive subset. Infinite Π1 sets without ∆2

r-cohesive subsets generalize D. Martin’s classic co-infinite c.e. set with no maximal superset and have
appeared in the work of Lerman, Shore, and Soare.

1. Introduction

Ultraproducts and ultrapowers are tools from mathematical logic with a wide variety of applications
throughout mathematics [2, 3, 10,13,17,24]. The motivating idea behind the ultrapower construction
originates with Skolem’s construction of a countable non-standard model of arithmetic. Let L = (0, 1, <
,+,×) denote the language of arithmetic. Let N = (N; 0, 1, <,+,×) denote the standard model of
arithmetic, which has universe N and interprets the symbols 0, 1, <, +, and × in the usual ways.
Skolem’s construction produces a countable L-structure M that is elementarily equivalent to N (i.e.,
satisfies the same first-order L-sentences as N ) but is not isomorphic to N . It follows that N cannot
be characterized among the countable L-structures on the basis of first-order statements alone.

Skolem’s construction works as follows. For sets X,Y ⊆ N, let X ⊆∗ Y denote that X \ Y is finite,
and let X = N\X denote the complement of X. It is not hard to show that for any countable sequence

A⃗ = (An : n ∈ N) of subsets of N, there is an infinite set C ⊆∗ N such that for every n, either C ⊆∗ An

or C ⊆ An. Such a set C is called cohesive for A⃗, or simply A⃗-cohesive. There are only countably many
arithmetically definable sets, so we may fix a set C that is cohesive for this collection. Thus for every
arithmetical set A, either C ⊆∗ A or C ⊆∗ A. Now consider the arithmetically definable functions
f : N → N. Given two such functions f and g, the set {n : f(n) = g(n)} is arithmetical, so either
C ⊆∗ {n : f(n) = g(n)} or C ⊆∗ {n : f(n) ̸= g(n)}. Define f =C g if C ⊆∗ {n : f(n) = g(n)}, and
notice that =C is an equivalence relation. Let [f ] denote the =C-equivalence class of f , and define an
L-structure M on the =C-equivalence classes in the following way. Interpret 0 and 1 as the equivalence
classes of the constant functions n 7→ 0 and n 7→ 1. Interpret < by letting [f ] < [g] if and only if
C ⊆∗ {n : f(n) < g(n)}. Interpret + and × by letting [f ] + [g] = [f + g] and [f ] × [g] = [f × g], where
f + g and f × g are computed pointwise. One then shows that M is elementarily equivalent to N .
Moreover, M is countable because there are only countably many arithmetical functions, and M is not
isomorphic to N because M contains elements with infinitely many predecessors, such as the element
represented by the identity function.

Nowadays we may think of Skolem’s construction as effectivizing the ultrapower construction, where
C ⊆∗ A plays the role of A being in the ultrafilter. Skolem’s construction only considers functions
f : N → N of arithmetical complexity and only requires the C ⊆∗ A or C ⊆∗ A dichotomy for sets A of

arithmetical complexity. Restricting the complexity of the sequence A⃗ also induces a bound on the

Date: October 10, 2023.

1



2 PAUL SHAFER

complexity that suffices to produce an A⃗-cohesive set C. It becomes natural to ask what happens to
Skolem’s construction when one restricts to even lower complexities. Call a set C:

• p-cohesive if C is cohesive for the collection of primitive recursive sets,

• r-cohesive if C is cohesive for the collection of computable (aka recursive) sets, and

• cohesive if C is cohesive for the collection of computably enumerable (aka recursively enumerable)
sets.

Again let N denote the standard model of arithmetic. Feferman, Scott, and Tennenbaum [11] consider
the effective ultrapowers of N obtained by restricting to computable functions f and by using r-cohesive
sets C to take the powers. They show that the resulting structures are never elementarily equivalent
to N . In fact, they show that the resulting structures are never even models of Peano arithmetic.
Works such as [14,15, 20,26–31,37] continue studying flavors of effective ultrapowers of the particular
structure N , including powers over cohesive sets as discussed here as well as the so-called recursive
ultrapowers and r.e. ultrapowers. There is a particular focus on rigidity. Hirschfeld and Wheeler [15]
show that the r.e. ultrapowers of N are rigid, McLaughlin [27] observes that the same holds of the
recursive ultrapowers of N , and later McLaughlin [31] shows that the recursive ultrapowers of N are
totally rigid, meaning that they have no non-trivial isomorphic self-embeddings. This line culminates
in recent work of Shavrukov [37], which shows that the r.e. ultrapowers of N are totally rigid as well.
Shavrukov also introduces the r.e. prime powers of N (which he shows are equivalent to the powers of
N over cohesive sets) and shows that they need not always be totally rigid.

Dimitrov [5] generalizes from the particular structure N to an arbitrary computable structure A, and
he calls the effective ultrapower of A over a cohesive set C the cohesive power of A over C. Cohesive
powers of computable structures find applications to the lattice of c.e. subspaces of computable vector
spaces in [4,6,8]. Rigidity is studied as well. For example, Dimitrov, Harizanov, R. Miller, and Mourad
show that cohesive powers of the field of rational numbers over Π1 cohesive sets are rigid [8].

In the classical case of the ultrapower of a structure A over an ultrafilter U (say on N), the resulting
structure may depend on the choice of the ultrafilter. Consider, for example, the structure (N;<) of

the natural numbers as a linear order. If the continuum hypothesis fails, then there are 22
ℵ0 pairwise

non-isomorphic linear orders that arise as ultrapowers of (N;<) over ultrafilters on N [18]. In the
effective case, Lerman [20] shows that when considering a cohesive power of N over a Π1 cohesive set
C, the resulting structure depends only on the many-one degree of C. Let C and D be Π1 cohesive
sets. If C and D are many-one equivalent, then the cohesive powers of N over C and D are isomorphic.
If C and D are not many-one equivalent, then the cohesive powers of N over C and D are not even
elementarily equivalent.

Classically, if f is an isomorphism between two structures A and B and U is an ultrafilter, then f
induces an isomorphism between the ultrapowers of A and B over U . In the effective case, if f is a
computable isomorphism between two computable structures A and B and C is a cohesive set, then
f induces an isomorphism between the cohesive powers of A and B over C. It is essential that the
isomorphism f is computable. In [9] it is shown that for every cohesive set C, there are computable
structures A and B that are isomorphic (but not computably isomorphic) and are such that the cohesive
powers of A and B over C are not elementarily equivalent. Indeed, A and B may be taken to be
isomorphic to (N;<).

If we assume some level of effectivity of a cohesive set C, then it is possible to gain finer control over
cohesive powers over C. This leads to many examples of non-elementarily equivalent cohesive powers
of isomorphic computable structures. Let ω, ζ, and η denote the order-types of the natural numbers,
the integers, and the rationals, and let + and · denote the usual sum and product of linear orders. It
is not hard to show that the cohesive power of the usual presentation (N;<) of ω over any cohesive
set is a linear order of type ω + ζη. This is the expected outcome because ω + ζη is familiar as the
order-type of countable non-standard models of Peano arithmetic. On the other hand, in [9] it is shown
that for every Π1 cohesive set C, there is a computable linear order L of type ω such that the cohesive
power of L over C is a linear order of type ω + η. Thus (N;<) and L are isomorphic linear orders with
non-elementarily equivalent cohesive powers over C. In fact, given any Π1 cohesive set C, there are
countably many computable copies of ω whose cohesive powers over C yield pairwise non-elementarily
equivalent linear orders. Let σ(X) denote the shuffle of a non-empty and at-most-countable set of
order-types X (see Definition 3.8), and let ω∗ denote the reverse of ω. The most general result of [9] is
the following, which we discuss further in Section 3.
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Theorem 3.19 ([9, Theorem 6.10]). Let X ⊆ N \ {0} be a Boolean combination of Σ2 sets, thought
of as a set of finite order-types. Let C be a Π1 cohesive set. Then there is a computable copy L of ω
where the cohesive power of L over C has order-type ω + σ(X ∪ {ω + ζη + ω∗}). Moreover, if X is
finite and non-empty, then there is also a computable copy L of ω where the cohesive power of L over
C has order-type ω + σ(X).

In Theorem 3.19, the Π1 cohesive set C is fixed in advance, and the computable copy L of ω is built
so that the cohesive power of L over C has a particular order-type. The goal of this work is to improve
Theorem 3.19 to a form that is optimal with respect to the complexity of C. First, we generalize from
Π1 cohesive sets to ∆2 cohesive sets. Second, and most significantly, we swap the quantifiers on L and
C by showing that there is a fixed computable copy L of ω for which the cohesive power of L over C
has the desired order-type for every ∆2 cohesive set C. Our main result is the following.

Theorem 4.5. Let X ⊆ N \ {0} be a Boolean combination of Σ2 sets, thought of as a set of finite
order-types. Then there is a computable copy L of ω where the cohesive power of L over any ∆2

cohesive set has order-type ω + σ(X ∪ {ω + ζη + ω∗}). Moreover, if X is finite and non-empty, then
there is also a computable copy L of ω where the cohesive power of L over any ∆2 cohesive set has
order-type ω + σ(X).

In particular, there is a computable copy L of ω such that the cohesive power of L over any ∆2

cohesive set has order-type ω + η. This is the optimal statement of this form because for every
computable copy L of ω, there is a Π2 cohesive set C such that the cohesive power of L over C is not
isomorphic to ω + η (see Proposition 4.3 below).

An unexpected byproduct of Theorem 4.5 is a new method for constructing infinite Π1 sets that
do not have ∆2 cohesive subsets. In fact, we construct an infinite Π1 set that has no ∆2 p-cohesive
subset. A classic construction of D. Martin [25] first produced an infinite Π1 set with no Π1 cohesive
subset. In connection to questions about the automorphisms of the lattice of c.e. sets, Lerman, Shore,
and Soare [22] later produced an infinite Π1 set with the property of having no ∆2 r-cohesive subset,
though this property was not noted explicitly at the time. Recently, Shavrukov [38] indicated further
examples of infinite Π1 sets without ∆2 r-cohesive subsets which are connected to the notion of a
single-sky prime filter of the lattice of c.e. sets modulo finite difference [36]. In terms of the arithmetical
hierarchy, an infinite Π1 set having no ∆2 p-cohesive/r-cohesive/cohesive subset is optimal because
every infinite Π1 set has a Π2 cohesive subset. We also observe that there are infinite Π1 sets that do
not have Π1 r-cohesive subsets but do have ∆2 cohesive subsets.

This article is organized as follows. In Section 2, we isolate a direct construction of an infinite Π1

set with no ∆2 p-cohesive subset. We feel that the construction and its connection to the lattice of
c.e. sets is of sufficient independent interest to make a self-contained discussion worthwhile. Section 2
also serves to introduce some of the techniques that are used to prove Theorem 4.5. In Section 3,
we introduce cohesive products and cohesive powers, and we summarize the results of [9]. We also
improve [9, Theorem 2.18] by showing that the cohesive product of a uniformly computable sequence of
structures over a ∆2 cohesive set is always Σ1-recursively saturated (Theorem 3.6). Finally, we prove
Theorem 4.5 in Section 4.

2. Infinite Π1 sets without ∆2 cohesive subsets

Our notation mostly follows that of standard sources, such as [21,34,39]. Throughout, N denotes
the natural numbers, especially when used as a domain of computation, and ω denotes the order-type
of the linear order (N;<). Partial computable functions are denoted by φ, ψ, etc. For a partial
computable function φ, φ(n)↓ denotes that φ halts on input n and produces an output, and φ(n)↑
denotes that φ does not halt on input n. Let (φe)e∈N denote the usual effective enumeration of all
partial computable functions, and let φe,s(n) denote the result (if any) of running φe on input n for
s computational steps. Let We = dom(φe) = {n : φe(n)↓} denote the domain of φe for each e. For
each n ≥ 1, ⟨x0, . . . , xn−1⟩ : Nn → N denotes the usual computable bijective tupling function that is
increasing in all coordinates. For each i < n, πi denotes the corresponding computable projection
function onto coordinate i given by πi(⟨x0, . . . , xn−1⟩) = xi. For a function g : N2 → N, say that
lims g(n, s) = y if ∃s0 ∀s ≥ s0 (g(s) = y); and say that lims g(n, s) exists if ∃y (lims g(n, s) = y). Say
that a function g : N2 → N approximates a function h : N → N if ∀n (lims g(n, s) = h(n)). The limit
lemma (see [39, Lemma III.3.3]) says that for every f, h : N → N, h ≤T f ′ if and only if there is a
g : N2 → N with g ≤T f that approximates h.
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The lattice of c.e. sets modulo finite difference ordered by ⊆∗ is a major object of study in
computability theory, and we refer the reader to [34, 39] for a thorough treatment of the subject.
Recall that a c.e. set M is called maximal if M ⊊∗ N and there is no c.e. set X with M ⊊∗ X ⊊∗ N.
Friedberg [12] shows that maximal sets exist, and D. Martin [25] shows that there is a c.e. set A ⊊∗ N
that has no maximal superset. It follows from the definitions that for any set M ⊆ N, M is maximal if
and only if M is an infinite Π1 cohesive set. Via this correspondence, Martin’s result may be rephrased
as stating that there is an infinite Π1 set that has no Π1 cohesive subset. There is also an infinite Π1

set that has no ∆2 r-cohesive subset, which follows from work of Lerman, Shore, and Soare [22].
Let X and Y be c.e. sets where Y ⊆ X and X \ Y is infinite. In this situation,

• Y is r-maximal in X if X \ Y is r-cohesive;

• Y is a major subset of X if ∀ c.e. sets W (X ⊆∗ W → Y ⊆∗ W );

• Y is an r-maximal major subset of X if Y is both r-maximal in X and a major subset of X.

Lerman, Shore, and Soare [22, Theorem 1.2] show that a c.e. set X has an r-maximal major subset
if and only if it has a ∆3 preference function, where preference functions are defined as follows.

Definition 2.1 ([22, Definition 1.1]). For each e, let Re,1 = {n : (∀m ≤ n φe(m)↓) ∧ φe(n) = 1},

and let Re,0 = Re,1. Notice that (Re,1)e∈N is a uniformly c.e. sequence of the computable sets. An

inclination function1 for a set X is a function h : N → {0, 1} such that for all n, the set X ∩
⋂

e<nR
e,h(e)

is infinite. A preference function for a set X is a function h : N → {0, 1} that is an inclination function
for both X and X.

Lerman, Shore, and Soare observe that if X is a simple c.e. set (i.e., X has no infinite c.e. subset),
then every inclination function for X is automatically a preference function for X. Thus a simple c.e.
X has a preference function if and only if X has an inclination function.

It is not hard to show that an infinite ∆2 set has a ∆2 r-cohesive subset if and only if it has a ∆3

inclination function.

Proposition 2.2. Let B ⊆ N be an infinite ∆2 set. Then B has a ∆2 r-cohesive subset if and only if
B has a ∆3 inclination function.

Proof. First suppose that h ≤T 0′′ is an inclination function for B. By the limit lemma, there is
a function g : N2 → {0, 1} with g ≤T 0′ such that lims g(e, s) = h(e) for every e. We compute an
increasing enumeration c0 < c1 < c2 < · · · of an r-cohesive set C ⊆ B from 0′ using that B ≤T 0′,
that g ≤T 0′, and the fact the sequence (Re,i : e ∈ ω, i ∈ {0, 1}) is uniformly computable from 0′. The
characteristic function of C may then be computed from its increasing enumeration, so C is the desired
∆2 r-cohesive subset of B.

Let c0 be the least element of B. Suppose we have already determined c0 < c1 < · · · < cn. To find
cn+1, search for the least pair ⟨s, c⟩ with s > n, c > cn, and c ∈ B ∩

⋂
e<nR

e,g(e,s). Then let cn+1 = c.
Such a pair ⟨s, c⟩ always exists because if s is sufficiently large, then ∀e < n (g(e, s) = h(e)), in which

case B ∩
⋂

e<nR
e,g(e,s) is infinite.

To check that C is r-cohesive, let X be a computable set, and let e be such that X = Re,1. Let s0 be
large enough so that g(e, s) = h(e) for all s ≥ s0. Then cn+1 is chosen from Re,h(e) whenever n ≥ s0.
Thus if h(e) = 1, then C ⊆∗ Re,1 = X; and if h(e) = 0, then C ⊆∗ Re,0 = X. So C is r-cohesive.

Conversely, suppose that B has a ∆2 r-cohesive subset C. The sets {e : C ⊆∗ Re,0} and {e : C ⊆∗

Re,1} are each Σ3, and they are complements because C is r-cohesive. Thus the sets are ∆3. Let h be

the characteristic function of {e : C ⊆∗ Re,1}. Then C ⊆∗ ⋂
e<nR

e,h(n) for every n, so B ∩
⋂

e<nR
e,h(n)

is infinite for every n because C ⊆ B. Thus h is a ∆3 inclination function for B. □

Lerman, Shore, and Soare [22, Theorem 2.7] show that there is a simple (indeed, hyperhypersimple)
c.e. set X that has no ∆3 preference function. Therefore X is an infinite Π1 set that has no ∆3

inclination function and hence no ∆2 r-cohesive subset.
We give a direct construction of an infinite Π1 set with no ∆2 p-cohesive subset. To organize this,

we make use of a uniform sequence containing all ∆2-approximations and a computable sequence of
staggered partitions. A computable function g : N2 → {0, 1} is called a ∆2-approximation to a set
D ⊆ N if ∀n (lims g(n, s) = D(n)). A set D is ∆2 if and only if it has a ∆2-approximation by the limit
lemma.

1We introduce the term inclination function here for expository purposes.
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Definition 2.3. A uniform sequence containing all ∆2-approximations is a total computable function
g : N3 → {0, 1} such that for every ∆2 set D, there is an e for which the function ge : N2 → {0, 1} given
by ge(n, s) = g(e, n, s) is a ∆2-approximation to D.

A uniform sequence g : N3 → {0, 1} containing all ∆2-approximations may be computed as follows.
On input (e, n, s), search for the greatest t ≤ s such that φe,s(n, t)↓. If φe,s(n, t) = 1, then output
g(e, n, s) = 1. If φe,s(n, t) ̸= 1 (or if there is no t ≤ s such that φe,s(n, t)↓), then output g(e, n, s) = 0.
Notice that g is total. Write ge(n, s) for g(e, n, s) for every e, n, and s. If φe is total, {0, 1}-valued, and
lims φe(n, s) exists for every n, then lims ge(n, s) exists and equals lims φe(n, s) for every n. Thus if D
is a ∆2 set, then some φe(n, s) is a ∆2-approximation to D, in which case ge is also a ∆2-approximation
to D.

If g is a uniform sequence containing all ∆2-approximations, then every ge is total, and every ∆2 set
is approximated by some ge. However, it is not the case that every ge is a ∆2-approximation. There
are many e and n for which lims ge(n, s) does not exist.

For each n ∈ N, let {0, 1}n denote the set of binary sequences of length n.

Definition 2.4. A sequence of staggered partitions is a sequence (Ai,0, Ai,1)i∈N of pairs of subsets of N
such that

• for each i, Ai,0 and Ai,1 partition N into two parts (i.e., Ai,1 = Ai,0), and

• ∀n ∀σ ∈ {0, 1}n
(⋂

i<nA
i,σ(i) is infinite

)
.

An infinite C ⊆ N is cohesive for a sequence of staggered partitions A⃗ = (Ai,0, Ai,1)i∈N, or A⃗-cohesive,
if ∀i (C ⊆∗ Ai,0 ∨ C ⊆∗ Ai,1).

Of course, C being cohesive for the sequence (Ai,0, Ai,1)i∈N of staggered partitions means the same
thing as C being cohesive for the sequence (Ai,0)i∈N (or for the sequence (Ai,1)i∈N).

We may compute a sequence (Ai,0, Ai,1)i∈N of staggered partitions as follows. Given i, partition N
into successive pieces of size 2i, let Ai,0 consist of every other piece, and let Ai,1 = Ai,0. Indeed, for
i ∈ N and j ∈ {0, 1}, we may take Ai,j to be the set of numbers whose binary expansions have bit j
in position i. Then each Ai,j is primitive recursive. In fact, the sequence (Ai,0, Ai,1)i∈N is uniformly

primitive recursive. We show that for any uniformly computable sequence A⃗ of staggered partitions,

there is an infinite Π1 set with no ∆2 A⃗-cohesive subset. If all the sets of A⃗ are from a particular class,
then it follows that there is an infinite Π1 set with no ∆2 subset that is cohesive for that class. There
is a uniformly primitive recursive sequence of staggered partitions, so there is an infinite Π1 set with
no ∆2 p-cohesive subset.

Theorem 2.5. Let A⃗ = (Ai,0, Ai,1)i∈N be a uniformly computable sequence of staggered partitions.

Then there is an infinite Π1 set with no ∆2 A⃗-cohesive subset.

Proof. We implement a movable markers style construction of an infinite Π1 set B with no ∆2 A⃗-
cohesive subset. For each i, s ∈ N, let mi,s denote the position of marker mi at stage s. Say that a
number n is marked at stage s if n = mi,s for some i, and say that n is unmarked at stage s otherwise.
At stage 0, we start with mi,0 = i for each i. At stage s > 0, for each i, we move marker mi to the
previous position of marker mj for some j ≥ i. That is, for each i, we set mi,s = mj,s−1 for some j ≥ i.
When we move the markers, we do so in such a way as to maintain that at every stage s, only finitely
many numbers are unmarked and ∀i (mi,s < mi+1,s). If a number is unmarked at stage s, then it is
unmarked at all later stages. The set of numbers that are ever unmarked during the course of the
construction is Σ1. Its complement is the desired Π1 set B, which consists of the final positions of all
the markers.

Let g : N3 → {0, 1} be a uniform sequence containing all ∆2-approximations. As above, write ge(n, s)
for g(e, n, s).

If C is an A⃗-cohesive set, then for every e, either C ⊆∗ Ae,0 or C ⊆∗ Ae,1. The goal of the construction

is to arrange, for every ∆2 A⃗-cohesive set C, that if C ⊆∗ Ae,a for a ∈ {0, 1}, then almost every marker
eventually settles on a member of Ae,1−a. If this is achieved, then C ⊆∗ Ae,a and B ⊆∗ Ae,1−a, so

B ∩ C is finite. Thus B has no ∆2 A⃗-cohesive subset.
For the purposes of this construction, think of a pair ⟨e,N⟩ as coding a guess that ge is a ∆2-

approximation of an A⃗-cohesive set C and that N is a threshold by which either ∀n ≥ N (n ∈ C →
n ∈ Ae,0) or ∀n ≥ N (n ∈ C → n ∈ Ae,1).
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Say that pair ⟨e,N⟩ is active at stage s if there is a side a ∈ {0, 1} of the partition (Ae,0, Ae,1) along
with a witness w with N < w < s meeting the following conditions.

(a) ge(w, s) = 1.

(b) ∀n
(
(N ≤ n ≤ w ∧ ge(n, s) = 1) → n ∈ Ae,a

)
.

Notice that if ⟨e,N⟩ is active at stage s, then there is a unique a ∈ {0, 1} meeting these conditions.
Call this a the active side, and call the largest witness w (with N < w < s) the activity witness for
⟨e,N⟩ at stage s. To each pair q = ⟨e,N⟩, we also associate a counter ct(q) that counts the number of
times that the active side of q changes. The construction now proceeds as follows.

At stage 0, initialize mi,0 = i for each i, and initialize ct(q) = 0 for every pair q.
At stage s > 0, consider all pairs q < s. First update the counters as follows. For each pair q < s,

if q is active at stage s and either this is the first stage at which q is active or the active side of q is
different than it was at the previous stage at which q was active, then update counter ct(q) to ct(q) + 1.

Now let i < s be the least number for which there is a pair q = ⟨e,N⟩ < s meeting the following
conditions.

(1) q is active at stage s with active side a and activity witness w for some a and w.

(2) q < i and ct(q) < i.

(3) mi,s−1 < w.

(4) mi,s−1 ∈ Ae,a.

If there is no such i, then put mk,s = mk,s−1 for each k and go on to the next stage. If there is such an
i, then let q be the least witnessing pair. Let

R = {π0(p) : p ≤ q ∧ ct(p) < i}.

For each y ∈ R, let v be the greatest activity witness yet achieved by any pair of the form ⟨y,M⟩ ≤ q,
let t be the most recent stage at which v was achieved, let M be least such that ⟨y,M⟩ ≤ q achieved
activity witness v at stage t, and let ay be the corresponding active side. If no pair ⟨y,M⟩ ≤ q has yet
been active, then let ay = 0. Now let j > i be the least number such that

mj,s−1 ∈
⋂
y∈R

Ay,1−ay .

Such a j exists because the intersection is infinite and almost every number is marked at stage s− 1.
Advance the markers by setting mk,s = mk,s−1 for all k < i and by setting mk,s = mk+j−i,s−1 for all
k ≥ i. In this way we maintain that only finitely many numbers are unmarked at stage s and that
∀k (mk,s < mk+1,s). We say that pair q has now moved marker mi. This completes the construction.

We show that for each i, marker mi moves only finitely often. Consider marker mi, and inductively
assume that there is a stage s0 after which no marker mk with k < i ever moves. Thus after stage s0,
marker mi is never moved on account of the movement of a marker mk with k < i. So if marker mi

moves after stage s0, it is because there is a pair q that meets conditions (1)–(4) for i and hence moves
mi. If q ≥ i, then q always fails condition (2) and hence never moves marker mi. Thus it suffices to
show that each pair q < i moves marker mi only finitely often. Fix q0 < i, and inductively assume that
there is a stage s1 > s0 after which no pair q < q0 ever moves marker mi. There are now several cases.

If q0 is active only finitely often, then condition (1) eventually always fails and therefore q0 moves
mi only finitely often.

If q0 changes its active side at least i many times, then condition (2) eventually always fails on
account of ct(q0) ≥ i. Thus q0 moves mi only finitely often.

If q0 does not achieve arbitrarily large activity witnesses, then there is a bound W such that the
activity witness of q0 is below W whenever q0 is active. When marker mi moves, it moves to mark a
larger number than it did previously. That is, if mi moves at stage s, then mi,s > mi,s−1. Marker mi

can move only finitely often before achieving mi,s ≥W . If mi does achieve mi,s ≥W at some stage s,
then condition (3) fails at all later stages. Thus q0 moves mi only finitely often.

Finally, suppose that pair q0 = ⟨e0, N0⟩ is active infinitely often, that ct(q0) < i at all stages, and
that q0 achieves arbitrarily large activity witnesses. As ct(q0) < i at all stages, q0 changes its active
side only finitely often and therefore eventually settles on some active side a ∈ {0, 1}. That is, there is
a stage s2 > s1 such that q0 has active side a whenever it is active at a stage s > s2.

Consider the pairs of the form ⟨e0,M⟩ < i. Let s3 > s2 be large enough so that
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• each pair ⟨e0,M⟩ < i that eventually achieves ct(⟨e0,M⟩) ≥ i has done so by stage s3, and

• each pair ⟨e0,M⟩ < i with ct(⟨e0,M⟩) < i at all stages has had ct(⟨e0,M⟩) settle on its final
value by stage s3.

The following Claims 1–3 help us complete the argument that pair q0 = ⟨e0, N0⟩ moves marker mi only
finitely often.

Claim 1. Consider pairs ⟨e,M0⟩ and ⟨e,M1⟩ with M0 ≤M1, where ⟨e,M0⟩ is active at stage s with
active side b ∈ {0, 1} and activity witness w > M1. Then ⟨e,M1⟩ is also active at stage s with active
side b.

Proof of Claim. Pair ⟨e,M0⟩ is active at stage s with active side b and activity witness w > M1.
Therefore ge(w, s) = 1; and n ∈ Ae,b whenever M0 ≤ n ≤ w and ge(n, s) = 1. Thus b and w also
witness that that ⟨e,M1⟩ is active at stage s with active side b because M0 ≤M1 < w. □

Claim 2. If a pair ⟨e0,M⟩ < i is active at stage s > s3 with ct(⟨e0,M⟩) < i and an activity witness
w > i, then its active side is a.

Proof of Claim. Suppose that ⟨e0,M⟩ < i is active at stage s > s3 with ct(⟨e0,M⟩) < i, active side b,
and activity witness w > i.

First suppose that M ≤ N0, and note that N0 ≤ ⟨e0, N0⟩ < i < w. Then by Claim 1, pair
q0 = ⟨e0, N0⟩ is also active at stage s with active side b. However, q0 has active side a at stage s
because s > s3 > s2. Thus b = a, so ⟨e0,M⟩ has active side a at stage s.

Suppose instead that M > N0. Pair q0 achieves arbitrarily large activity witnesses, so there is a
stage t > s at which q0 is active with active side a (as t > s2) and activity witness v > i. Note that
M ≤ ⟨e0,M⟩ < i < v. By Claim 1, pair ⟨e0,M⟩ is also active at stage t with active side a. However, if
b ̸= a, this means that ⟨e0,M⟩ changes its active side from b to a, thereby incrementing ct(⟨e0,M⟩), at
some stage between s and t. This contradicts that ct(⟨e0,M⟩) had already stabilized by stage s3 < s.
Therefore b = a, and pair ⟨e0,M⟩ must have had active side a at stage s. □

Let s4 > s3 be the first stage at which pair q0 achieves an activity witness w > i that is also greater
than the maximum activity witness achieved by the pairs of the form ⟨e0,M⟩ with ⟨e0,M⟩ < i at
stages s ≤ s3. Such an s4 exists by the assumption that q0 achieves arbitrarily large activity witnesses.

Claim 3. If marker mi moves at a stage s > s4, then mi moves to mark an element of Ae0,1−a. That
is, if s > s4 and mi,s > mi,s−1, then mi,s ∈ Ae0,1−a.

Proof of Claim. Suppose that mi moves at stage s > s4. As s4 > s1, it must be that mi is moved by a
pair q with q0 ≤ q < i. As q0 = ⟨e0, N0⟩ and ct(q0) < i, index e0 is in the set R used by q to move mi.
We show that ae0 = a at stage s. It then follows that mi,s ∈ Ae0,1−a because, at stage s, mi,s is set to
mj,s−1 for an mj,s−1 ∈ Ae0,1−a.

At stage s, the side ae0 is determined by considering the pairs ⟨e0,M⟩ ≤ q with ct(⟨e0,M⟩) < i,
finding the greatest activity witness v yet achieved by any such pair, and by finding the most recent
stage t at which this activity witness was achieved. Pair q0 = ⟨e0, N0⟩ is among the considered pairs,
and, at stage s4, q0 achieves an activity witness w > i that is greater than any activity witnessed
ever achieved by a pair ⟨e0,M⟩ ≤ q < i at a stage r ≤ s3. Thus it must be that v > i, and v must
be achieved by some ⟨e0,M⟩ ≤ q < i with ct(⟨e0,M⟩) < i at some stage t > s3. By Claim 2, a is
the active side for any such pair ⟨e0,M⟩ that is active at a stage t > s3 with activity witness v > i.
Therefore ae0 is chosen to be a at stage s. □

By Claim 3, whenever marker mi moves after stage s4, it moves to mark an element of Ae0,1−a.
Thus if mi moves at stage s > s4, then ∀t ≥ s (mi,t ∈ Ae0,1−a). In this case condition (4) fails for q0 at
all stages t > s, and therefore q0 cannot move mi at any stage t > s. Thus pair q0 moves marker mi at
most once after stage s4, and therefore q0 moves mi only finitely often. This completes the proof that
pair q0 moves marker mi only finitely often, which completes the proof that marker mi moves only
finitely often. Thus the construction indeed produces an infinite Π1 set B.

We finish the proof by showing that if C is a ∆2 A⃗-cohesive set, then the final position of almost

every marker is in C. This shows that B ∩ C is finite and therefore that C is not an A⃗-cohesive subset

of B. It follows that B has no ∆2 A⃗-cohesive subset.
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Let C be a ∆2 A⃗-cohesive set, and let e be such that ge is a ∆2-approximation to C. By A⃗-
cohesiveness, either C ⊆∗ Ae,0 or C ⊆∗ Ae,1. Let a ∈ {0, 1} be such that C ⊆∗ Ae,a, and let N be least
such that ∀n ≥ N (n ∈ C → n ∈ Ae,a). Let q = ⟨e,N⟩.

Claim 4. Pair q achieves arbitrarily large activity witnesses and eventually settles on active side a.

Proof of Claim. Given any number W > N , let w be the least number with w > W and w ∈ C. Let
s > w be large enough so that ge(n, s) = C(n) for all n ≤ w. Then q is active at stage s with active
side a and activity witness w or greater. Thus q achieves arbitrarily large activity witnesses.

Let n be the least number with n > N and n ∈ C. Let s0 be large enough so that ∀m ≤ n ∀s ≥
s0 (ge(m, s) = C(m)). Then if q is active at a stage s > s0, it must use an activity witness w ≥ n, in
which case its active side must be a because ge(n, s) = 1 and n ∈ Ae,a. That is, q has active side a
whenever it is active at a stage later than s0. Thus q eventually settles on active side a. □

By Claim 4, pair q changes its active side only finitely often, so there is a stage s0 by which ct(q) has
reached its final value, which we also denote ct(q). Consider an i with q < i and ct(q) < i. Let s1 > s0
be a stage by which marker mi has stopped moving: ∀s > s1 (mi,s = mi,s1). Then mi,s1 ∈ Ae,1−a. If
instead mi,s1 ∈ Ae,a, then, by Claim 4, let s > s1 be a stage at which q is active with active side a and
activity witness w > mi,s−1. Then q meets conditions (1)–(4) at stage s because mi,s−1 = mi,s1 ∈ Ae,a.
Thus marker mi moves at stage s, either directly by some pair or on account of the movement of a
marker mk with k < i. This is a contradiction. We have shown that marker mi settles on a member
of Ae,1−a whenever i satisfies q < i and ct(q) < i. We therefore have that B ⊆∗ Ae,1−a and that
C ⊆∗ Ae,a. Thus B ∩ C is finite, as desired. □

Corollary 2.6. There is an infinite Π1 set with no ∆2 p-cohesive subset.

Proof. Apply Theorem 2.5 to a uniformly primitive recursive sequence A⃗ of staggered partitions. Then

there is an infinite Π1 set B with no ∆2 A⃗-cohesive subset and hence no p-cohesive subset. □

An infinite Π1 set B with no ∆2 p-cohesive subset also has no Σ2 p-cohesive subset. Every infinite
Σ2 set has an infinite ∆2 subset by the fact that every infinite c.e. set has an infinite computable subset
relativized to 0′. Also, infinite subsets of p-cohesive sets are p-cohesive. Thus if C were a Σ2 p-cohesive
subset of B, then C would have an infinite ∆2 subset D, which would be a contradictory ∆2 p-cohesive
subset of B. On the other hand, every infinite Π1 set has a Π2 cohesive subset by the fact that every
infinite computable set has a Π1 cohesive subset (see [34, Theorem XI], for example) relativized to
0′. In fact, relativizing to 0′ yields that every infinite ∆2 set has a Π2 subset that is cohesive for the
collection of Σ2 sets. Thus Corollary 2.6 is optimal in terms of the arithmetical hierarchy: there is
an infinite Π1 set with no ∆2 p-cohesive subset and therefore no Σ2 p-cohesive subset, whereas every
infinite Π1 set has a Π2 cohesive subset.

Lastly, we paste together a few facts from the literature to observe that the collection of infinite
Π1 sets without ∆2 cohesive subsets does not coincide with the collection of infinite Π1 sets without
Π1 cohesive subsets. Specifically, we observe that there is an infinite Π1 set that does not have a Π1

r-cohesive subset but does have a ∆2 cohesive subset.
Recall that a set B ⊆ N is called semi-low2 if {e : We ∩B is infinite} ≤T 0′′. We can use the strategy

from Jockusch’s proof that every set X with X ′ ≥T 0′′ computes a cohesive set [16, Theorem 4.1] to
show that every infinite ∆2 set that is semi-low2 has a ∆2 cohesive subset. The proof is also similar to
that of Proposition 2.2

Proposition 2.7 (Following [16, Theorem 4.1]). Let B ⊆ N be an infinite set that is ∆2 and semi-low2.
Then B has a ∆2 cohesive subset.

Proof. Given indices e0, . . . , en, we can effectively produce an index e such that We =
⋂

i≤nWei . Using

this and the fact that B is semi-low2, we can define the following function f ≤T 0′′ by recursion.

f(0) = the least e such that B ∩We is infinite

f(n+ 1) = the least e > f(n) such that B ∩
⋂
i≤n

Wf(i) ∩We is infinite.

By the limit lemma, there is a function g : N2 → N with g ≤T 0′ such that lims g(n, s) = f(n) for every
n. We compute an increasing enumeration c0 < c1 < c2 < · · · of a cohesive set C ⊆ B from 0′ using
that B ≤T 0′, that g ≤T 0′, and the fact that the sets We are uniformly computable from 0′. The
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characteristic function of C may then be computed from its increasing enumeration, so C is the desired
∆2 cohesive subset of B.

Let c0 be the least element of B. Suppose we have already determined c0 < c1 < · · · < cn. To find
cn+1, search for the least pair ⟨s, c⟩ with s > n, c > cn, and c ∈ B ∩

⋂
i≤nWg(i,s). Then let cn+1 = c.

Such a pair ⟨s, c⟩ always exists because if s is sufficiently large, then ∀i ≤ n (g(i, s) = f(i)), in which
case B ∩

⋂
i≤nWg(i,s) is infinite.

We check that C is cohesive. Suppose that e ∈ ran(f). Let i be such that f(i) = e, and let s0 be
large enough so that g(i, s) = f(i) = e for all s ≥ s0. Then cn+1 is chosen from Wf(i) = We whenever
n ≥ max{i, s0}. Thus C ⊆∗ We. Now suppose that e /∈ ran(f), and let n be least such that f(n) > e.
Then B ∩

⋂
i<nWf(i) ∩We must be finite because otherwise we would have f(n) ≤ e. We just showed

that C ⊆∗ B ∩
⋂

i<nWf(i), so C ∩We must be finite as well. Therefore C is cohesive. □

Proposition 2.8. There is an infinite Π1 set that has no Π1 r-cohesive subset but does have a ∆2

cohesive subset.

Proof. Let A be Lachlan’s hyperhypersimple set with no maximal superset from [19]. Recall that a
co-infinite c.e. set is called r-maximal if its complement is r-cohesive. Then in fact A has no r-maximal
superset because hyperhypersimiplicity is ⊆-upwards closed in the co-infinite c.e. sets and because
r-maximality and hyperhypersimiplicity together imply maximality by [39, Proposition 4.5]. So if
A had an r-maximal superset X, then X would be a contradictory maximal superset of A. Thus
A is an infinite Π1 set with no Π1 r-cohesive subset. Maass [23] observes that A is semi-low2 (see
also [39, Section XVI.1]), so A has a ∆2 cohesive subset by Proposition 2.7. Thus B = A is an infinite
Π1 set that has no Π1 r-cohesive subset but does have a ∆2 cohesive subset. □

One may of course wonder if ‘no Π1 r-cohesive subset’ can be improved to ‘no Π1 p-cohesive subset’
in Proposition 2.8. We did not attempt to determine this.

3. Cohesive products, cohesive powers, and computable linear orders

We present the necessary background material concerning cohesive products and powers of computable
structures, with emphasis on computable linear orders. We refer the reader to [1,32] as general resources
for computable structure theory and to [35] as a general resource for linear orders.

Computable structures, cohesive products, and cohesive powers. Fix a computable language
L. A computable L-structure A consists of a non-empty computable domain A ⊆ N and uniformly
computable interpretations of the relation, function, and constant symbols of L. Often the domain
of a structure A (computable or not) is denoted by |A|. Likewise, a uniformly computable sequence
of L-structures (Ai : i ∈ N) consists of a uniformly computable sequence (Ai : i ∈ N) of non-empty
domains, where Ai ⊆ N for each i, along with uniformly computable interpretations all the symbols of
L in the structures (Ai : i ∈ N). Equivalently, an L-structure A is computable if its atomic diagram is
computable, and a sequence of L-structures (Ai : i ∈ N) is uniformly computable if the corresponding
sequence of atomic diagrams is uniformly computable. More generally, a computable L-structure
is decidable (n-decidable) if its elementary diagram (Σn-elementary diagram) is computable, and a
uniformly computable sequence of L-structures is uniformly decidable (uniformly n-decidable) if the
corresponding sequence of elementary diagrams (Σn-elementary diagrams) is uniformly computable.
Note that a 0-decidable L-structure is the same thing as a computable L-structure, and a uniformly
0-decidable sequence of L-structures is the same thing as a uniformly computable sequence of L-
structures.

We present the definition of cohesive products and cohesive powers as in [9]. See also [5, 7].

Definition 3.1. Let L be a computable language. Let (An : n ∈ N) be a uniformly computable
sequence of L-structures with corresponding uniformly computable sequence of non-empty domains
(|An| : n ∈ N). Let C ⊆ N be a cohesive set. The cohesive product of (An : n ∈ N) over C is the
L-structure

∏
C An defined as follows.

• Let D be the set of partial computable functions φ such that ∀n (φ(n)↓ → φ(n) ∈ |An|) and
C ⊆∗ dom(φ).

• For φ,ψ ∈ D, let φ =C ψ denote C ⊆∗ {n : φ(n)↓ = ψ(n)↓}. The relation =C is an equivalence
relation on D. Let [φ] denote the equivalence class of φ ∈ D with respect to =C .
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• The domain of
∏

C An is the set |
∏

C An| = {[φ] : φ ∈ D}.

• Let R be an m-ary relation symbol of L. For each [φ0], . . . , [φm−1] ∈ |
∏

C An|, define

R
∏

C An([φ0], . . . , [φm−1]) by

R
∏

C An([φ0], . . . , [φm−1]) ⇔ C ⊆∗ {n : RAn(φ0(n), . . . , φm−1(n))
}
.

Here, RAn(φ0(n), . . . , φm−1(n)) includes the condition that φi(n)↓ for each i < m.

• Let f be an m-ary function symbol of L. For each [φ0], . . . , [φm−1] ∈ |
∏

C An|, let ψ be the
partial computable function defined by

ψ(n) ≃ fAn(φ0(n), . . . , φm−1(n)),

and notice that C ⊆∗ dom(ψ) because C ⊆∗ dom(φi) for each i < m. Define f
∏

C An by

f
∏

C An([φ0], . . . , [φm−1]) = [ψ].

• Let c be a constant symbol of L. Let ψ be the total computable function defined by ψ(n) = cAn ,

and define c
∏

C An = [ψ].

In the case where An is the same fixed computable structure A for every n, the cohesive product∏
C An is called the cohesive power of A over C and is denoted

∏
C A.

As in the classical case, a computable structure A always naturally embeds into its cohesive powers.
For a ∈ |A|, let fa be the total computable function with constant value a. Then for any cohesive set
C, the so-called canonical embedding a 7→ [fa] embeds A into

∏
C A.

The extent to which analogs of  Loś’s theorem hold for cohesive products and powers depends on
what formulas are decidable in the structures. We make the following definitions as in [9]. Say that
a computable sequence of formulas (Φi : i ∈ N) is uniformly decidable in a uniformly computable
sequence of structures (An : n ∈ N) if there is an algorithm that, given an n, an i, a subformula Ψ(y⃗)
of Φi, and a sequence of parameters a⃗ from |An| of appropriate length, determines whether An |= Ψ(⃗a).
That is, (Φi : i ∈ N) is uniformly decidable in (An : n ∈ N) if the set

{⟨n, i,Ψ(y⃗), a⃗⟩ : Ψ is a subformula of Φi ∧ |⃗a| = |y⃗| ∧ An |= Ψ(⃗a)}

is computable. In the case of a single formula Φ (and its subformulas), we say that Φ is uniformly
decidable in (An : n ∈ N).

Lemma 3.2 ([9, Lemma 2.5]). Let L be a computable language, let (An : n ∈ N) be a uniformly
computable sequence of L-structures, and let C be a cohesive set. Let Φ(x⃗, y⃗, v0, . . . , vm−1) be a formula
that is uniformly decidable in (An : n ∈ N).

(1) For any [φ0], . . . , [φm−1] ∈ |
∏

C An|,∏
C
An |= ∃x⃗ ∀y⃗Φ(x⃗, y⃗, [φ0], . . . , [φm−1]) ⇒ C ⊆∗ {n : An |= ∃x⃗ ∀y⃗Φ(x⃗, y⃗, φ0(n), . . . , φm−1(n))

}
.

(2) For any [φ0], . . . , [φm−1] ∈ |
∏

C An|,

C ⊆∗ {n : An |= ∀x⃗ ∃y⃗Φ(x⃗, y⃗, φ0(n), . . . , φm−1(n))
}

⇒
∏

C
An |= ∀x⃗ ∃y⃗Φ(x⃗, y⃗, [φ0], . . . , [φm−1]).

We obtain the following analogs of  Loś’s theorem from Lemma 3.2. We abuse the terminology
somewhat by saying that a formula is ∆n if it is logically equivalent to both a Σn formula and a Πn

formula.

Theorem 3.3 ([9, Theorem 2.7]). Let L be a computable language, let (Ai : i ∈ N) be a uniformly
n-decidable sequence of L-structures, and let C be a cohesive set.

(1) Let Φ(v0, . . . , vm−1) be a Σn+2 formula. Then for any [φ0], . . . , [φm−1] ∈ |
∏

C Ai|,∏
C
Ai |= Φ([φ0], . . . , [φm−1]) ⇒ C ⊆∗ {i : Ai |= Φ(φ0(i), . . . , φm−1(i))

}
.

(2) Let Φ(v0, . . . , vm−1) be a Πn+2 formula. Then for any [φ0], . . . , [φm−1] ∈ |
∏

C Ai|,

C ⊆∗ {i : Ai |= Φ(φ0(i), . . . , φm−1(i))
}

⇒
∏

C
Ai |= Φ([φ0], . . . , [φm−1]).
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(3) Let Φ(v0, . . . , vm−1) be a ∆n+2 formula. Then for any [φ0], . . . , [φm−1] ∈ |
∏

C Ai|,∏
C
Ai |= Φ([φ0], . . . , [φm−1]) ⇔ C ⊆∗ {i : Ai |= Φ(φ0(i), . . . , φm−1(i))

}
.

The analog of  Loś’s theorem achieves an extra quantifier in the case of sentences and cohesive powers.

Theorem 3.4 ([9, Theorem 2.9]). Let L be a computable language, let A be an n-decidable L-structure,
and let C be a cohesive set.

(1) Let Φ be a ∆n+3 sentence. Then A |= Φ if and only if
∏

C A |= Φ.

(2) Let Φ be a Σn+3 sentence. If A |= Φ, then
∏

C A |= Φ.

It follows that the full analogs of  Loś’s theorem hold when the structures are uniformly decidable. If
(Ai : i ∈ N) is a uniformly decidable sequence of structures, then the conclusion of Theorem 3.3 item (3)
holds for every first-order formula Φ. Similarly, if A is a decidable structure, then the conclusion of
Theorem 3.4 item (1) holds for every first-order sentence Φ.

In [9] it is shown (following [33]) that cohesive products of uniformly decidable sequences of structures
are recursively saturated and that, for n > 0, cohesive products of uniformly n-decidable sequences
of structures are Σn-recursively saturated. More interestingly, it is shown that we obtain an extra
level of saturation as well as the n = 0 case when the cohesive set is assumed to be Π1: cohesive
products of uniformly n-decidable sequences of structures over Π1 cohesive sets are Σn+1-recursively
saturated [9, Theorem 2.18]. We now show that the same holds for cohesive products over ∆2 cohesive
sets: cohesive products of uniformly n-decidable sequences of structures over ∆2 cohesive sets are
Σn+1-recursively saturated.

Recall the definitions pertaining to saturation. Let L be a language, let A be an L-structure, and
let D ⊆ |A| be a collection of parameters from |A|. Let LD = L ∪ D be the language obtained by
augmenting L with fresh constant symbols identified with the members of D. A type (of A) over D is
a set of LD-formulas p(x⃗) = p(x0, . . . , xm−1) in m fixed variables x0, . . . , xm−1 that is finitely satisfied
in A: for every Φ0(x⃗), . . . ,Φk−1(x⃗) ∈ p(x⃗), A |= ∃x⃗

∧
i<k Φi(x⃗). A type p(x⃗) of A over D is realized

if there are a0, . . . , am−1 ∈ |A| such that for all Φ(x⃗) ∈ p(x⃗), A |= Φ(⃗a). A type is a Σn-type if every
formula in the type is Σn. Now let L be a computable language. An L-structure A is recursively
saturated if it realizes every computable type over a finite set of parameters, and it is Σn-recursively
saturated if it realizes every computable Σn-type over a finite set of parameters.

Let p(x⃗) be a type of some structure A over parameters D. For us, D is always finite or countable,
and we enumerate it as a sequence c⃗ of appropriate length. We write p(x⃗; c⃗) for p(x⃗) and Φ(x⃗; c⃗)
for a formula of p(x⃗; c⃗) when we want to highlight the parameters. Here, Φ(x⃗; c⃗) is shorthand for
Φ(x⃗; c⃗↾k), where c⃗↾k is the shortest initial segment of c⃗ containing all the parameters appearing in Φ.
We also write Φ(x⃗; y⃗) for the L-formula corresponding to Φ(x⃗; c⃗), with fresh variables y⃗ in place of the
parameters c⃗.

The following lemma extends [9, Lemma 2.17] by allowing ∆2 cohesive sets and by allowing infinite
sequences of uniformly partial computable parameters. Say that a sequence ([ψℓ] : ℓ ∈ N) of elements
of some cohesive product is uniformly partial computable if the sequence (ψℓ : ℓ ∈ N) of representatives
is uniformly partial computable.

Lemma 3.5 (Extending [9, Lemma 2.17]). Let L be a computable language, let (An : n ∈ N) be a

uniformly computable sequence of L-structures, and let C be a ∆2 cohesive set. Let p = p(x⃗;
−→
[ψ]) be

a computable type of
∏

C An over a uniformly partial computable sequence of parameters
−→
[ψ] = ([ψℓ] :

ℓ ∈ N). Assume that p consists of formulas of the form ∃z⃗Φ(x⃗, z⃗;
−→
[ψ]) with computable enumeration

(∃z⃗i Φi(x⃗, z⃗i;
−→
[ψ]) : i ∈ N). Further assume that the formulas (Φi(x⃗, z⃗i; y⃗) : i ∈ N) are uniformly decidable

in the structures (An : n ∈ N). Then
∏

C An realizes p.

Proof. As p(x⃗;
−→
[ψ]) is a type, ∏

C
An |= ∃x⃗

∧
i<k

∃z⃗i Φi(x⃗, z⃗i;
−→
[ψ])

for each k. To streamline the notation, let ψ : N2 → N<N be the partial computable function given

by ψ(i, n) ≃ ⟨ψ0(n), . . . , ψℓi−1(n)⟩, where ℓi is least such that
−→
[ψ]↾ℓi contains all the parameters of

−→
[ψ]

appearing in Φi. Notice that C ⊆∗ {n : ψ(i, n)↓} for every i.
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Our goal is to partially compute a function θ : N → Nm so that C ⊆∗ dom(θ) and

∃∞n ∈ C
(
An |= ∃z⃗i Φi(θ(n), z⃗i;ψ(i, n))

)
(∗)

for each i. The set {
n : An |= ∃z⃗i Φi(θ(n), z⃗i;ψ(i, n))

}
is c.e. for each i because Φi is uniformly decidable in (An : n ∈ N). Thus (∗) implies that

∀∞n ∈ C
(
An |= ∃z⃗i Φi(θ(n), z⃗i;ψ(i, n))

)
for each i by cohesiveness. Once θ has been defined, we let φj = πj ◦ θ for each j < m. We then have
that [φ0], . . . , [φm−1] ∈ |

∏
C An| and that∏

C
An |= ∃z⃗i Φi

(−→
[φ], z⃗i;

−→
[ψ]

)
for each i by Lemma 3.2 item (2). Thus [φ], . . . , [φm−1] realize p(x⃗;

−→
[ψ]) in

∏
C An.

Let f : N2 → {0, 1} be a ∆2-approximation to the cohesive set C. Let (Uk : k ∈ N) be the uniformly
c.e. sequence of sets given by

Uk =

{
⟨⃗a, n⟩ ∈ Nm × N : An |=

∧
i<k

∃z⃗i Φi(⃗a, z⃗i;ψ(i, n))

}
with uniformly computable ⊆-increasing enumerations (Uk,s)s∈N for each k. The sequence (Uk : k ∈ N)
is uniformly c.e. because the formulas (Φi : i ∈ N) are uniformly decidable in (An : n ∈ N). Notice
that if k ≤ j, then Uj ⊆ Uk. We can therefore arrange the enumerations so that if k ≤ j, then
∀s (Uj,s ⊆ Uk,s).

We partially compute θ by computing an increasing sequence θ0 ⊆ θ1 ⊆ θ2 ⊆ · · · of finite approxi-
mations to θ. Start at stage 0 with θ0 = ∅. At stage s, we have θs, and we define θs+1.

Say that n covers k at stage s if the following conditions hold.

(a) n > k.

(b) f(n, s) = 1.

(c) θs(n)↓.

(d) ⟨θs(n), n⟩ ∈ Uk,s.

If there is an n that covers k at stage s, then we say that k is covered at stage s. Let k0s be the least
number that is not covered at the start of stage s. If s > 0, then let k1s be the least number (if it exists)
for which there is an n with f(n, s) = 0 that covered k1s at stage s− 1, but no n̂ ≤ n covers k1s at stage
s. If k1s is defined, then let ks = min{k0s , k1s}. Otherwise, let ks = k0s . Now check if there is an n < s
meeting the following conditions.

(i) n > ks.

(ii) f(n, s) = 1.

(iii) θs(n)↑.

(iv) There is an a⃗ with ⟨⃗a, n⟩ ∈ Uks,s.

If there is such an n, choose the least such n, choose the first corresponding a⃗ as in item (iv), and
extend θs to θs+1 by setting θs+1(n) = a⃗. If there is no such n, then set θs+1 = θs. Now go to stage
s+ 1. This completes the definition of θ.

Suppose that n covers k at some stage s0. Then the only way that n could fail to cover k at some
stage s > s0 is by the failure of condition (b). If, however, n ∈ C, then there is a stage s1 > s0 such
that ∀s ≥ s1 (f(n, s) = 1). Then n covers k at all stages s ≥ s1. In this situation, we say that k is
covered by an n ∈ C. We show by induction on k that every k is eventually covered by an n ∈ C.

Claim. Every k is eventually covered by an n ∈ C.
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Proof of Claim. Proceed by induction on k. Let s0 be a stage by which all k̂ < k have been covered by

members of C. Let c be the greatest member of C covering a k̂ < k at stage s0. Let s1 > s0 be a stage
by which f has settled to its final value on all n ≤ c: ∀n ≤ c ∀s ≥ s1 (f(n, s) = C(n)). Then ks ≥ k at
all stages s > s1. By assumption,∏

C
An |= ∃x⃗

∧
i<k

∃z⃗i Φi

(
x⃗, z⃗i;

−→
[ψ]

)
,

and therefore

C ⊆∗

{
n : An |= ∃x⃗

∧
i<k

∃z⃗i Φi (x⃗, z⃗i;ψ(i, n))

}
by Lemma 3.2 item (1). The lemma applies because prenexing the formula ∃x⃗

∧
i<k ∃z⃗i Φi(x⃗, z⃗i; y⃗)

yields a formula of the form ∃w⃗Ψ(w⃗; y⃗), where Ψ is uniformly decidable in (An : n ∈ N). Let n0 be
least with n0 > k, n0 ∈ C, θs1(n0)↑, and ∃a⃗ (⟨⃗a, n0⟩ ∈ Uk). If θs(n0) is defined for the first time during
a stage s > s1, then it is to cover a j with k ≤ j < n0. That is, if the value of θs(n0) is determined at
stage s > s1, then it is chosen so that ⟨θs(n0), n0⟩ ∈ Uj,s ⊆ Uk,s for a j ≥ k. Therefore n0 covers k at
any stage s > s1 at which θs(n0)↓ and f(n0, s) = 1.

Let s2 > max{n0, s1} be large enough so that ∀n ≤ n0 ∀s ≥ s2 (f(n, s) = C(n)) and that
∃a⃗ (⟨⃗a, n0⟩ ∈ Uk,s2). Consider stage s2. If k is not covered at stage s2, then it must be that ks2 = k and
that θs2(n0)↑. Furthermore, by choice of n0 and s2, n0 < s2 is the least number meeting conditions (i)–
(iv) at stage s2. Therefore θs2+1(n0) is defined to cover k at stage s2, so k is covered by an element of
C.

Suppose instead that k is covered at stage s2. Let n be the least number for which there is a stage
s3 ≥ s2 at which n covers k. If n ∈ C, then k is covered by an element of C, as desired. If n /∈ C, then
there is a least stage s > s3 with f(n, s) = 0. The number n covers k at stage s− 1, but by the choice
of n, no n̂ ≤ n covers k at stage s. Thus k1s = k, so ks = k. If θs(n0)↓, then n0 must already cover k
as observed above. If θs(n0)↑, then n0 < s is the least number meeting conditions (i)–(iv) at stage s.
Therefore θs+1(n0) is defined to cover k at stage s, so k is covered by an element of C. This completes
the proof of the claim. □

To complete the proof, consider the formula ∃z⃗i Φi. By the claim, every k is eventually covered
by an n ∈ C. Thus for every k > i, there is an n > k with n ∈ C, θ(n)↓, and ⟨θ(n), n⟩ ∈ Uk. Thus
C ⊆∗ dom(θ) by cohesiveness, and

∃∞n ∈ C
(
An |= ∃z⃗i Φi(θ(n), z⃗i;ψ(i, n))

)
as desired. □

Theorem 3.6 (Extending [9, Theorem 2.18]). Let L be a computable language, and let C be a ∆2

cohesive set.

(1) Let (Ai : i ∈ N) be a uniformly n-decidable sequence of L-structures. Then
∏

C Ai realizes
every computable Σn+1-type over a uniformly partial computable sequence of parameters. In
particular,

∏
C Ai is Σn+1-recursively saturated.

(2) Let A be an n-decidable L-structure. Then
∏

C A realizes every computable Σn+1-type over a
uniformly partial computable sequence of parameters. In particular,

∏
C A is Σn+1-recursively

saturated.

Proof. Item (1) follows from Lemma 3.5. A computable Σn+1-type can be computably enumerated as
(∃z⃗j Φj : j ∈ N), where Φj is Πn for every j. The formulas (Φj : j ∈ N) are then uniformly decidable in
the uniformly n-decidable sequence of structures (Ai : i ∈ N). Item (2) is the special case of item (1)
where Ai is A for each i. □

Cohesive products and powers of computable linear orders. A linear order L = (L;≺) consists
of a non-empty set L equipped with a binary relation ≺ satisfying the following axioms.

• ∀x (x ⊀ x).

• ∀x ∀y ∀z
(
(x ≺ y ∧ y ≺ z) → x ≺ z

)
.

• ∀x ∀y (x ≺ y ∨ x = y ∨ y ≺ x).
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Furthermore, a linear order L is dense if ∀x ∀y ∃z (x ≺ y → x ≺ z ≺ y) and has no endpoints
if ∀x ∃y ∃z (y ≺ x ≺ z). A computable linear order L = (L;≺L) therefore consists of a non-empty
computable set L ⊆ N and a computable relation ≺L ⊆ L× L that defines a linear order on L.

Let L = (L;≺L) be a linear order, and let a, b ∈ L. Let min≺L{a, b} and max≺L{a, b} denote the
minimum and maximum of a and b with respect to ≺L; let (a, b)L = {x ∈ L : a ≺L x ≺L b} and
[a, b]L = {x ∈ L : a ⪯L x ⪯L b} denote the open and closed intervals defined by a and b; and let
|(a, b)L| and |[a, b]L| denote the cardinalities of the respective intervals. It is convenient to allow b ≺L a
in the interval notation, in which case (a, b)L = [a, b]L = ∅. Let a ÎL b denote that the interval (a, b)L
is infinite.

Let ω denote the order-type of the natural numbers (N;<), let ζ denote the order-type of the integers
(Z;<), and let η denote the order-type of the rationals (Q;<), all with their usual orders. We refer to
(N;<), (Z;<), and (Q;<) as the usual presentations of ω, ζ, and η. For each n ≥ 1, let n denote the
order-type of the finite linear order ({0, 1, . . . , n− 1};<). For any order-type α, a computable linear
order of type α is called a computable copy of α. A computable copy of ω is not necessarily isomorphic
to the usual presentation of ω via a computable isomorphism. Every countable dense linear order
without endpoints has order-type η, and every computable copy of η is computably isomorphic to the
usual presentation of η (see [35, Theorem 2.8 and Exercise 16.4]).

Let L0 + L1 and L0L1 denote the usual sum and product of linear orders L0 and L1. Let L∗ denote
the reverse of the linear order L. Furthermore, recall the generalized sum of a sequence (Mℓ : ℓ ∈ |L|)
of linear orders indexed by the elements of a linear order L.

Definition 3.7 (see [35, Definition 1.38]). Let L be a linear order, and let (Mℓ : ℓ ∈ |L|) be a sequence
of linear orders indexed by |L|. The generalized sum

∑
ℓ∈|L|Mℓ of (Mℓ : ℓ ∈ |L|) over L is the linear

order S = (S;≺S) defined as follows. Write L = (L;≺L), and write Mℓ = (Mℓ;≺Mℓ
) for each ℓ ∈ L.

Define S = {(ℓ,m) : ℓ ∈ L ∧ m ∈Mℓ}, and define

(ℓ0,m0) ≺S (ℓ1,m1) if and only if (ℓ0 ≺L ℓ1) ∨ (ℓ0 = ℓ1 ∧ m0 ≺Mℓ0
m1).

Generalized sums may be used to define the shuffle of a non-empty and at-most-countable collection
of linear orders.

Definition 3.8 (see [35, Definition 7.14]). Let X be a non-empty collection of linear orders with
|X| ≤ ℵ0. Let f : Q → X be a function such that f−1(M) is dense in Q for each linear order M ∈ X.
Let S =

∑
q∈Q f(q) be the generalized sum of the sequence (f(q) : q ∈ Q) over Q. By density, the

order-type of S does not depend on the particular choice of f . Therefore S is called the shuffle of X
and is denoted σ(X).

In Definition 3.8, it is helpful to identify each linear order in X with a unique color and think of the
function f : Q → X as a coloring of Q in which every color occurs densely. The shuffle σ(X) is then
obtained by replacing each element of Q by the linear order with which it is colored. Also, we usually
think of the X in a shuffle σ(X) as a collection of order-types instead of as a collection of concrete
linear orders.

If L is a computable linear order and (Mℓ : ℓ ∈ |L|) is a uniformly computable sequence of
linear orders indexed by |L|, then the pairing function may be used to compute a copy of

∑
ℓ∈|L|Mℓ.

Furthermore, if (Mn : n ∈ N) is a uniformly computable sequence of linear orders, then a computable
dense coloring f : Q → N of Q may be used to compute a copy of σ({Mn : n ∈ N}).

Recall now the condensations and in particular the finite condensation of a linear order. In general,
a condensation of a linear order L is obtained by partitioning L into non-empty intervals and then by
collapsing each interval to a point.

Definition 3.9. Let L = (L;≺L) be a linear order. A condensation of L is any linear order
M = (M ;≺M) obtained by partitioning L into a collection M of non-empty intervals and, for intervals
I, J ∈M , defining I ≺M J if and only if ∀a ∈ I ∀b ∈ J (a ≺L b).

Definition 3.10. Let L = (L;≺L) be a linear order. For x ∈ L, let cF(x) denote the set of y ∈ L for
which there are only finitely many elements between x and y:

cF(x) =
{
y ∈ L : the interval

[
min≺L{x, y},max≺L{x, y}

]
L is finite

}
.

The set cF(x) is always a non-empty interval, as x ∈ cF(x). The finite condensation cF(L) of L is the
condensation obtained from the partition {cF(x) : x ∈ L}.
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When a linear order L = (L;≺L) is partitioned into non-empty intervals as in Definition 3.9, the
intervals of the partition are called the blocks of L. For the finite condensation of L, the blocks are the
sets of the form cF(x) for x ∈ L, each of which has order-type either ω, ω∗, ζ, or n for some n ≥ 1.
For x, y ∈ L, we also have that cF(x) ≺cF(L) cF(y) if and only if x ÎL y.

Linear orders are axiomatized by Π1 sentences, so it follows from Theorem 3.3 item (2) that a
cohesive product of a uniformly computable sequence of linear orders is again a linear order. The
properties of a linear order being dense and having no endpoints can each be expressed by Π2 sentences,
so also a cohesive product of a uniformly computable sequence of dense linear orders is a dense linear
order, and a cohesive product of a uniformly computable sequence of linear orders without endpoints
is a linear order without endpoints.

In [9] it is shown that cohesive powers commute with the sum, product, and reverse operations on
computable linear orders.

Theorem 3.11 ([9, Theorem 3.6]). Let L0 and L1 be computable linear orders, and let C be a cohesive
set. Then

(1)
∏

C(L0 + L1) ∼=
∏

C L0 +
∏

C L1,

(2)
∏

C(L0L1) ∼=
(∏

C L0

)(∏
C L1

)
, and

(3)
∏

C(L∗
0)

∼=
(∏

C L0

)∗
.

In [9], it is also shown that the finite condensation of the cohesive product of a uniformly computable
sequence of linear orders over a Π1 cohesive set is always dense. Furthermore, it is shown that the
finite condensation of the cohesive power of a computable copy of ω over a Π1 cohesive set always has
order-type 1 + η. We extend both results to ∆2 cohesive sets and recall a few helpful lemmas from [9].

Lemma 3.12 ([9, Lemma 3.7]). Let (Ln : n ∈ N) be a uniformly computable sequence of linear orders,
let C be a cohesive set, and let [ψ] and [φ] be elements of

∏
C Ln. Then the following are equivalent.

(1) [φ] is the ≺∏
C Ln

-immediate successor of [ψ].

(2) ∀∞n ∈ C
(
φ(n) is the ≺Ln-immediate successor of ψ(n)

)
.

(3) ∃∞n ∈ C
(
φ(n) is the ≺Ln-immediate successor of ψ(n)

)
.

Lemma 3.13 ([9, Lemma 3.8]). Let (Ln : n ∈ N) be a uniformly computable sequence of linear orders,
let C be a cohesive set, and let [ψ] and [φ] be elements of

∏
C Ln. Then the following are equivalent.

(1) [ψ] Î∏
C Ln

[φ].

(2) limn∈C |(ψ(n), φ(n))Ln | = ∞.

(3) lim supn∈C |(ψ(n), φ(n))Ln | = ∞.

Theorem 3.14 (Extending [9, Theorem 3.9]). Let (Ln : n ∈ N) be a uniformly computable sequence of
linear orders, and let C be a ∆2 cohesive set. Then cF(

∏
C Ln) is dense.

Proof. The cohesive product
∏

C Ln is Σ1-recursively saturated by Theorem 3.6, so it suffices to show
that the finite condensation of a Σ1-recursively saturated linear order is dense.

Let M = (M ;≺M) be a Σ1-recursively saturated linear order, and let a, b ∈M be such that a ÎM b.
We need to find a c ∈M with a ÎM c ÎM b. For each k ∈ N, let Φk(x; a, b) be the following formula
(with parameters a and b) expressing that the intervals (a, x)M and (x, b)M have at least k elements
each:

Φk(x; a, b) ≡ ∃w0, . . . , wk−1, z0, . . . , zk−1 (a ≺ w0 ≺ · · · ≺ wk−1 ≺ x ≺ z0 ≺ · · · ≺ zk−1 ≺ b).

The set p(x; a, b) = {Φk(x; a, b) : k ∈ N} is a computable set of Σ1 formulas, and it is a type over
{a, b} because the interval (a, b)M is infinite. Thus p(x; a, b) is realized by some c ∈M by Σ1-recursive
saturation. The intervals (a, c)M and (c, b)M are therefore both infinite, so a ÎM c ÎM b as
desired. □

If L is a computable copy of ω and C is a cohesive set, then the canonical embedding embeds L into∏
C L as an initial segment.

Lemma 3.15 ([9, Lemma 4.1]). Let L be a computable copy of ω, and let C be a cohesive set. Then
the image of the canonical embedding of L into

∏
C L is an initial segment of

∏
C L of order-type ω.
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Let L = (L;≺L) be a computable copy of ω, and let C be a cohesive set. It is straightforward to
check that if φ : N → L is a total computable injection, then [φ] is not in the image of the canonical
embedding. Therefore the cohesive power

∏
C L has the form ω + M for some non-empty linear order

M. Call an element of
∏

C L standard if it is in the image of the canonical embedding, and call the
element non-standard otherwise.

Lemma 3.16 ([9, Lemma 4.2]). Let L be a computable copy of ω, let C be a cohesive set, and let [φ]
be an element of

∏
C L. Then [φ] is non-standard if and only if lim infn∈C φ(n) = ∞.

In Lemma 3.16, the condition lim infn∈C φ(n) = ∞ may be replaced by limn∈C φ(n) = ∞ and by
lim supn∈C φ(n) = ∞.

Lemma 3.17 ([9, Lemma 4.3]). Let L be a computable copy of ω, let C be a cohesive set, and let [φ]
be a non-standard element of

∏
C L. Then there are non-standard elements [ψ−] and [ψ+] of

∏
C L

with [ψ−] Î∏
C L [φ] Î∏

C L [ψ+].

Theorem 3.18 (Extending [9, Theorem 4.4]). Let L be a computable copy of ω, and let C be a ∆2

cohesive set. Then cF(
∏

C L) has order-type 1 + η.

Proof. The standard elements of
∏

C L form a single initial block by Lemma 3.15. The blocks of
∏

C L
containing the non-standard elements form a countable linear order that is dense by Theorem 3.14 and
has no endpoints by Lemma 3.17. Thus cF(

∏
C L) ∼= 1 + η. □

The main result of [9] is that for a variety of countable linear orders M with cF(M) ∼= 1+ η and for
a given Π1 cohesive set C, it is possible to design a computable copy L of ω that achieves

∏
C L ∼= M.

Theorem 3.19 ([9, Theorem 6.10]). Let X ⊆ N \ {0} be a Boolean combination of Σ2 sets, thought
of as a set of finite order-types. Let C be a Π1 cohesive set. Then there is a computable copy L of ω
where the cohesive power

∏
C L has order-type ω + σ(X ∪ {ω + ζη + ω∗}). Moreover, if X is finite and

non-empty, then there is also a computable copy L of ω where the cohesive power
∏

C L has order-type
ω + σ(X).

The proof of Theorem 3.19 involves a coloring apparatus whereby a computable copy of ω is colored
in such a way as to induce a coloring on its cohesive power with certain density properties. We end
this section by introducing the coloring apparatus.

Definition 3.20 ([9, Definition 5.1]). A colored linear order is a structure O = (L,N;≺L, F ), where
L = (L;≺L) is a linear order and F is (the graph of) a function F : L→ N, thought of as a coloring of
L. The colored linear order O is a colored copy of ω if L ∼= ω.

A colored linear order is a two-sorted structure, where one sort is the domain L of the linear order
and the other sort is the set N of colors. The language consists of unary relation symbols for L and N, a
binary relation symbol for F , and the binary relation symbol ≺. Though we must technically formalize
F as a relation, we use the function notation F (ℓ) = d instead of the relation notation F (ℓ, d).

We typically follow the notational convention of letting O = (L,N;≺L, F ) denote a colored linear
order with the additional coloring structure and letting L = (L;≺L) denote the underlying linear order.
So let O be a computable colored linear order, let L be the underlying linear order, and let C be a
cohesive set. The cohesive power

∏
C O consists of a linear order

∏
C L, a collection of colors

∏
C N,

and a (graph of a) function F
∏

C O : |
∏

C L| → |
∏

C N| thought of as a coloring of
∏

C L. If [φ] is in
the domain of

∏
C O, then, by cohesiveness, either φ(n) is an element of the linear order (i.e., is of

the first sort) for almost every n ∈ C, or φ(n) is a color (i.e., is of the second sort) for almost every
n ∈ C. Therefore [φ] is either an element of the linear order

∏
C L or an element of the collection of

colors
∏

C N. See also the discussion of reducts and substructures of cohesive powers in [9, Section 2].
That ≺L linear orders L is expressible by a Π1 sentence, so ≺∏

C L indeed linearly orders |
∏

C L| by
Theorem 3.4. That F is the graph of a function with domain L and codomain N is expressible by a Π2

sentence, so F
∏

C O is indeed the graph of a function with domain |
∏

C L| and codomain |
∏

C N| by
Theorem 3.4 as well.

Again let O = (L,N;≺L, F ) be a computable colored linear order, let L = (L;≺L), and let C
be a cohesive set. To disambiguate between the elements of the linear order

∏
C L and the colors

of
∏

C N inside the cohesive power
∏

C O, we write [φ] for the elements of
∏

C L, and we write JδK
for the elements of

∏
C N. Call a color JδK ∈ |

∏
C N| a solid color if δ is eventually constant on C:

∃d ∈ N ∀∞n ∈ C (δ(n) = d). Otherwise, call JδK a striped color.
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We want to color a computable copy of ω so that in the cohesive power by a given cohesive set,
between any two distinct non-standard elements there are elements of every solid color plus at least
one element of a striped color. In this situation, we say that the cohesive power is colorful.

Definition 3.21 ([9, Definition 5.2]). Let O = (L,N;≺L, F ) be a computable colored copy of ω, and
let L denote (L;≺L). Let C be a cohesive set. The cohesive power

∏
C O is colorful if the following

items hold.

(1) For every pair of non-standard elements [φ], [ψ] ∈ |
∏

C L| with [ψ] ≺∏
C L [φ] and every solid

color JδK ∈ |
∏

C N|, there is a [θ] ∈ |
∏

C L| with [ψ] ≺∏
C L [θ] ≺∏

C L [φ] and F
∏

C O([θ]) = JδK.

(2) For every pair of non-standard elements [φ], [ψ] ∈ |
∏

C L| with [ψ] ≺∏
C L [φ], there is a

[θ] ∈ |
∏

C L| with [ψ] ≺∏
C L [θ] ≺∏

C L [φ] where F
∏

C O([θ]) is a striped color.

In Definition 3.21, item (1) implies item (2) when the cohesive set is ∆2. Let O = (L,N;≺L, F ) be a
computable colored copy of ω, let C be a ∆2 cohesive set, and suppose that

∏
C O satisfies Definition 3.21

item (1). Let [φ] and [ψ] be non-standard elements of
∏

C L with [ψ] ≺∏
C L [φ]. Let δi : N → N be the

constant function with value i for each i, so that (JδiK : i ∈ N) is a uniformly computable sequence of all
the solid colors of

∏
C N. Now consider the computable Σ1-type p(x; [φ], [ψ], Jδ0K, Jδ1K, . . . ) consisting

of the formula expressing [ψ] ≺ x ≺ [φ] and, for each i, the formula expressing F (x) ̸= JδiK. The set of
formulas p is indeed a type because every solid color occurs between [φ] and [ψ]. Thus p is realized by

some [θ] ∈ |
∏

C L| by Theorem 3.6 item (2). Then [ψ] ≺∏
C L [θ] ≺∏

C L [φ], and F
∏

C O([θ]) is a striped

color because it is not equal to any solid color. Thus
∏

C O also satisfies Definition 3.21 item (2).
Given a Π1 cohesive set C, we can compute a colored copy O of ω such that

∏
C O is colorful

by [9, Theorem 5.3]. In Section 4, we compute a single colored copy O of ω such that
∏

C O is colorful
for every ∆2 cohesive set C.

If O = (R,N;≺R, F ) is a computable colored copy of ω, R denotes (R;≺R), and C is a cohesive
set for which

∏
C O is colorful, then

∏
C R ∼= ω + η. This is because the standard elements of

∏
C R

form an initial segment of order-type ω by Lemma 3.15, the non-standard elements have no endpoints
by Lemma 3.17, and the colorfulness of

∏
C O implies that the non-standard elements of

∏
C R are

dense. In [9, Section 6], order-types other than ω + η are achieved by starting with R and computing
another copy L of ω by replacing each element of R by some finite linear order depending on the
element’s color and the desired order-type. The technique for producing L from O does not depend on
the cohesive set C: so long as

∏
C O is colorful, the cohesive power

∏
C L has the desired order-type.

Lemma 3.22 ([9, Lemmas 6.5 and 6.9]). Let X ⊆ N\{0} be a Boolean combination of Σ2 sets, thought
of as a set of finite order-types. Let O be a computable colored copy of ω.

• There is a computable copy L of ω (constructed from O) such that for every cohesive set C, if∏
C O is colorful, then

∏
C L has order-type ω + σ(X ∪ {ω + ζη + ω∗}).

• Moreover, if X is finite and non-empty, then there is also a computable copy L of ω (constructed
from O) such that for every cohesive set C, if

∏
C O is colorful, then

∏
C L has order-type

ω + σ(X).

We emphasize that the linear order L in the conclusion of Lemma 3.22 is not the underlying linear
order of O, but it is obtained from the underlying linear order of O by replacing its elements by finite
linear orders. Theorem 3.19 is achieved by starting with a Π1 cohesive set C, computing a colored
copy O of ω such that

∏
C O is colorful as in [9, Theorem 5.3], and then applying Lemma 3.22.

4. Cohesive powers of ω over ∆2 cohesive sets

The goal of this section is to compute a single computable colored copy O of ω such that
∏

C O is
colorful for every ∆2 cohesive set C. As a corollary, we obtain an infinite Π1 set with no ∆2 cohesive
subset, which is a weaker version of Corollary 2.6. We then apply Lemma 3.22 to show that there
are computable copies of ω whose cohesive powers over ∆2 cohesive sets have order-types of the form
ω + various shuffles.

Theorem 4.1. There is a computable colored copy O of ω such that
∏

C O is colorful whenever C is a
∆2 cohesive set.
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Proof. We compute a colored copy O = (L,N;≺L, F ) of ω so that
∏

C O is colorful whenever C is a
∆2 cohesive set. We take the domain of the underlying linear order L = (L;≺L) to be L = N. Given a
cohesive set C, recall that an element [φ] of

∏
C L is non-standard if and only if limn∈C φ(n) = ∞ by

Lemma 3.16.
The goal is to arrange that

∀∞n ∈ C
(
ψ(n)↓ ≺L φ(n)↓

⇒ ∀d ≤ max<{φ(n), ψ(n)} ∃k
(
(ψ(n) ≺L k ≺L φ(n)) ∧ (F (k) = d)

))
(∗)

whenever C is a ∆2 cohesive set and φ and ψ are partial computable functions with C ⊆∗ dom(φ),
C ⊆∗ dom(ψ), and limn∈C φ(n) = limn∈C ψ(n) = ∞.

Suppose we have arranged that L ∼= ω, suppose that C is a ∆2 cohesive set, and suppose that [φ]
and [ψ] are non-standard elements of

∏
C L with [ψ] ≺∏

C L [φ]. Then C ⊆∗ dom(φ), C ⊆∗ dom(ψ),

and limn∈C φ(n) = limn∈C ψ(n) = ∞. Further suppose that we have achieved (∗) for C, φ, and ψ. Fix
any color d, and let δ be the constant function with value d. Partially compute a function θ(n) by
searching for a k with ψ(n) ≺L k ≺L φ(n) and F (k) = d. If there is such a k, let θ(n) be the first such
k found. Property (∗) and the fact that limn∈C φ(n) = limn∈C ψ(n) = ∞ ensure that there is such a

k for almost every n ∈ C. Therefore C ⊆∗ dom(θ), [ψ] ≺∏
C L [θ] ≺∏

C L [φ], and F
∏

C O([θ]) = JδK.
This shows that for every solid color JδK, there is an element [θ] of

∏
C L between [ψ] and [φ] with

color JδK. Thus
∏

C O is colorful because it satisfies Definition 3.21 item (1) and C is ∆2. Therefore,
achieving (∗) suffices to prove the theorem, again provided we also arrange that L ∼= ω.

Let g : N3 → {0, 1} be a uniform sequence containing all ∆2-approximations as in Definition 2.3 and
the discussion following it. Write ge(n, s) in place of g(e, n, s) for all e, n, and s. Let (Ai,0, Ai,1)i∈N be
a computable sequence of staggered partitions as in Definition 2.4 and the discussion following it.

The construction acts when quadruples q = ⟨ℓ, r, e,N⟩ meet certain conditions. Think of ⟨ℓ, r, e,N⟩
as coding a pair (φℓ, φr) of partial computable functions along with a guess that ge approximates a
∆2 cohesive set and, moreover, that N is a threshold by which certain cohesive behavior begins. For
notational convenience, we often write ⟨x,N⟩ for ⟨ℓ, r, e,N⟩, where x = ⟨ℓ, r, e⟩. In this notation, we
still call ⟨x,N⟩ a ‘quadruple’ because x codes a triple.

To each triple x = ⟨ℓ, r, e⟩, assign partitions (A2x,0, A2x,1) and (A2x+1,0, A2x+1,1). Notice that if C is
a cohesive set with C ⊆∗ dom(φℓ) and C ⊆∗ dom(φr), then there is a pair of sides (a, b) ∈ {0, 1}×{0, 1}
of the partitions (A2x,0, A2x,1) and (A2x+1,0, A2x+1,1) such that ∀∞n ∈ C (φℓ(n) ∈ A2x,a) and ∀∞n ∈
C (φr(n) ∈ A2x+1,b).

The goal of a quadruple of the form ⟨x,N⟩ = ⟨ℓ, r, e,N⟩ is to attempt to satisfy (∗) for φ = φr,
ψ = φℓ, and C the ∆2 cohesive set approximated by ge (if ge indeed approximates a ∆2 cohesive set)
if also there is a pair (a, b) ∈ {0, 1} × {0, 1} such that φℓ(n) ∈ A2x,a and φr(n) ∈ A2x+1,b whenever
n ≥ N and n ∈ C. If ever it looks like φℓ(n) ≺L φr(n) for an n ≥ N with n ∈ C but there are not
elements of every color d ≤ max<{φℓ(n), φr(n)} in the interval (φℓ(n), φr(n))L, then ⟨x,N⟩ needs to
add elements of the missing colors to the interval. The difficulty is that we must produce a linear
order of type ω, and therefore we can only place finitely many elements ≺L-below any given element.
Priority prevents certain quadruples from adding elements ≺L-below certain other elements. Even so,
it may still be that a quadruple q0 adds an element k0, which induces a quadruple q1 ≤ q0 to add an
element k1 ≺L k0, which induces a quadruple q2 ≤ q1 to add another element k2 ≺L k0, and so on. It
may even be that q0 = q1 = q2 = · · · .

To avoid the sort of behavior indicated above, when a quadruple q wants to add elements to L, it
looks at the initial triples y of higher-or-equal priority requirements ⟨y,M⟩ = ⟨ℓ, r, e,M⟩ ≤ q, supposes
that ge approximates a ∆2 cohesive set Ce, and tries to choose the elements that it adds to avoid each
φℓ(Ce) and φr(Ce). To do this, for each such y = ⟨ℓ, r, e⟩, q looks at the most recent guess of sides
(ay, by) such that φℓ(Ce) ⊆∗ A2y,ay and φr(Ce) ⊆∗ A2y+1,by made by any ⟨y,M⟩ ≤ q for this y. Then q
chooses the elements it adds to L from the set⋂

⟨y,M⟩≤q

A2y,1−ay ∩A2y+1,1−by .

By choosing elements from the opposite sides of the partitions, q attempts to avoid adding elements
from the sets φℓ(Ce) and φr(Ce) corresponding to higher-or-equal priority quadruples. The staggering
of the partitions ensures that there are infinitely many elements for q to choose among.
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If for x = ⟨ℓ, r, e⟩, ge really does approximate a ∆2 cohesive set C with C ⊆∗ dom(φℓ) and
C ⊆∗ dom(φr), then any quadruple ⟨x,N⟩ with sufficiently large N eventually settles on the correct
guess of sides (a, b) such that φℓ(C) ⊆∗ A2x,a and φr(C) ⊆∗ A2x+1,b. However, many ge do not
approximate ∆2 sets at all, let alone ∆2 cohesive sets. If ge is particularly ill-behaved, then a
quadruple ⟨x,N⟩ = ⟨ℓ, r, e,N⟩ with this e may change its guess (a, b) concerning the sides of the
partitions (A2x,0, A2x,1) and (A2x+1,0, A2x+1,1) infinitely often. This makes it impossible for lower
priority quadruples to predict which elements to avoid adding to L in order to avoid inciting a reaction
from quadruple ⟨x,N⟩. To combat this problem, we count how many times ⟨x,N⟩ changes its guess.
The more ⟨x,N⟩ changes its guess, the more elements of L we prevent ⟨x,N⟩ from adding elements
≺L-below. This makes it safe for lower priority quadruples to add elements where ⟨x,N⟩ cannot.

We now describe the construction in full detail. Define ≺L and F in stages. By the end of stage s, ≺L
will have been defined on Ls ×Ls and F will have been defined on Ls for some finite Ls ⊇ {0, 1, . . . , s}.

Say that quadruple q = ⟨x,N⟩ = ⟨ℓ, r, e,N⟩ is active at stage s if there is a pair of sides (a, b) ∈
{0, 1} × {0, 1} of the partitions (A2x,0, A2x,1) and (A2x+1,0, A2x+1,1) along with a witness w with
N < w < s meeting the following conditions.

(a) ge(w, s) = 1.

(b) For all m with N ≤ m ≤ w and ge(m, s) = 1:
• φℓ,s(m)↓ ∈ A2x,a, and

• φr,s(m)↓ ∈ A2x+1,b.

Notice that if q is active at stage s, then there is a unique pair (a, b) for which there is a w meeting
these conditions. Call this pair (a, b) the active sides, and call the largest witness w (with N < w < s)
the activity witness for q at stage s. To each quadruple q, we associate a counter ct(q) that counts the
number of times that the active sides of q change.

At stage 0, set L0 = {0} with 0 ⊀L 0 and F (0) = 0. Initialize ct(q) = 0 for every quadruple q.
At stage s > 0, initially set Ls = Ls−1. If s /∈ Ls, then add s to Ls, define it to be the ≺L-maximum

element of Ls, and define F (s) = 0. Then consider the active quadruples q < s. If this is the first stage
at which q is active or if the active sides of q are different than they were at the previous stage at
which q was active, then update the counter ct(q) to ct(q) + 1.

The quadruple q = ⟨ℓ, r, e,N⟩ demands action at stage s if it is active with active sides (a, b) and
activity witness w and there is a least action input n with N ≤ n ≤ w meeting the following conditions.

(1) ge(n, s) = 1.

(2) φℓ(n), φr(n) ∈ Ls and φℓ(n) ≺L φr(n), but there is a d ≤ max<{φℓ(n), φr(n)} for which there
is no k ∈ Ls with φℓ(n) ≺L k ≺L φr(n) and F (k) = d.

(3) φℓ(n) is ⪯L-above all of 0, 1, . . . ,max<{q, ct(q)}.

If q = ⟨ℓ, r, e,N⟩ demands action with action input n, then let

S =
{
p ≤ q : φℓ(n) is ⪯L-above all of 0, 1, . . . ,max<{p, ct(p)}

}
R =

{
y : ∃M(⟨y,M⟩ ∈ S)

}
.

The idea is that S consists of the higher-or-equal priority quadruples p ≤ q that are currently permitted
to add elements immediately ≺L-above φℓ(n), and that R consists of the initial triples of each quadruple
in S. For each y ∈ R, let w be the greatest activity witness yet achieved by any ⟨y,M⟩ ∈ S, let t be
the most recent stage at which w was achieved, let M be least such that ⟨y,M⟩ ∈ S achieved activity
witness w at stage t, and let (ay, by) be the corresponding active sides. If no ⟨y,M⟩ ∈ S has yet been
active, then let (ay, by) = (0, 0). Let c = max<{φℓ(n), φr(n)}, and let k0 < k1 < · · · < kc be the c+ 1
least members of ⋂

y∈R

(
A2y,1−ay ∩A2y+1,1−by

)
\ Ls, (⋆)

which exist because the intersection is infinite and Ls is finite. Add k0, . . . , kc to Ls. Let v ∈ Ls be the
current ≺L-greatest element of the interval (φℓ(n), φr(n))L (or v = φℓ(n) if the interval is empty), and
set

φℓ(n) ⪯L v ≺L k0 ≺L · · · ≺L kc ≺L φr(n).
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Also set F (ki) = i for each i ≤ c, and say that q has acted and added k’s. This completes the
construction.

The constructed L is a computable linear order. We show that L ∼= ω by showing that for each u,
there are only finitely many elements ≺L-below u.

Fix u, and note that u appears in Ls at stage s = u at the latest. Consider the evolution of the
construction at stages s > u.

Claim 1. Suppose that quadruple q acts and adds elements to Ls at stage s > u and either q ≥ u or
ct(q) ≥ u at stage s. Then the elements added by the action of q are ≺L-above u.

Proof of Claim. If q acts at stage s > u with action input n and either q ≥ u or ct(q) ≥ u at stage s,
then u ≤ max<{q, ct(q)} at stage s. Thus it must be that u ≺L φℓ(n) ≺L φr(n) by condition (3). In
this case, the action adds elements to Ls and places them in the interval (φℓ(n), φr(n))L and hence
places them ≺L-above u. □

It follows from Claim 1 that no quadruple q ≥ u acts to add elements ≺L-below u at stages s > u.
Thus to show that there are only finitely many elements ≺L-below u, it suffices to show that each
quadruple q < u only ever acts to add finitely many elements ≺L-below u. The following Claims 2–4
aid this analysis.

Claim 2. Let x = ⟨ℓ, r, e⟩, and consider quadruples ⟨x,M0⟩ and ⟨x,M1⟩ with M0 < M1. Suppose that
for each i ∈ {0, 1}, ⟨x,Mi⟩ achieves arbitrarily large activity witnesses and eventually settles on a pair
of active sides (ai, bi). Then (a0, b0) = (a1, b1).

Proof of Claim. We show that at infinitely many stages t, both ⟨x,M0⟩ and ⟨x,M1⟩ are active with
active sides (a0, b0). It follows that (a0, b0) = (a1, b1) because ⟨x,M1⟩ changes its active sides only
finitely often. To this end, given any s, let t > s be a stage at which ⟨x,M0⟩ is active with active sides
(a0, b0) and activity witness w > M1. Such a stage t exists because ⟨x,M0⟩ achieves arbitrarily large
activity witnesses. Then ge(w, t) = 1, and also φℓ,t(m)↓ ∈ A2x,a0 and φr,t(m)↓ ∈ A2x+1,b0 for all m
with M0 ≤ m ≤ w and ge(m, t) = 1. Therefore (a0, b0) and w also witness that ⟨x,M1⟩ is active at
stage t with active sides (a0, b0) because M0 < M1 < w. □

Claim 3. For a given quadruple q, each number n can be the action input for q at most once.

Proof of Claim. Suppose that q = ⟨ℓ, r, e,N⟩ demands action with action input n at some stage s.
Then q adds elements of every color i ≤ max<{φℓ(n), φr(n)} to Ls and places them ≺L-between φℓ(n)
and φr(n). Thus condition (2) is never again satisfied for q with action input n at any stage t > s. □

Let q0 < u, and assume inductively that there is a stage s0 > u such that no quadruple p < q0 acts
to add elements k ≺L u after stage s0. In order for q0 to act and add elements at some stage s, it must
be that q0 is active at stage s with some activity witness w, and there must be an action input n with
n ≤ w. Therefore, if the activity witnesses for q0 are always ≤W for some fixed W , then q0 only acts
to add elements finitely often. This is because when q0 acts to add elements, it must use an action
input n ≤W , and, by Claim 3, q0 can use each n ≤W as an action input at most once. Furthermore,
if quadruple q0 changes its active sides at least u many times, then ct(q0) is incremented at least u
many times, so there is a stage s such that ct(q0) ≥ u at all stages t ≥ s. Thus if q0 acts at a stage
t ≥ s, then the elements it adds are ≺L-above u by Claim 1. Thus q0 only ever adds finitely elements
≺L-below u in this case as well.

For the remaining case, suppose that our quadruple q0 = ⟨x0, N0⟩ = ⟨ℓ0, r0, e0, N0⟩ achieves arbitrarily
large activity witnesses and changes its active sides fewer than u many times. Let ct0 < u denote the final
value of ct(q0), and let (a0, b0) be the final active sides of q0. Let v = max≺L{0, 1, . . . ,max<{q0, ct0}}.
We claim that eventually every element k added to Ls with v ≺L k ≺L u is in A2x0,1−a0 ∩A2x0+1,1−b0 .

Claim 4. There is a stage s1 ≥ s0 such that whenever an element k is added to Ls and v ≺L k ≺L u
is defined at some stage s ≥ s1, we have that k ∈ A2x0,1−a0 ∩A2x0+1,1−b0.

Proof of Claim. By the choice of s0, the fact that s0 > u, and Claim 1, we already know that no
quadruple p with either p < q0 or p ≥ u acts to add elements ≺L-below u after stage s0. Thus we need
only consider the behavior of quadruples p with q0 ≤ p < u.

Recall that our quadruple q0 is q0 = ⟨x0, N0⟩. Consider for a moment all quadruples ⟨x0,M⟩ < u
with this same x0, including quadruple q0. Let t0 and s1 with s1 > t0 > s0 be large enough so that the
following hold.
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• Each ⟨x0,M⟩ < u that eventually achieves ct(⟨x0,M⟩) ≥ u has done so by stage t0.

• Each ⟨x0,M⟩ < u that changes its active sides only finitely often has settled on its final active
sides and on its final value of ct(⟨x0,M⟩) by stage t0.

• By stage t0, q0 has achieved an activity witness larger than all activity witnesses ever achieved
by the ⟨x0,M⟩ < u that do not achieve arbitrarily large activity witnesses.

• By stage s1, q0 has achieved an activity witness larger than all the activity witnesses achieved
by all ⟨x0,M⟩ < u at stages t ≤ t0.

Such t0 and s1 exist because q0 achieves arbitrarily large activity witnesses.
Suppose that quadruple q = ⟨ℓ, r, e,N⟩ with q0 ≤ q < u acts and adds k’s in the interval (v, u)L at a

stage s ≥ s1. Then it must be that v ⪯L φℓ(n) ≺L φr(n) ⪯L u, where n is the action input for q at
stage s. In particular, at stage s, φℓ(n) is ⪯L-above all of 0, 1, . . . ,max<{q0, ct(q0)}. This means that
q0 ∈ S and x0 ∈ R, where S and R are the sets used by q when it acts at stage s. Thus when q acts
at stage s, it chooses active sides (ax0 , bx0) corresponding to x0. To do this, the action of q finds the
greatest activity witness w yet achieved by any ⟨x0,M⟩ ∈ S, the most recent stage t at which w was
achieved, the least M such that ⟨x0,M⟩ ∈ S achieved activity witness w at stage t, and then takes
(ax0 , bx0) to be the active sides of ⟨x0,M⟩ at stage t. We show that (ax0 , bx0) = (a0, b0).

Consider the quadruple ⟨x0,M⟩ used to choose the active sides (ax0 , bx0) corresponding to x0 during
the action of q at stage s as described above. Note that ⟨x0,M⟩ ≤ q < u. Quadruple ⟨x0,M⟩ changes
its active sides only finitely often. If ⟨x0,M⟩ changes its active sides infinitely often, then eventually
⟨x0,M⟩ achieves ct(⟨x0,M⟩) ≥ u and hence has done so by stage s > t0. Therefore, at stage s, φℓ(n)
is not ⪯L-above all of 0, 1, . . . ,max<{⟨x0,M⟩, ct(⟨x0,M⟩)} because φℓ(n) ≺L u but ct(⟨x0,M⟩) ≥ u.
This implies that ⟨x0,M⟩ /∈ S, which is a contradiction.

Quadruple ⟨x0,M⟩ achieves arbitrarily large activity witnesses. If not, then by stage s > t0 quadruple
q0 = ⟨x0, N0⟩ has already achieved an activity witness greater than any activity witness ever achieved
by ⟨x0,M⟩. Quadruple q0 is in S, so the greatest activity witness achieved by a quadruple of the form

⟨x0, M̂⟩ in S by stage s was not achieved by ⟨x0,M⟩. This contradicts that q uses ⟨x0,M⟩ to choose
(ax0 , bx0) at stage S.

The most recent stage t ≤ s at which quadruple ⟨x0,M⟩ achieves activity witness w must satisfy
t > t0. If t ≤ t0, then, by choice of s1, quadruple q0 = ⟨x0, N0⟩ has already achieved an activity witness
greater than w by stage s > s1. This contradicts that w is the greatest activity witness achieved by a

quadruple of the form ⟨x0, M̂⟩ in S by stage s.
It now follows that (ax0 , bx0) are the final active sides of ⟨x0,M⟩. Quadruple ⟨x0,M⟩ changes its

active sides finitely often, so it settles on its final active sides by stage t0 by choice of t0. The pair
(ax0 , bx0) is the active sides of ⟨x0,M⟩ at the most recent stage t ≤ s at which ⟨x0,M⟩ achieved activity
witness w. We showed that t > t0, so (ax0 , bx0) must be the final active sides of ⟨x0,M⟩.

Recall that (a0, b0) are the final active sides of q0. Quadruples ⟨x0,M⟩ and q0 = ⟨x0, N0⟩ both
achieve arbitrarily large activity witnesses and eventually settle on their active sides. Therefore ⟨x0,M⟩
and q0 settle on the same active sides by Claim 2. Thus (ax0 , bx0) = (a0, b0). Therefore, the k’s that
the action of q chooses to add to Ls are in A2x0,1−a0 ∩A2x0+1,1−b0 .

Thus we have found an s1 ≥ s0 such that whenever an element k is added to Ls and v ≺L k ≺L u
is defined at a stage s ≥ s1, it is on account of a quadruple q with q0 ≤ q < u and we have that
k ∈ A2x0,1−a0 ∩A2x0+1,1−b0 . □

We may now show that our quadruple q0 = ⟨x0, N0⟩ = ⟨ℓ0, r0, e0, N0⟩ adds only finitely many
elements k ≺L u. Let s1 be the stage from Claim 4, and additionally assume that q0 has settled on
its final active sides (a0, b0) and that ct(q0) has reached its final value ct0 by stage s1. Recall that
v = max≺L{0, 1, . . . ,max<{q0, ct0}}. By condition (3), every k that q0 adds to Ls at a stage s ≥ s1
satisfies v ≺L k. So suppose that q0 acts at some stage s ≥ s1, adds an element k to Ls, and defines
k ≺L u, in which case it also defines v ≺L k. Then at stage s, q0 is active with active sides (a0, b0), and
it acts with action input n, where φℓ0(n) = i for some i ∈ A2x0,a0 , φr0(n) = j for some j ∈ A2x0+1,b0 ,
and v ⪯L i ≺L j ⪯L u. The action then places k’s of each color d ≤ max<{i, j} in the interval (i, j)L.
If q0 acts again at some later stage t > s with some action input m, then again φℓ0(m) ∈ A2x0,a0 and
φr0(m) ∈ A2x0+1,b. However, it cannot again be that φℓ0(m) = i and φr0(m) = j because condition (2)
would fail in this situation. Thus when adding a number k ≺L u, the action input n used by q0 specifies
a pair (i, j) = (φℓ0(n), φr0(n)) ∈ A2x0,a0 ×A2x0+1,b0 with v ⪯L i ≺L j ⪯L u, and each such pair can be
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specified by q0 at most once. By Claim 4, every element added to the interval (v, u)L after stage s1
is in A2x0,1−a0 ∩A2x0+1,1−b0 . Therefore, there are only finitely many pairs (i, j) ∈ A2x0,a0 ×A2x0+1,b0

with v ⪯L i ≺L j ⪯L u, and therefore quadruple q0 can only add finitely many elements k ≺L u. This
completes the proof that L ∼= ω.

To complete the proof of the theorem, we must show that (∗) is satisfied whenever C is a ∆2

cohesive set and φ and ψ are partial computable functions with C ⊆∗ dom(φ), C ⊆∗ dom(ψ), and
limn∈C φ(n) = limn∈C ψ(n) = ∞.

Claim 5. Suppose that quadruple q = ⟨x,N⟩ = ⟨ℓ, r, e,N⟩ and pair (a, b) are such that

• ge is a ∆2-approximation to an infinite ∆2 set C,

• ∀m ≥ N (m ∈ C → φℓ(m)↓ ∈ A2x,a), and

• ∀m ≥ N (m ∈ C → φr(m)↓ ∈ A2x+1,b).

Then q achieves arbitrarily large activity witnesses, and q eventually settles on active sides (a, b).

Proof of Claim. Given any number W , let w be the least number with w > W and w ∈ C. Let
s > w be large enough so that ge(m, s) = C(m) for all m ≤ w and so that φℓ,s(m)↓ ∈ A2x,a and

φr,s(m)↓ ∈ A2x+1,b for all m ∈ C with N ≤ m ≤ w. Then q is active at stage s with activity witness w
or greater. Thus q achieves arbitrarily large activity witnesses.

Let n be the least number with n > N and n ∈ C. Let s0 be large enough so that ∀m ≤ n ∀s ≥
s0 (ge(m, s) = C(m)), φℓ,s0(n)↓ ∈ A2x,a, and φr,s0(n)↓ ∈ A2x+1,b. Then if q is active at a stage s > s0,
it must use an activity witness w ≥ n, in which case its active sides must be (a, b) because ge(n, s) = 1,
φℓ,s(n)↓ ∈ A2x,a, and φr,s(n)↓ ∈ A2x+1,b. That is, q has active sides (a, b) whenever it is active at a
stage later than s0. Thus q eventually settles on active sides (a, b). □

Let C be a ∆2 cohesive set, and let φ and ψ be partial computable functions with C ⊆∗ dom(φ),
C ⊆∗ dom(ψ), and limn∈C φ(n) = limn∈C ψ(n) = ∞. We show that (∗) holds for C, φ, and ψ. Assume
that ∀∞n ∈ C (ψ(n) ≺L φ(n)), for otherwise (∗) vacuously holds. Let ℓ and r be such that φℓ = ψ
and φr = φ. Let e be such that ge is a ∆2-approximation to C. Let x = ⟨ℓ, r, e⟩. By cohesiveness, let
(a, b) and N be such that, for all n ∈ C with n ≥ N , φℓ(n) ∈ A2x,a and φr(n) ∈ A2x+1,b. Let q be the
quadruple q = ⟨x,N⟩ = ⟨ℓ, r, e,N⟩. Quadruple q and pair (a, b) satisfy the hypotheses of Claim 5, so
the active sides of q eventually settle on (a, b) and therefore ct(q) also reaches a final value ct. Let
v = max≺L{0, 1, . . . ,max<{q, ct}}. Let n0 ≥ N be large enough so that v ⪯L φℓ(n) whenever n ≥ n0
and n ∈ C. Such an n0 exists because limn∈C φℓ(n) = ∞, but there are only finitely many elements
≺L-below v because L ∼= ω.

Suppose that n ∈ C and n ≥ n0, and furthermore suppose for a contradiction that there is a
d ≤ max<{φℓ(n), φr(n)} such that there is no k with φℓ(n) ≺L k ≺L φr(n) and F (k) = d. Then
conditions (1)–(3) hold for n at all sufficiently large stages s, with (1) holding because n ∈ C, (2)
holding by assumption, and (3) holding by the choice of n0. By Claim 5, quadruple q achieves arbitrarily
large activity witnesses. Thus infinitely often q is active with an activity witness w > n. By Claim 3,
each m < n can be the action input for q at most once. Thus at some stage, q eventually demands
action with action input n. The action of q defines φℓ(n) ≺L k ≺L φr(n) and F (k) = d for some k,
which contradicts that there is no such k. This shows that (∗) holds for C, φ = φr and ψ = φℓ, which
completes the proof. □

Theorem 4.1 immediately provides a computable copy L of ω for which
∏

C L ∼= ω + η whenever C
is a ∆2 cohesive set.

Corollary 4.2. There is a computable copy L of ω such that for every ∆2 cohesive set C,
∏

C L ∼= ω+η.

Proof. Let O = (L,N;≺L, F ) be the computable colored copy of ω from Theorem 4.1, and let
L = (L;≺L) be the underlying computable linear order of type ω. Let C be a ∆2 cohesive set. Then∏

C O is colorful, so
∏

C L ∼= ω + η as explained in the discussion following Definition 3.21. □

Corollary 4.2 is as good as possible, in the sense that ∆2 cannot be improved to Π2.

Proposition 4.3. For every computable copy L of ω, there is a Π2 cohesive set C such that
∏

C L ≇
ω + η.
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Proof. Let L = (L;≺L) be a computable copy of ω. Fix an ℓ ∈ L. Define total computable functions
ψ and φ by

ψ(⟨m,n⟩) =

{
m if m ∈ L

ℓ if m /∈ L

φ(⟨m,n⟩) =

{
n if n ∈ L

ℓ if n /∈ L.

Let

X = {⟨m,n⟩ : m,n ∈ L and n is the ≺L-immediate successor of m}.

Then X is an infinite Π1 set because L is a computable linear order of type ω. Therefore X has a Π2

cohesive subset C as explained in the discussion following Corollary 2.6.
Consider the elements [ψ] and [φ] of

∏
C L. Every element of L has exactly one ≺L-immediate

successor, so for every m there is at most one n with ⟨m,n⟩ ∈ C, and for every n there is at most
one m with ⟨m,n⟩ ∈ C. It follows that ψ and φ are injective when restricted to C and therefore
that lim⟨m,n⟩∈C ψ(⟨m,n⟩) = lim⟨m,n⟩∈C φ(⟨m,n⟩) = ∞. Thus [ψ] and [φ] are non-standard elements of∏

C L by Lemma 3.16. By the choice of X and C, φ(⟨m,n⟩) = n is the ≺L-immediate successor of
ψ(⟨m,n⟩) = m for every ⟨m,n⟩ ∈ C. Therefore [φ] is the ≺∏

C L-immediate successor of [ψ] in
∏

C L
by Lemma 3.12. Thus the non-standard elements of

∏
C L are not dense, so

∏
C L ≇ ω + η. □

Remark 4.4. We obtain an infinite Π1 set with no ∆2 cohesive subset as a consequence of Corollary 4.2.
Let L = (L;≺L) be a computable copy of ω such that

∏
C L ∼= ω + η for every ∆2 cohesive set C. Let

X = {⟨m,n⟩ : m,n ∈ L and n is the ≺L-immediate successor of m}.

as in the proof of Proposition 4.3. Then X is an infinite Π1 set. The proof of Proposition 4.3 shows
that if C is a cohesive subset of X, then there is a non-standard ≺∏

C L-immediate successor pair

[ψ] ≺∏
C L [φ] in

∏
C L. Therefore, if C is a cohesive subset of X, then

∏
C L ≇ ω+η. As

∏
C L ∼= ω+η

for every ∆2 cohesive set C, it follows that X cannot have a ∆2 cohesive subset. So X is an infinite Π1

set with no ∆2 cohesive subset.

Finally, we reach the main result by combining Theorem 4.1 with Lemma 3.22.

Theorem 4.5. Let X ⊆ N \ {0} be a Boolean combination of Σ2 sets, thought of as a set of finite
order-types. Then there is a computable copy L of ω such that for every ∆2 cohesive set C, the cohesive
power

∏
C L has order-type ω + σ(X ∪ {ω + ζη + ω∗}). Moreover, if X is finite and non-empty, then

there is also a computable copy L of ω such that for every ∆2 cohesive set C, the cohesive power
∏

C L
has order-type ω + σ(X).

Proof. By Theorem 4.1, let O be a computable colored copy of ω such that for every ∆2 cohesive set
C, the cohesive power

∏
C O is colorful. Then apply Lemma 3.22 to O to get the desired computable

copy L of ω in either case. □

Similar to [9, Example 5.5], we can define a countable collection of pairwise isomorphic (but
not computably isomorphic) linear orders whose cohesive powers over ∆2 cohesive sets are pairwise
non-elementarily equivalent.

Example 4.6. There are computable copies L1,L2,L3, . . . of ω such that the cohesive powers
∏

C Lk

and
∏

D Lm are not elementarily equivalent whenever 1 ≤ k < m and C and D are ∆2 cohesive
sets. (We put the index in the superscript to emphasize that we mean the cohesive powers of the
individual structures, not the cohesive product of the sequence.) For each k ≥ 1, apply Theorem 4.5
to the set X = {k} to get a computable copy Lk of ω such that for every ∆2 cohesive set C,∏

C Lk ∼= ω+σ({k}) ∼= ω+kη. If 1 ≤ k < m and C and D are ∆2 cohesive sets, then
∏

C Lk ∼= ω+kη
and

∏
D Lm ∼= ω + mη. The order-types ω + kη and ω + mη are not elementarily equivalent because

they disagree on the Σ3 sentence expressing that there is a maximal block (in the sense of the finite
condensation) of size k.
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In fact, Theorem 4.5 is not necessary to obtain this example. Instead, let L be the computable copy
of ω from Corollary 4.2, and let Lk = kL for each k ≥ 1. Then∏

C
Lk ∼=

∏
C

(kL) ∼=
(∏

C
k
)(∏

C
L
) ∼= k(ω + η) ∼= ω + kη

for every k ≥ 1 and every ∆2 cohesive set C. The second isomorphism is by Theorem 3.11 item (2),
and

∏
C k ∼= k in the third isomorphism because k is finite. If A is a finite computable structure and

C is cohesive, then, by cohesiveness, every element of
∏

C A is in the range of the canonical embedding
of A into

∏
C A. Therefore

∏
C A ∼= A. Here it is apparent that the sequence L1,L2,L3, . . . may be

taken to be uniformly computable. The sequence may be taken to be uniformly computable in the first
situation too because Lemma 3.22 is uniform.
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