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Abstract. We characterize the join-irreducible Medvedev degrees as the degrees of complements of
Turing ideals, thereby solving a problem posed by Sorbi. We use this characterization to prove that
there are Medvedev degrees above the second-least degree that do not bound any join-irreducible
degrees above this second-least degree. This solves a problem posed by Sorbi and Terwijn. Finally,
we prove that the filter generated by the degrees of closed sets is not prime. This solves a problem
posed by Bianchini and Sorbi.

1. Introduction

We present solutions to three problems concerning the Medvedev degrees. A mass problem is a
set A ⊆ ωω. For mass problems A and B, we say that A Medvedev reduces to B (A≤M B) if there
is a Turing functional Φ such that Φ(B) ⊆ A. That is, Φ(f) ∈ A for all f ∈ B. We say that A and
B are Medvedev equivalent (A≡M B) if A≤M B and B≤MA. The equivalence class [A] is called the
Medvedev degree of A, and the structure M = (2ω

ω
/≡M,≤M) is called the Medvedev degrees. See

Sorbi [15] for a good introduction to the theory of the Medvedev degrees.
For f, g ∈ ωω, let f ⊕ g be the function (f ⊕ g)(2n) = f(n) and (f ⊕ g)(2n + 1) = g(n). For

m ∈ ω and f ∈ ωω, let maf be the function (maf)(0) = m and (maf)(n + 1) = f(n). In
general, ‘a’ denotes string concatenation. Functions f ∈ ωω are interpreted as ω-length strings
when appropriate. For a mass problem A, let maA = {maf | f ∈ A}. Given mass problems A
and B, let A+B = {f ⊕ g | f ∈ A∧ g ∈ B} and let A×B = 0aA ∪ 1aB. Then [A] +[B] = [A+B]
is the join (i.e., ≤M-least upper bound) of [A] and [B], while [A]×[B] = [A×B] is the meet (i.e.,
≤M-greatest lower bound) of [A] and [B]. Hence M is a lattice. In fact, M is a distributive
lattice, meaning that join and meet distribute over each other: a +(b× c) = (a + b)×(a + c) and
a×(b + c) = (a×b) +(a× c). Notation for join and meet appears in the literature variously as +,
×, as ∨, ∧, and confusingly as ∧, ∨. We choose the +, × notation to avoid conflict with the logical
notation and to match Sorbi and Terwijn [16].

M has a least element 0 = [ωω] (and any A containing a recursive function has this degree), a
second-least element 0′ = [{f | f >T 0}], and a greatest element 1 = [∅]. (The Medvedev degree 0′

has little to do with 0′, the Turing jump of the 0 function. Here 0′ always refers to the second-least
Medvedev degree.)

In any lattice, an element a is called join-reducible if there are x,y < a such that a = x + y.
Otherwise a is called join-irreducible. Dually, a is called meet-reducible if there are x,y > a such
that a = x×y. Otherwise a is called meet-irreducible. Dyment [3] characterized the meet-reducible
Medvedev degrees in the following theorem. Its corollary helps identify meet-irreducible Medvedev
degrees.

Theorem 1.1 ([3]). A Medvedev degree a is meet-reducible if and only if a = [A] for a mass
problem A for which there are r.e. sets V0, V1 ⊆ ω<ω such that

• (∀f ∈ A)(∃σ ∈ V0 ∪ V1)(σ ⊂ f),
• The following mass problems are ≤M-incomparable:

{f ∈ A | (∃σ ∈ V0)(σ ⊂ f)} and {f ∈ A | (∃σ ∈ V1)(σ ⊂ f)}
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Corollary 1.2 ([3]). If A is a mass problem such that σaA ⊆ A for all σ ∈ ω<ω, then [A] is
meet-irreducible.

In particular, 0′ is meet-irreducible because σaf >T 0 whenever σ ∈ ω<ω and f >T 0.
The problem of characterizing the join-irreducible Medvedev degrees was posed in [15]. In

Section 2, we prove that a ∈M is join-irreducible if and only if a = [ωω −I] for some Turing ideal
I.

We have seen that M is a distributive lattice with 0 and 1. In fact, M is a Brouwer algebra.
A Brouwer algebra is a distributive lattice with 0 and 1 such that for every a and b there is a
least c such that a + c ≥ b. This least c is denoted by a→b. For mass problems A and B, define
A→B = {eag | (∀f ∈ A)(Φe(f ⊕ g) ∈ B)}. Then [A]→[B] = [A→B]. A Brouwer algebra is dual
to a Heyting algebra, but M is proved not to be a Heyting algebra in Sorbi [12].

Brouwer algebras give semantics for propositional logic. For any Brouwer algebra B, a valuation
is a function ν : propositional variables→B. A valuation ν extends to all propositional formulas ϕ
by defining

ν(ϕ∧ψ) = ν(ϕ) + ν(ψ),

ν(ϕ∨ψ) = ν(ϕ)× ν(ψ),

ν(ϕ→ψ) = ν(ϕ)→ ν(ψ), and

ν(¬ϕ) = ν(ϕ)→1.

A propositional formula ϕ is called valid in B if ν(ϕ) = 0 for every valuation ν. Let Th(B) denote
the set of propositional formulas valid in B. The axioms of intuitionistic logic are valid in every
Brouwer algebra B, so IPC ⊆ Th(B) ⊆ CPC for every Brouwer algebra B. Here IPC denotes
intuitionistic logic and CPC denotes classical logic. Logics L for which IPC ⊆ L ⊆ CPC are called
intermediate logics.

Providing semantics for propositional logic was one of Medvedev’s main motivations behind in-
troducing M, and he proved Th(M) = JAN in Medvedev [8]. JAN denotes the logic IPC +¬p∨¬¬p
named after Jankov who studied it in Jankov [5]. In any Brouwer algebra B, the quotient of B
by the principal filter generated by a ∈ B is denoted by B /a. The quotient B /a is isomorphic
to the interval [0,a] which is a Brouwer algebra under the operations inherited from B. Logics of
the form Th(M /a) have been studied in Skvortsova [10], Sorbi [14], and Sorbi and Terwijn [16].
(Skvortsova and Dyment are the same person. Dyment got married and became Skvortsova.) The
results in Section 3 and Section 4 are motivated by the following question which remains open:

Question 1.3 ([16]). Is Th(M /a) ⊆ JAN for all a>M 0′?

Sorbi and Terwijn’s study of Question 1.3 in [16] lead them to ask whether every degree >M 0′

bounds a join-irreducible degree >M 0′ because a “yes” answer to this question implies a “yes”
answer to Question 1.3. However, Sorbi and Terwijn conjectured that there is a degree >M 0′ that
bounds no join-irreducible degree >M 0′, and we prove that this is correct in Section 3. In Section 4
we provide slight extensions to some of the results in [14], thereby widening the class of degrees a
for which Th(M /a) ⊆ JAN is known.

Lastly, in Section 5 we use techniques similar to those used to characterize the join-irreducible
degrees to prove that the filter generated by the degrees of mass problems closed in ωω is not prime.
This problem was posed in Bianchini and Sorbi [2] and in Sorbi [15].

2. Characterizing the join-irreducible Medvedev degrees

A Turing ideal is a set I ⊆ ωω that is closed downward under ≤T (i.e., f ∈ I ∧ g≤T f→ g ∈ I)
and closed under ⊕ (i.e., f, g ∈ I → f ⊕ g ∈ I). We prove that a ∈ M is join-irreducible if and
only if a = [ωω − I] for some Turing ideal I. We frequently use the following well-known lemma
without mention:
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Lemma 2.1 (see [1] Section III.2). In a distributive lattice, a is join-irreducible if and only if for
all x and y, a ≤ x + y implies a ≤ x or a ≤ y. Dually, a is meet-irreducible if and only if for all
x and y, a ≥ x×y implies a ≥ x or a ≥ y.

Proof. Suppose a is join-irreducible and a ≤ x + y. Then

a = a×(x + y) = (a×x) +(a×y).

Thus a = a×x or a = a×y which means a ≤ x or a ≤ y. Conversely, if a is join-reducible, then
by definition there are x,y < a with a = x + y. The proof for the meet-irreducible case is obtained
by dualizing the proof for the join-irreducible case. �

For a mass problem A, let C(A) denote the Turing upward-closure of A: C(A) = {f | (∃g ∈
A)(f ≥T g)}. A mass problem A is called Turing upward-closed if A = C(A). The identity func-
tional witnesses C(A)≤MA for any mass problem A, and if A and B are mass problems such that
A is Turing upward-closed, then A≤M B if and only if B ⊆ A. Our starting point is the following
observation:

Lemma 2.2 ([15]). If A is a mass problem such that [A] is join-irreducible, then ωω − C(A) is a
Turing ideal.

Proof. We prove the contrapositive. If ωω − C(A) is not a Turing ideal, then there are f, g /∈
C(A) with f ⊕ g ∈ C(A). This means that {f}, {g}�MA but {f}+{g}≥MA. Thus [A] is join-
reducible. �

The next lemma is the main step in our characterization.

Lemma 2.3. If A is a mass problem such that [A] is join-irreducible, then A≡MC(A)

Proof. We prove the contrapositive. Suppose A 6≡MC(A). Then it must be that A�MC(A). We
find mass problems X and Y such that X ,Y �MA but X +Y ≥MA. Thus [A] is join-reducible.

To find X and Y, first find a sequence (hn | n ∈ ω) of functions and a sequence (en | n ∈ ω) of
indices such that

(i) Φen(hn) ∈ A for all n ∈ ω,
(ii) Φn(h2n) /∈ A and Φn(h2n+1) /∈ A for all n ∈ ω, and

(iii) hn(0) = 〈n, e0, e1, . . . , en−1 〉 for all n ∈ ω.

We find the desired sequences by iterating the following claim:

Claim. If A�MC(A), then for every e,m ∈ ω there is an h ∈ C(A) such that h(0) = m and
Φe(h) /∈ A.

Proof of claim. Suppose not. Then there are e,m ∈ ω such that h(0) = m implies Φe(h) ∈ A for
all h ∈ C(A). Thus h 7→ Φe(m

ah) is a reduction witnessing A≤MC(A), a contradiction. �

Suppose we have hi and ei for all i < n. To find hn and en, let e = bn/2c and let m =
〈n, e0, e1, . . . , en−1 〉. By the claim, there is an hn ∈ C(A) such that hn(0) = m and Φe(hn) /∈ A.
The fact that hn ∈ C(A) means that there is an en such that Φen(hn) ∈ A.

Now set X = {h2n | n ∈ ω} and Y = {h2n+1 | n ∈ ω}. Then Φe(X ) * A and Φe(Y) * A for each
e by item (ii). Hence X ,Y �MA. The following reduction witnesses X +Y ≥MA.

Given h, decompose h as h = f ⊕ g and decode f(0) and g(0) as f(0) = 〈 2n, x0, x1, . . . , x2n−1 〉
and g(0) = 〈 2m+ 1, y0, y1, . . . , y2m 〉. If either f(0) or g(0) is not of the required form, then output
the 0 function (as such an h cannot be in X +Y). Otherwise output Φx2m+1(g) if 2n > 2m+ 1 and
output Φy2n(f) if 2m+ 1 > 2n.

Suppose this reduction is applied to some h = h2n ⊕ h2m+1 ∈ X +Y. In this case f = h2n,
g = h2m+1, and f(0) and g(0) are of the required form by item (iii). So if 2n > 2m+ 1 we output
Φe2m+1(h2m+1) and if 2m + 1 > 2n we output Φe2n(h2n). Both alternatives are in A by item (i).
Thus X +Y ≥MA. �
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Theorem 2.4. A Medvedev degree a is join-irreducible if and only if a = [ωω−I] for some Turing
ideal I.

Proof. Suppose a is join-irreducible, and let A be a mass problem such that a = [A]. Then I =
ωω−C(A) is a Turing ideal by Lemma 2.2, A≡MC(A) by Lemma 2.3, and therefore A≡MC(A) =
ωω − I. Hence a = [ωω − I] for the Turing ideal I.

Conversely, suppose I is a Turing ideal and let X and Y be mass problems such that X ,Y �M ωω−
I. We show that X +Y �M ωω − I. Observe X ,Y * ωω − I for otherwise the identity functional
would witness X ,Y ≥M ωω−I. Let f ∈ X ∩I and let g ∈ Y∩I, thereby making f⊕g ∈ (X +Y)∩I.
The function f ⊕ g is in X +Y, but it does not compute any member of ωω − I. Therefore
X +Y �M ωω − I. Hence [ωω − I] is join-irreducible. �

Theorem 2.4 is also valid for the Muchnik degrees Mw in place of M, a fact first noticed by
Terwijn [17]. Mw is defined just as M, but with Muchnik reducibility (also called weak reducibility)
≤w in place of ≤M: A≤w B if for every f ∈ B there is a g ∈ A such that f ≥T g. Mw is a
Brouwer algebra with +, ×, and → defined by [A]w +[B]w = [A+B]w, [A]w×[B]w = [A×B]w, and
[A]w→[B]w = [{g | (∀f ∈ A)(∃h ∈ B)(h≤T f ⊕ g)}]w. The proof of Lemma 2.2 also works for
Mw, and it is easy to check that A≡w C(A) for any mass problem A (i.e., the Mw analogue of
Lemma 2.3 is trivial). This gives the forward direction of Theorem 2.4 for Mw. The proof of the
reverse direction of Theorem 2.4 also works for Mw.

3. Degrees that bound no join-irreducible degrees >M 0′

Recall that JAN is the intermediate logic IPC +¬p∨¬¬p. The results of this section and the
next are motivated by Question 1.3: is Th(M /a) ⊆ JAN for every a>M 0′?

Th(M /0′) = CPC because M /0′ ∼= [0,0′] = {0,0′}. In fact, 0′ is the only degree for which
Th(M /0′) = CPC. This is because if a>M 0′, then 0′→a = a, hence 0′×(0′→a) = 0′. Thus let
p = 0′ to see that the formula p∨¬p is not valid in Th(M /a).

Furthermore, if a>M 0′, then we cannot have Th(M /a) ) JAN. It is an easy check that in any
Brouwer algebra B with meet-irreducible 0 (such as the algebras M /a), ¬p∨¬¬p ∈ Th(B) if and
only if 1 is join-irreducible. However, if a>M 0′ is join-irreducible, then Th(M /a) = JAN [14].
Thus if a>M 0′ and Th(M /a) ⊇ JAN, then ¬p∨¬¬p ∈ Th(M /a) which implies that a is join-
irreducible which implies that Th(M /a) = JAN. Thus a “no” answer to Question 1.3 must yield
a degree a such that Th(M /a) * JAN and JAN * Th(M /a).

The following theorem shows that to give a “yes” answer to Question 1.3 it suffices to show that
every a>M 0′ bounds a finite meet of join-irreducible degrees >M 0′.

Theorem 3.1 ([14]). If a is a degree such that a≥M
∏n
i=0 di for join-irreducible degrees di>M 0′,

i ≤ n, then Th(M /a) ⊆ JAN.

(The above theorem is stated more generally in [14]. Each degree di for i ≤ n is allowed to be
either join-irreducible or De-irreducible. See the parenthetical discussion following Theorem 4.1
for the definition of De-irreducible and an explanation of why we do not consider such degrees
here. Theorem 4.1 is a restatement of [14] Theorem 2.11 which is the main tool used to prove
Theorem 3.1.)

The degrees of the mass problems Bf = {g | g�T f} play an important role in the study of
Question 1.3. The following lemma from Sorbi [13] encapsulates the properties of the [Bf ]’s that
we need in this section and the next.

Lemma 3.2 ([13]).

(i) Every [Bf ] is join-irreducible.
(ii) Every

∑n
i=1[Bfi ] is meet-irreducible.
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(iii) Let V and J be finite sets and let Uv and Ij be finite sets for each v ∈ V and j ∈ J . Let

xvu and yji be degrees of the form [Bf ] for every v ∈ V , u ∈ Uv, j ∈ J , and i ∈ Ij. Let

a =
∑

v∈V
∏
u∈Uv

xvu and b =
∑

j∈J
∏
i∈Ij yji . Then a≤M b if and only if(

∀v ∈ V
)(
∃j ∈ J

)(
∀i ∈ Ij

)(
∃u ∈ Uv

)(
xvu≤M yji

)
.

(iv) In the notation of item (iii),

a→b =
∑{∏

i∈Ij

yji

∣∣∣ (∀v ∈ V )(∏
i∈Ij

yji �M

∏
u∈Uv

xvu

)}
(where the empty join is 0).

Proof. Item (i) is by Theorem 2.4 and item (ii) is by Corollary 1.2. Item (iv) is proved in [13]. Item
(iii) follows from item (iv) because a≤M b if and only if b→a = 0. �

In [16] it is asked if every degree a>M 0′ bounds a join-irreducible degree >M 0′, and it is
conjectured that this is not the case based on the evidence provided by the following theorem.

Theorem 3.3 ([16]). There is a degree a>M 0′ such that a�M[Bf ] for every f >T 0.

Our characterization of the join-irreducible degrees implies that every join-irreducible degree
>M 0′ bounds some degree [Bf ] with f >T 0. Thus the conjecture is correct.

Corollary 3.4 (to Theorem 2.4). If a>M 0′ is join-irreducible, then a≥M[Bf ] for some f >T 0.

Proof. If a is join-irreducible, then, by Theorem 2.4, a = [ωω−I] for some Turing ideal I. If [ωω−
I]>M 0′, then I contains some function f >T 0. Thus ωω−I ⊆ Bf . Hence a = [ωω−I]≥M[Bf ]. �

Theorem 3.5. There is a degree a>M 0′ such that every degree x with 0′<M x≤M a is join-
reducible.

Proof. By Theorem 3.3, let a>M 0′ be such that a�M[Bf ] for every f >T 0. This a is the desired
degree because, by Corollary 3.4, if a≥M x for some join-irreducible x>M 0′, then a≥M[Bf ] for
some f >T 0. �

The degree a satisfying Theorem 3.3 was constructed by diagonalization in [16]. We can give
somewhat more concrete examples of degrees satisfying Theorem 3.3 and Theorem 3.5. Recall the
following definitions. Functions f, g >T 0 are a Turing minimal pair if, for all h, h≤T f, g implies
h≤T 0. A function f has minimal Turing degree if, for all h, h<T f implies h≤T 0. Minimal pairs
and minimal degrees exist. In fact, there are continuum many distinct minimal Turing degrees.
See Lerman [6] Section II.4 and Section V.2.

Theorem 3.6. If f and g are a minimal pair, then the degree a = [Bf ]×[Bg] witnesses Theorem 3.5.

Proof. Let f and g be a minimal pair. Then [Bf ], [Bg]>M 0′ because f, g >T 0. Thus [Bf ]×[Bg]>M 0′

because 0′ is meet-irreducible by Corollary 1.2. To show that [Bf ]×[Bg] bounds no join-irreducible
degree >M 0′, it suffices by Corollary 3.4 to show that [Bf ]×[Bg] bounds no [Bh] for h>T 0. This is
true because f, g is a minimal pair, so for any h>T 0, either h�T f or h � g. Thus either h ∈ Bf
or h ∈ Bg which means Bf ×Bg contains a function ≡T h. Bh contains no function ≤T h, therefore
Bf ×Bg �M Bh. �

We can extend the idea behind Theorem 3.6 to find a degree a>M 0′ that does not bound any
finite meet of join-irreducible degrees >M 0′. Several of our examples in this section and the next
are of the form

[⋃
i∈ω i

aDi
]

for mass problems Di, i ∈ ω.

Lemma 3.7. Let d =
[⋃

i∈ω i
aDi

]
where [Di]>M 0′ for each i ∈ ω. Then d>M 0′.
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Proof. Suppose for a contradiction that Φ is a reduction witnessing d≤M 0′ (i.e., Φ(f) ∈
⋃
i∈ω i

aDi
for all f >T 0). Let σ ∈ ω<ω be such that Φ(σ)(0)↓ and let i = Φ(σ)(0). Then f 7→ Φ(σaf) is a
reduction witnessing 0′≥M[Di], contradicting [Di]>M 0′. �

Theorem 3.8. There is a degree a>M 0′ such that no degree x with 0′<M x≤M a is of the form∏n
i=0 di for join-irreducible degrees di>M 0′, i ≤ n.

Proof. By Corollary 3.4, it suffices to find a degree a>M 0′ which is not above any degree of the
form

∏n
i=0[Bfi ] where fi>T 0 for each i ≤ n. Let {gi | i ∈ ω} be a countable collection of functions

all of distinct minimal Turing degree. Let A =
⋃
i∈ω i

aBgi and put a = [A]. Lemma 3.7 proves
that a>M 0′.

Now consider any degree
∏n
i=0[Bfi ], where fi>T 0 for each i ≤ n. There is a j ∈ ω such that

gj �T fi for each i ≤ n. Thus for this j, [Bgj ]�M[Bfi ] for each i ≤ n. Therefore [Bgj ]�M
∏n
i=0[Bfi ]

because [Bgj ] is meet-irreducible. Clearly [Bgj ]≥M a, so a�M
∏n
i=0[Bfi ] as well. �

For mass problems Ai, i ∈ ω, the Medvedev degree
[⋃

i∈ω i
aAi

]
is not in general the greatest

lower bound of the degrees [Ai], i ∈ ω. Such greatest lower bounds need not even exist. For
example, the degrees [Bgi ], i ∈ ω from Theorem 3.8 do not have a greatest lower bound. This
follows from results in Dyment [4] which studies when countable collections of degrees have least
upper bounds and greatest lower bounds.

If a is a degree such that a�M d for all join-irreducible d>M 0′, then a→d = d for all join-
irreducible d>M 0′. The degree a constructed in Theorem 3.8 enjoys a similar property.

Theorem 3.9. There is a degree a>M 0′ such that a→
∏n
i=0 di =

∏n
i=0 di whenever di>M 0′ and

is join-irreducible for each i ≤ n.

Proof. As in Theorem 3.8, let {gi | i ∈ ω} be a countable collection of functions all of distinct
minimal Turing degree, let A =

⋃
i∈ω i

aBgi , and put a = [A]. Suppose di>M 0′ and is join-
irreducible for each i ≤ n. By Theorem 2.4, for each i ≤ n let Ii ⊆ ωω be a Turing ideal such that
di = [ωω − Ii]. Thus

∏n
i=0 di =

[⋃n
i=0 i

a(ωω − Ii)
]

and

a→
n∏
i=0

di =

[{
eag

∣∣∣ (∀f ∈ A)(Φe(f ⊕ g) ∈
n⋃
i=0

ia(ωω − Ii)
)}]

.

We now describe a reduction witnessing a→
∏n
i=0 di≥M

∏n
i=0 di.

Given eag, for each i ≤ n+ 1 search for a string iaσi such that Φe((i
aσi)⊕ g)(0)↓. If there is a

k ≤ n such that

Φe((i
aσi)⊕ g)(0) = Φe((j

aσj)⊕ g)(0) = k

for two distinct i, j ≤ n+ 1, choose the least such k and output kag. Otherwise output 0.
Suppose we apply this reduction to eag ∈ A→

⋃n
i=0 i

a(ωω−Ii). Φe(f⊕g) must be total for each
f ∈ A, and for each i ∈ ω there is an f ∈ A with f(0) = i. Thus for each i ≤ n+ 1 the search finds
a string iaσi such that Φe((i

aσi) ⊕ g)(0)↓. Moreover, each iaσi can be extended to a function in
A, so Φe((i

aσi)⊕ g)(0) ≤ n for each i ≤ n+ 1. Therefore there is a least k ≤ n for which there are
distinct i, j ≤ n+1 with Φe((i

aσi)⊕g)(0) = Φe((j
aσj)⊕g)(0) = k. The reduction outputs kag, so

we must show that kag ∈
⋃n
i=0 i

a(ωω − Ii) which means we must show that g /∈ Ik. Suppose for a
contradiction that g ∈ Ik. The functions gi and gj have distinct minimal degree, so either g�T gi or
g�T gj (g >T 0 because a�M

∏n
i=0 di by Theorem 3.8). For the sake of argument, suppose g�T gi.

Then σi
ag�T gi as well, so σi

ag ∈ Bgi and iaσi
ag ∈ A. However, Φe((i

aσi
ag)⊕ g) ∈ ka(ωω −Ik)

by the choice of iaσi. This cannot be because (iaσi
ag)⊕ g ∈ Ik, thus anything it computes is also

in Ik. �
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By Corollary 4.6 below, the degree a =
[⋃

i∈ω i
aBgi

]
used to witness Theorem 3.8 and Theo-

rem 3.9 satisfies Th(M /a) ⊆ JAN and so does any degree that bounds it. There are, however,
degrees >M 0′ that do not bound any degree of the form

[⋃
i∈ω i

aDi
]

where [Di]>M 0′ and is
join-irreducible for each i ∈ ω.

Theorem 3.10. There is a degree a>M 0′ such that a�M

[⋃
i∈ω i

aDi
]

whenever [Di]>M 0′ and is
join-irreducible for each i ∈ ω.

Proof. Let Di be such that [Di]>M 0′ and is join-irreducible for each i ∈ ω. By Corollary 3.4, for
every i ∈ ω there is an fi>T 0 such that Di≥M Bfi . The mass problem Bfi is Turing upward-closed

for each i ∈ ω, so Di ⊆ Bfi for each i ∈ ω. Thus
⋃
i∈ω i

aDi ⊆
⋃
i∈ω i

aBfi . Hence it suffices to find

a degree a>M 0′ that does not bound any degree of the form
[⋃

i∈ω i
aBfi

]
, where fi>T 0 for each

i ∈ ω.
We use the same construction used in [16] to prove Theorem 3.3. Build mass problems As ⊆

{g | g >T 0} such that {g | g >T 0} − As is finite for each s ∈ ω. Set A0 = {g | g >T 0}. At
stage s+ 1, choose hs>T 0 such that hs does not compute any of the (finitely many) functions in
{g | g >T 0}−As. If Φs(hs) is total and >T 0, let gs = Φs(hs) and set As+1 = As−{gs}. Otherwise
set As+1 = As. Put A =

⋂
s∈ωAs and put a = [A].

To see a>M 0′, observe that by construction Φs(hs) /∈ A for each s ∈ ω. Now let fi>T 0 for each
i ∈ ω. We need to show that Φe(A) *

⋃
i∈ω i

aBfi for every index e. To do this, we first show that
the functions in {g | g >T 0}−A have distinct Turing degree. Suppose that gi leaves A at stage i+1
and gj leaves A at stage j + 1 for i+ 1 < j + 1 (i.e., at stage i+ 1 we had Φi(hi) = gi>T 0, and at
stage j+1 we had Φj(hj) = gj >T 0). Then gi�T gj because otherwise gi≤T gj ≤T hj , contradicting
that hj was chosen �T gi at stage j+ 1. Now suppose Φe(g) is total for all g ∈ A. Fix any σ ∈ ω<ω
such that Φe(σ)(0)↓, and let n be such that Φe(σ)(0) = n. A is missing at most one function ≡T fn,
so let g ∈ A be such that σ ⊂ g and g≡T fn. Then Φe(g)(0) = n, but Φe(g) /∈ naBfn . Hence

Φe(A) *
⋃
i∈ω i

aBfi . �

Question 3.11. Let a be the degree constructed in Theorem 3.10. Does a→
[⋃

i∈ω i
aDi

]
=[⋃

i∈ω i
aDi

]
whenever [Di]>M 0′ and is join-irreducible for each i ∈ ω? Is Th(M /a) ⊆ JAN?

Finally, we note that the answer to Question 1.3 is “no” for Mw in place of M. Let f >T 0
have minimal Turing degree, and let a = [Bf ]w. Then, in Mw, [0,a] = {0,0′,a} and JAN (
Th(Mw /a) ( CPC.

4. New degrees whose corresponding logic is contained in JAN

We extend Theorem 3.1 by proving Th(M /a) ⊆ JAN for degrees a such that a≥M

[⋃
i∈ω i

aDi
]

for some collection of join-irreducible degrees [Di]>M 0′, i ∈ ω.
A propositional formula is called positive if the connective ‘¬’ does not appear in it. For a logic L

let L+ denote the positive formulas in L, and for a Brouwer algebra B let Th+(B) denote the set of
positive formulas valid in B. JAN is the maximum intermediate logic L for which L+ = IPC+ [5].
This means that L+ = IPC+ implies L ⊆ JAN for any intermediate logic L. Thus Th+(B) = IPC+

implies Th(B) ⊆ JAN for any Brouwer algebra B.
Let B1 and B2 be Brouwer algebras. An injection f : B1→B2 is called a B-embedding if it

preserves 0, 1, +, ×, and → (and therefore also ¬). An injection f : B1→B2 is called a B+-
embedding if it preserves 0, +, ×, and → (but not necessarily 1 or ¬). If B1 B-embeds into B2,
then Th(B2) ⊆ Th(B1), and if B1 B

+-embeds into B2, then Th+(B2) ⊆ Th+(B1). Both of these
facts are easily checked in light of [9] Theorem VI.2.4. If a ≤ b are in a Brouwer algebra B, then
B /a B+-embeds into B /b by the identity. This implies that Th+(B /b) ⊆ Th+(B /a), and it
follows that the a for which Th(B /a) ⊆ JAN is upward-closed in any Brouwer algebra B.

Our goal is to B+-embed a certain class of Brouwer algebras into M /a. For any set X, let Fr(X)
denote the free distributive lattice generated by X and let 0 ⊕ Fr(X) denote Fr(X) with a new
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bottom element 0. The elements of Fr(X) are all of the form
∑

v∈V
∏
u∈Uv

xvu where V and the Uv
are finite sets of indices and the xvu are all in X (see for example Balbes and Dwinger [1] Section

V.3). For such representations,
∑

v∈V
∏
u∈Uv

xvu ≤
∑

j∈J
∏
i∈Ij yji if and only if(

∀v ∈ V
)(
∃j ∈ J

)(
∀i ∈ Ij

)(
∃u ∈ Uv

)(
xvu ≤ yji

)
.

If a,b ∈ Fr(X) are such that a � b, then a→b exists. To see this, let a =
∑

v∈V
∏
u∈Uv

xvu and

b =
∑

j∈J
∏
i∈Ij yji be representations for a and b. Then check

a→b =
∑{∏

i∈Ij

yji

∣∣∣ (∀v ∈ V )(∏
i∈Ij

yji �
∏
u∈Uv

xvu

)}
.

If a ≥ b are in Fr(X) for an infinite X, then a→b fails to exist because in this case Fr(X) has
no least element. We see then that a→b exists for every a,b ∈ 0⊕ Fr(X). If X is finite, then so
are Fr(X) and 0⊕Fr(X). Hence both are Brouwer algebras. Let Fr(n) denote the free distributive
lattice with n generators. The logic LM =

⋂
n∈ω Th(0⊕Fr(n)) is called the Medvedev logic of finite

problems. (LM is usually defined in terms of Brouwer algebras isomorphic to the 0⊕Fr(n). See [16]
for details.) We take advantage of the fact that LM+ = IPC+ [8].

If X is infinite, then 0⊕Fr(X) fails to be a Brouwer algebra only because it lacks a top element.
Therefore the notion of a B+-embedding makes sense when we allow B1 or B2 to be 0⊕Fr(X). If
we let 0 ⊕ Fr(X) ⊕ 1 denote Fr(X) with a new bottom element 0 and a new top element 1, then
0⊕ Fr(X)⊕ 1 is always a Brouwer algebra.

For any partial order (P,≤P ), let Fr(P,≤P ) denote the free distributive lattice generated by

(P,≤P ). Fr(P,≤P ) is the quotient Fr(P )/ ≡ where, for a =
∑

v∈V
∏
u∈Uv

xvu and b =
∑

j∈J
∏
i∈Ij yji

in Fr(P ), a ≡ b if and only if (a � b)∧(b � a) and a � b if and only if(
∀v ∈ V

)(
∃j ∈ J

)(
∀i ∈ Ij

)(
∃u ∈ Uv

)(
xvu ≤P yji

)
.

Fr(P,≤P ) is always a distributive lattice, and 0⊕ Fr(P,≤P )⊕ 1 is always a Brouwer algebra; also
see [13].

The following lemmas facilitate our embeddings. Lemma 4.3 is a slight generalization of the claim
in the proof of [13] Lemma 2.3 and of [10] Lemma 6. The embedding is done in Theorem 4.4 which
is nearly identical to [14] Theorem 2.11. Part of the reason for reproducing the proof here is to
(hopefully) correct the notational inconsistencies in the proof in [14]. We restate [14] Theorem 2.11
for reference.

Theorem 4.1 ([14] Theorem 2.11). Let d =
∏n
i=0 di where di>M 0′ and di is join-irreducible for

each i ≤ n. Then 0⊕Fr(P,≤P )⊕1 B-embeds into M /d for every countable partial order (P,≤P ).

(The above theorem is stated more generally in [14]. Each degree di for i ≤ n is allowed to
be either join-irreducible or De-irreducible. A degree a is dense if it is of the form [A] where A
is dense in ωω, and a degree d is De-irreducible if a→d = d for all dense degrees a. We do not
consider De-irreducible degrees in our version of [14] Theorem 2.11, which is Theorem 4.4 below,
because in Theorem 4.4 we require that the mass problems Di (which play the role of the degrees
di in [14] Theorem 2.11) are Turing upward-closed. Mass problems that are Turing upward-closed
are dense and hence their degrees are not De-irreducible.)

Lemma 4.2 ([3]). If X �M Y are mass problems, then there is a W ⊆ X with |W| ≤ ω such that
W �M Y.

Proof. X �M Y means that there is no Turing functional Φ such that Φ(X ) ⊆ Y. Thus for each
functional Φe there must be some function fe ∈ X such that Φe(fe) /∈ Y. Let W consist of a choice
of one such fe ∈ X for each functional Φe. �
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Lemma 4.3. Let U , V, and Fi for i ∈ ω be mass problems such that
⋃
i∈ω i

aFi≤M U +V and

σaU ⊆ U for all σ ∈ ω<ω. Then there are mass problems Vi for i ∈ ω such that
⋃
i∈ω i

aVi≡M V
and Fi≤M U +Vi for each i ∈ ω.

Proof. Let U , V, and Fi for i ∈ ω be as in the statement of the lemma. Let Φ be such that
Φ(U +V) ⊆

⋃
i∈ω i

aFi. For each i ∈ ω, define Vi = {g ∈ V | (∃σ ∈ ω<ω)(Φ(σ ⊕ g)(0) = i)}.
V ≤M

⋃
i∈ω i

aVi is clear.
⋃
i∈ω i

aVi≤M V by the reduction which, given g, searches for a σ ∈ ω<ω
such that Φ(σ ⊕ g)(0)↓ and outputs Φ(σ ⊕ g)(0)ag. To see iaFi≤M U +Vi, consider the reduction
which, given f ⊕ g, searches for a σ ∈ ω<ω such that Φ(σ⊕ g)(0) = i and outputs Φ((σaf)⊕ g). If
f ⊕ g ∈ U +Vi, then such a σ is found, σaf is in U , and Φ((σaf)⊕ g) is in iaFi. �

Theorem 4.4. Let d =
[⋃

i∈ω i
aDi

]
where [Di]>M 0′, [Di] is join-irreducible, and Di is Turing

upward-closed for each i ∈ ω. Then 0⊕ Fr(2ω) B+-embeds into M /d.

Proof. Let Di for i ∈ ω be as in the statement of the theorem, let D =
⋃
i∈ω i

aDi, and let d = [D].
Lemma 3.7 proves that d>M 0′. By Lemma 4.2, let A ⊆ {f | f >T 0} be a countable mass problem
such that A�MD. Let {fx | x ∈ 2ω} be a collection of functions such that fx |T fy for all x, y ∈ 2ω

with x 6= y and that f �T fx for all f ∈ A and x ∈ 2ω. Such a sequence can be constructed via
standard recursion-theoretic techniques: build a perfect tree whose paths are Turing incomparable
and do not compute any functions in A. See for example [6] Section II.4. Notice that Bfx ≤MA
(because A ⊆ Bfx) for each x ∈ 2ω.

Define G : 0 ⊕ Fr(2ω)→M as follows. Let G(0) = 0 and let G(x) = [Bfx ] on the genera-
tors x ∈ 2ω of Fr(2ω). Then extend G to all of 0 ⊕ Fr(2ω) so that G

(∑
v∈V

∏
u∈Uv

xvu
)

=∑
v∈V

∏
u∈Uv

G
(
xvu
)
. G preserves 0, +, and × by definition, and G is injective and preserves

→ by Lemma 3.2 items (iii) and (iv). Hence G is a B+-embedding (this is essentially [13] Corol-
lary 2.5). Now define H : 0 ⊕ Fr(2ω)→M /d by H(a) = G(a)×d for all a ∈ 0 ⊕ Fr(2ω). This H
is the desired B+-embedding. By definition, H preserves 0, +, and ×. We must show that H is
injective and that H preserves →.

Clearly H(a) = 0 if and only if a = 0, so to show that H is injective we let a,b ∈ Fr(2ω) be
such that H(a)≤MH(b) and show that a ≤ b. Let a =

∑
v∈V

∏
u∈Uv

xvu be a representation for a

and let b =
∑

j∈J
∏
i∈Ij y

j
i be a representation for b. H(a)≤MH(b) means that∑

v∈V

∏
u∈Uv

G
(
xvu
)
×d≤M

∑
j∈J

∏
i∈Ij

G
(
yji
)
×d.

Therefore ∑
v∈V

∏
u∈Uv

G
(
xvu
)
×d≤M

∑
j∈J

∏
i∈Ij

G
(
yji
)

=
∏{∑

j∈J
G
(
yjα(j)

) ∣∣∣ α ∈∏
j∈J

Ij

}
where the equality is by distributivity (

∏
j∈J Ij denotes the Cartesian product of the Ij ’s). Hence∑

v∈V

∏
u∈Uv

G
(
xvu
)
×d≤M

∑
j∈J

G
(
yjα(j)

)
for each α ∈

∏
j∈J

Ij .

Each
∑

j∈J G
(
yjα(j)

)
is meet-irreducible by Lemma 3.2 item (ii). Also, d�M

∑
j∈J G

(
yjα(j)

)
for each

α ∈
∏
j∈J Ij because

∑
j∈J G

(
yjα(j)

)
≤M[A] but d�M[A]. Thus∑

v∈V

∏
u∈Uv

G
(
xvu
)
≤M

∑
j∈J

G
(
yjα(j)

)
for each α ∈

∏
j∈J

Ij ,
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and this implies that ∑
v∈V

∏
u∈Uv

G
(
xvu
)
≤M

∏{∑
j∈J

G
(
yjα(j)

) ∣∣∣ α ∈∏
j∈J

Ij

}
.

The left-hand side of the above inequality is G(a) and the right-hand side is G(b). G is a B+-
embedding, so we conclude a ≤ b.

If either of a,b ∈ 0 ⊕ Fr(2ω) is 0, then clearly H(a→b) = H(a)→H(b). So as before, let

a =
∑

v∈V
∏
u∈Uv

xvu and let b =
∑

j∈J
∏
i∈Ij y

j
i be in Fr(2ω). We see H(a→b)≥MH(a)→H(b)

because

H(a→b) +H(a) = H((a→b) + a)≥MH(b).

To show that H(a→b)≤MH(a)→H(b), we show that if z ∈M is such that H(b)≤MH(a) + z,
then H(a→b)≤M z. Suppose H(b)≤MH(a) + z. That is,∑

j∈J

∏
i∈Ij

G
(
yji
)
×d≤M

(∑
v∈V

∏
u∈Uv

G
(
xvu
)
×d

)
+ z.(1)

Since a→b =
∑{∏

i∈Ij y
j
i |
(
∀v ∈ V

)(∏
i∈Ij y

j
i �

∏
u∈Uv

xvu
)}

, we have

H(a→b) = G(a→b)×d

=
∑{∏

i∈Ij

G
(
yji
) ∣∣∣ (∀v ∈ V )(∏

i∈Ij

G
(
yji
)
�M

∏
u∈Uv

G
(
xvu
))}
×d.

It suffices to show that, given j ∈ J , if
∏
i∈Ij G

(
yji
)

satisfies(
∀v ∈ V

)(∏
i∈Ij

G
(
yji
)
�M

∏
u∈Uv

G
(
xvu
))
,

then
∏
i∈Ij G

(
yji
)
×d≤M z. Suppose

∏
i∈Ij G

(
yji
)

is such a meet. Then we know(
∀v ∈ V

)(
∃u ∈ Uv

)(∏
i∈Ij

G
(
yji
)
�MG

(
xvu
))
.

By choosing such a u ∈ Uv for every v ∈ V and by appealing to Lemma 3.2 items (i) and (ii), we
see that there is an α ∈

∏
v∈V Uv such that∏

i∈Ij

G
(
yji
)
�M

∑
v∈V

G
(
xvα(v)

)
.(2)

Distributing
∑

v∈V
∏
u∈Uv

G
(
xvu
)

in the right-hand side of (1) yields∏
i∈Ij

G
(
yji
)
×d≤M

∑
v∈V

G
(
xvα(v)

)
+ z.

The degree
∑

v∈V G
(
xvα(v)

)
is a finite join of degrees of the form [Bf ] and thus has a representative

U such that σaU ⊆ U for all σ ∈ ω<ω. So by Lemma 4.3 there are mass problems Zi for i ∈ Ij and
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Ẑi for i ∈ ω such that

z =
(∏
i∈Ij

[Zi]
)
×
[⋃
i∈ω

iaẐi
]
,

G
(
yji
)
≤M

∑
v∈V

G
(
xvα(v)

)
+[Zi] for each i ∈ Ij , and

[Di]≤M

∑
v∈V

G
(
xvα(v)

)
+[Ẑi] for each i ∈ ω.

Each G
(
yji
)

is join-irreducible, and G
(
yji
)
�M

∑
v∈V G

(
xvα(v)

)
by (2). Thus G

(
yji
)
≤M[Zi] for

each i ∈ ω, so
∏
i∈Ij G

(
yji
)
≤M

∏
i∈Ij [Zi]. Each [Di] is join-irreducible by assumption, and also

[Di]�M
∑

v∈V G
(
xvα(v)

)
because the right-hand side is ≤M[A] but the left-hand side is not. It fol-

lows that [Di]≤M[Ẑi] for each i ∈ ω, and so Ẑi ⊆ Di for each i ∈ ω because each Di is Turing

upward-closed. Thus
⋃
i∈ω i

aẐi ⊆ D, so d≤M

[⋃
i∈ω i

aẐi
]
. Therefore∏

i∈Ij

G
(
yji
)
×d≤M

(∏
i∈Ij

[Zi]
)
×
[⋃
i∈ω

iaẐi
]

= z

as desired. �

Corollary 4.5. If a≥M d are degrees such that d =
[⋃

i∈ω i
aDi

]
where [Di]>M 0′ and is join-

irreducible for each i ∈ ω, then 0⊕ Fr(2ω) B+-embeds into M /a.

Proof. Let a, d, and Di for i ∈ ω be as in the statement of the corollary. Let d0 =
[⋃

i∈ω i
aC(Di)

]
and notice that d≥M d0. Di≡MC(Di) for each i ∈ ω by Lemma 2.3, so d0 satisfies the hypotheses
of Theorem 4.4. Thus 0⊕ Fr(2ω) B+-embeds into M /d0 which B+-embeds into M /a. �

Corollary 4.6. If a≥M d are degrees such that d =
[⋃

i∈ω i
aDi

]
where [Di]>M 0′ and is join-

irreducible for each i ∈ ω, then Th(M /a) ⊆ JAN.

Proof. The Brouwer algebra 0⊕ Fr(n) B+-embeds into 0⊕ Fr(2ω) for each n, and 0⊕ Fr(2ω) B+-
embeds into M /a by Corollary 4.5. Thus Th+(M /a) ⊆

⋂
n∈ω Th+(0⊕Fr(n)) = LM+ = IPC+. So

Th(M /a) ⊆ JAN. �

Theorem 4.4 can be modified to B-embed 0 ⊕ Fr(2ω) ⊕ 1 into M /d for degrees d as in the
statement of Theorem 4.4. However, if a ≤ b in a Brouwer algebra B, it is not in general the case
that B /a B-embeds into B /b. So the proof of Corollary 4.5 fails for B-embedding 0⊕Fr(2ω)⊕1.
Theorem 4.4 can also be modified to prove a more precise analogue of [14] Theorem 2.11 (restated
as Theorem 4.1 above). Let d =

[⋃
i∈ω i

aDi
]

where [Di]>M 0′, [Di] is join-irreducible, and Di
is Turing upward-closed for each i ∈ ω. Then 0 ⊕ Fr(P,≤P ) ⊕ 1 B-embeds into M /d for every
countable partial order (P,≤P ).

5. Fcl is not prime

Recall that a filter F in a lattice is called prime if a + b ∈ F→a ∈ F∨b ∈ F for all a and b in
the lattice. Theorem 2.4 can be phrased as a characterization of the prime principal filters in M:
a degree a generates a prime filter if and only if a = [ωω − I] for some Turing ideal I. There is
little general theory of the non-principal filters in M, but several specific cases have been studied
in Dyment [3], Sorbi [11], Bianchini and Sorbi [2], and Lewis, Shore, and Sorbi [7]. See also [15] for
a summary of many of the results appearing in these works. We consider the filters F and Fcl:

Definition 5.1.

• A degree a is called dense (closed) if a = [A] for an A that is dense (closed) in ωω.
• I denotes the ideal generated by {a | a is dense}.
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• F denotes M− I.
• Fcl denotes the filter generated by {a | a>M 0 and is closed}.

The join and meet of two dense degrees is dense [3], and the join and meet of two closed degrees is
closed [2]. Thus I = {b | (∃a≥M b)(a is dense)} and Fcl = {b | (∃a≤M b)(a>M 0 and is closed)}.
The basic properties of I, F, and Fcl are as follows: I is a prime ideal [11], F is a prime filter [2],
I is not principal [3], F and Fcl are not principal [2], and Fcl ( F [2]. Both [2] and [15] ask for a
proof that Fcl is not prime. We provide a proof of this fact now.

Lemma 5.2. For any f ∈ ωω there are A,B ⊆ ωω such that A+B≥M{f} and, for any closed
C ⊆ ωω, if A≥M C or B≥M C, then C contains a recursive function.

Proof. Fix a recursive bijection ω ↔ ω<ω. For e, n ∈ ω, if

∀m∀σ(∃τ ⊇ σ)(Φe(n
aτ)(m)↓),

then define η(e, n, i) ∈ ω<ω by induction on i ∈ ω as follows. Let η(e, n, 0) = naσ, where σ is the
least string such that Φe(n

aσ)(0)↓. Given η(e, n, i), let η(e, n, i + 1) = η(e, n, i)a0aσ, where σ is
the least string such that Φe(η(e, n, i)a0aσ)(i+ 1)↓.

Let f ∈ ωω. We construct A and B such that:

• If g ∈ A, then g(0) has the form

g(0) = 〈 `, 〈n0, x0, y0 〉, . . . , 〈n`−1, x`−1, y`−1 〉 〉,

where ` ∈ ω and ni ∈ ω, xi ∈ {0, 1}, and yi ∈ ω for each i < `.
• If g ∈ A and 〈ne, 0, ye 〉 is in the eth position of g(0), then

– ∃m∃σ(∀τ ⊇ σ)(Φe(ne
aτ)(m)↑)

– Any h ∈ B with h(0) = ne is of the form h = ne
aσaf , where |σ| = ye.

• If g ∈ A and 〈ne, 1, ye 〉 is the eth position of g(0), then
– ∀m∀σ(∃τ ⊇ σ)(Φe(ne

aτ)(m)↓)
– Any h ∈ B with h(0) = ne is of the form h = η(e, ne, i)

a1af for some i ∈ ω.
• The above properties hold with the roles of A and B reversed.

We construct A and B in stages. The construction is similar to the construction in Lemma 2.3
in that if g goes into A before h goes into B, then h(0) codes how to recover f from g, and similarly
with the roles of A and B reversed. Start at stage 0 with A = ∅, B = ∅, s = 〈 〉, and t = 〈 〉.

Stage e+ 1: Set ne = eat.
Case 1: ∃m∃σ(∀τ ⊇ σ)(Φe(ne

aτ)(m)↑). Choose such a σ and put ne
aσaf in A. Update

s = sa 〈ne, 0, |σ| 〉.
Case 2: ∀m∀σ(∃τ ⊇ σ)(Φe(ne

aτ)(m)↓). Put the functions η(e, ne, i)
a1af in A for each i ∈ ω.

Update s = sa 〈ne, 1, 0 〉.
Repeat the above procedure with the roles of A and B reversed and the roles of s and t reversed.

This completes stage e+ 1. Then go on to stage e+ 2. This completes the construction.
Suppose A≥M C where C is closed. We show that C contains a recursive function. The proof

with B in place of A is the same. Let Φe(A) ⊆ C. Consider stage e+ 1 of the above construction.
Case 1 must not have occurred because otherwise A would contain a function ne

aσaf such that
Φe(ne

aσaf) is not total. Thus case 2 occurred, and so A contains the function η(e, ne, i)
a1af

for each i ∈ ω. Let k be the recursive function k = ne
aσ0

a0aσ1
a0aσ2

a0a · · · , where η(e, ne, i) =
ne
aσ0

a0a · · ·a 0aσi for each i ∈ ω (think of k as the “limit” of the strings η(e, ne, i) as i → ∞).
Then Φe(η(e, ne, i)

a1af) ∈ C and Φe(η(e, ne, i)
a1af) � i = Φe(k) � i for each i ∈ ω. Thus C

contains the recursive function Φe(k) because C is closed.
We now describe a uniform procedure for producing f from g ⊕ h ∈ A+B. First decode h(0)

as h(0) = 〈 `, 〈n0, x0, y0 〉, . . . , 〈n`−1, x`−1, y`−1 〉 〉 and look for g(0) among the ne. If 〈 g(0), 0, ye 〉
appears in h(0) at position e, then output g from position ye+1 onward as in this case g = σaf for
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some string σ of length ye+1. If 〈 g(0), 1, 0 〉 appears in h(0) at position e, then g = η(e, g(0), i)a1af
for some i ∈ ω. Compute which i by successively computing the η(e, g(0), j), matching them against
g, and checking if the next bit of g is 0 (in which case compute η(e, g(0), j+ 1)) or 1 (in which case
j = i). Output f once i is found.

The number g(0) appears among the ne coded into h(0) if g went into A before h went into B.
Otherwise h went into B before g went into A, so h(0) appears among the ne coded in g(0). In this
case, switch the roles of g and h and apply the above procedure to compute f . �

Theorem 5.3. Fcl is not prime. In fact, if G ⊆ Fcl, G 6= {1} is a filter, then G is not prime.

Proof. Suppose G ⊆ Fcl is a filter such that G 6= {1}. Let f >T 0 be such that [{f}] ∈ G. Let
A,B ⊆ ωω be as in Lemma 5.2 for this f . Let a = [A] and b = [B]. Then a,b /∈ G because
a,b /∈ Fcl, but a + b ∈ G because a + b≥M[{f}]. �

If x and y are degrees such that y is closed and y�M x, then there is no dense degree z such
that y≤M x + z [7]. Therefore, if G ⊆ Fcl, G 6= {1} is a filter, then any degrees a and b witnessing
that G is not prime must both be in F−G.

The results of Section 3 suggest two new filters to study:

Definition 5.4.

• G denotes the filter generated by

{d | d>M 0′ and is join-irreducible}.
• H denotes the filter generated by{[⋃

i∈ω
iaDi

] ∣∣∣ (∀i ∈ ω)([Di]>M 0′ and is join-irreducible)

}
.

G is exactly the set of all degrees b for which b≥M
∏n
i=0 di for some join-irreducible degrees

di>M 0′, i ≤ n, and H is exactly the set of all degrees b for which b≥M

[⋃
i∈ω i

aDi
]

for some
join-irreducible degrees [Di]>M 0′, i ∈ ω.

Theorem 5.5. Fcl ( G ( H ( {a | a>M 0′}. G * F (hence also H * F). Neither G nor H is
principal.

Proof. Every closed degree >M 0 bounds a join-irreducible degree >M 0′ [16]. Hence Fcl ⊆ G.
G ⊆ H is clear. To see G * F, observe that every Bf is dense, so if f >T 0, then [Bf ] ∈ G−F.
This also shows G * Fcl. The degree constructed in Theorem 3.8 witnesses H * G. The degree
constructed in Theorem 3.10 witnesses {a | a>M 0′} * H. We show that G is not principal. The
proof for H is the same. First, if A is countable and contains no recursive functions, then there is a
function f >T 0 such that g�T f for all g ∈ A. Thus Bf ≤MA (as A ⊆ Bf ) for this f . Every [Bf ]
for f >T 0 is in G, so every [A] where A is countable and contains no recursive function is in G. If
G were principal, it would be generated by a degree x such that x≤M[A] for all countable A not
containing a recursive function. By Lemma 4.2, the only such x are 0 and 0′. We know 0 and 0′

are not in G, so G cannot be principal. �

We end with a question.

Question 5.6.

• Is F ⊆ G? Is F ⊆ H?
• Is G prime? Is H prime?
• Is {a | Th(M /a) ⊆ JAN} a filter?

To prove that {a | Th(M /a) ⊆ JAN} is a filter, it suffices to prove that Th(M /(a×b)) ⊆ JAN
whenever both Th(M /a) and Th(M /b) are ⊆ JAN because {a | Th(M /a) ⊆ JAN} is upward-
closed in M.
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