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Abstract. We prove Menger’s theorem for countable graphs in Π1
1-CA0. Our proof in fact proves

a stronger statement, which we call extended Menger’s theorem, that is equivalent to Π1
1-CA0 over

RCA0.

1. Introduction

König’s duality theorem for finite bipartite graphs is a classic theorem in graph theory and one
of the pillars of matching theory. It expresses a duality between matchings and covers in bipartite
graphs. Let (X,Y,E) be a bipartite graph. A matching is a set of edges M ⊆ E such that no
two edges in M share a vertex. A cover is a set of vertices C ⊆ X ∪ Y such that every edge in E
has a vertex in C. Finite König’s duality theorem says that the cardinalities of matchings and the
cardinalities of covers meet in the middle.

Finite König’s Duality Theorem. In every finite bipartite graph, the maximum cardinality of
a matching equals the minimum cardinality of a cover.

Finite Menger’s theorem generalizes finite König’s duality theorem from bipartite graphs to
arbitrary graphs. Let G be a graph with vertices V (G) and edges E(G). A web is a triple (G,A,B)
where G is a graph and A and B are distinguished sets of vertices A,B ⊆ V (G). The notion of a
matching in a bipartite graph is generalized by the notion of a set of disjoint A-B paths1 in a web.
An A-B path in a web (G,A,B) is a path that starts in A and ends in B. Two paths are disjoint
if they have no vertices in common. The notion of a cover in a bipartite graph is generalized by
the notion of an A-B separator in a web. An A-B separator in a web (G,A,B) is a set of vertices
C ⊆ V (G) such that every A-B path in G contains a vertex of C (so that removing C from the
graph separates A from B).

Finite Menger’s Theorem. In every finite web (G,A,B), the maximum cardinality of a set of
disjoint A-B paths equals the minimum cardinality of an A-B separator.

Finite Menger’s theorem is itself a special case of the famous max-flow min-cut theorem for net-
work flows. See [5] Section 2.1 for a full treatment of finite König’s duality theorem, [5] Section 3.3
for finite Menger’s theorem, and [5] Section 6.2 for the max-flow min-cut theorem.

The conclusions of finite König’s duality theorem and finite Menger’s theorem remain true for
infinite bipartite graphs and infinite webs, but they are more an exercise in cardinal arithmetic
than they are in combinatorics. To deepen the combinatorial content of these theorems, Erdős
conjectured that there always exist a matching and a cover that simultaneously witness each other’s
optimality. His reformulations are what we now call König’s duality theorem and Menger’s theorem.

König’s Duality Theorem. In every bipartite graph (X,Y,E), there is a matching M and a
cover C such that C consists of exactly one vertex from each edge in M .

Menger’s Theorem. In every web (G,A,B), there is a set of disjoint A-B paths M and an A-B
separator C such that C consists of exactly one vertex from each path in M .

This research was partially supported by NSF grants DMS-0554855 and DMS-0852811.
1For us, “path” always means “simple path,” that is, no repeated vertices.
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The most general case, Menger’s theorem for webs of arbitrary cardinality, is now known to
be true. The proof took more than forty years to discover. The first progress was by Podewski
and Steffens, who proved König’s duality theorem for countable bipartite graphs [7]. Aharoni next
proved König’s duality theorem for arbitrary bipartite graphs [1]. He then proved Menger’s theorem
for countable webs [2]. Finally, Aharoni and Berger proved Menger’s theorem for arbitrary webs [3].

The question motivating our work is the following.

Question 1.1. What is the axiomatic strength of Menger’s theorem for countable webs in the
context of second-order arithmetic?

Aharoni, Magidor, and Shore [4] and Simpson [8] answered Question 1.1 for König’s duality
theorem for countable bipartite graphs. Aharoni, Magidor, and Shore noticed that Aharoni’s proof
of König’s duality theorem in [1] actually proves a stronger statement, which they call extended
König’s duality theorem. They proved that extended König’s duality theorem is equivalent to
Π1

1-CA0 over RCA0, and they proved that König’s duality theorem implies ATR0 over RCA0 [4]. Simpson
produced a new proof of König’s duality theorem in ATR0 by exploiting the fact that ATR0 proves
the existence of models of Σ1

1-AC0 [8]. Therefore König’s duality theorem for countable bipartite
graphs is equivalent to ATR0 over RCA0.

A priori, Menger’s theorem for countable webs implies ATR0 over RCA0 because it implies König’s
duality theorem for countable bipartite graphs over RCA0. Here we provide a proof Menger’s theorem
for countable webs in Π1

1-CA0. The general plan for our proof is inspired by Aharoni’s proof in [2]
and Diestel’s presentation of it in [5] Section 8.4. As with König’s duality theorem, we notice
that this proof in fact proves a stronger statement, which we call extended Menger’s theorem, that
is equivalent to Π1

1-CA0 over RCA0. By general considerations, Menger’s theorem cannot imply
Π1

1-CA0 over RCA0. Menger’s theorem can be written as a Π1
2 sentence in the language of second-

order arithmetic, and no true Π1
2 sentence implies Π1

1-CA0, even over ATR0 (see [4] Proposition 4.17).
Question 1.1 now becomes more specific.

Question 1.2. Is Menger’s theorem for countable webs provable in ATR0?

This paper is organized as follows. Section 2 explains the background graph-theoretic primitives
and subsystems of second-order arithmetic needed for this work. Section 3 develops in ACA0 the
tools needed to prove Menger’s theorem in Π1

1-CA0. Section 4 gives a proof of Menger’s theorem
for countable webs in Π1

1-CA0. Section 5 introduces extended Menger’s theorem and proves that it
is equivalent to Π1

1-CA0 over RCA0.

2. Background

2.1. Graph theory basics and conventions. All the graphs that we consider are countable
because we are working in second-order arithmetic. All the graphs that we consider are directed.
Menger’s theorem for undirected graphs follows from Menger’s theorem for directed graphs by
the usual trick of replacing an undirected edge by two directed edges. Henceforth a “graph” is a
countable directed graph.

As defined in the introduction, a web is a triple (G,A,B) where G is a graph and A and B
are distinguished sets of vertices A,B ⊆ V (G). We often abuse this notation by writing G for
(G,A,B). For convenience, we always assume that there are no edges directed into A, that there
are no edges directed out of B, and that A ∩B = ∅.

If H and H ′ are subgraphs of a graph G, then H ∪H ′ is the subgraph of G induced by V (H) ∪
V (H ′), and G−H is the subgraph induced by V (G)− V (H).

Let G be a graph. If P is a path in G, we write in(P ) for the first vertex of P (if it exists) and
ter(P ) for the last vertex of P (if it exists). If P is a path with in(P ) ∈ A and ter(P ) ∈ B for
some A,B ⊆ V (G), then we call P an A-B path. If P is a path and x ∈ V (P ), then Px denotes
the subpath of P consisting of all the vertices up to and including x, and Px denotes the subpath
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of P consisting of all the vertices up to and not including x. Similarly, xP denotes the subpath
of P consisting of all the vertices following x and including x, and xP denotes the subpath of P
consisting of all the all the vertices following x and not including x. If P and Q are paths with
V (P ) ∩ V (Q) = {x}, then PxQ is the path obtained by concatenating the paths Px and xQ. If
V (P ) ∩ V (Q) = {ter(P )} = {in(Q)}, then PQ denotes P ter(P )Q, the concatenation of the paths
P and Q.

For our purposes, a tree is a directed acyclic graph T that has a distinguished root r ∈ V (T )
such that for any x ∈ V (T ) there is a unique path in T from r to x. The path in a tree T from its
root to an x ∈ V (T ) is denoted Tx. If P is a finite path, a tree with trunk P is a tree T of the form
P ∪ T ′ where T ′ is a tree rooted at ter(P ). A tree with trunk P has root in(P ). If G = (G,A,B)
is a web, an A-B tree in G is a subgraph of G that is a tree with root in A and exactly one vertex
in B.

2.2. Reverse mathematics. Reverse mathematics, introduced by Friedman [6], is an analysis of
the logical strength of the theorems of ordinary mathematics in the context of second-order arith-
metic. A result in reverse mathematics typically has the form “T is equivalent to strong system

over weak system,” where strong system and weak system are subsystems of second-order arith-
metic and T is some theorem from ordinary mathematics. This means that T is provable in
strong system and that all the axioms of strong system are provable in weak system∪{T}.
The proof of strong system from weak system∪{T} is called a reversal.

We now describe the axiomatic systems that we will use to analyze Menger’s theorem. We
follow [9], the standard reference for reverse mathematics. Also see [4] Section 2 for a thorough
introduction to most of the systems we consider and for computability-theoretic interpretations of
these systems.

Before we describe the systems, we need to know that the basic axioms are the sentences

∀m(m+ 1 6= 0)

∀m∀n(m+ 1 = n+ 1→m = n)

∀m(m+ 0 = m)

∀m∀n(m+ (n+ 1) = (m+ n) + 1)

∀m(m× 0 = 0)

∀m∀n(m× (n+ 1) = (m× n) +m)

∀m¬(m < 0)

∀m∀n(m < n+ 1↔(m < n∨m = n)),

that the induction axiom is the sentence

∀X((0 ∈ X ∧∀n(n ∈ X→n+ 1 ∈ X))→∀n(n ∈ X)),

and that the comprehension scheme consists of all universal closures of formulas of the form

∃X∀n(n ∈ X↔ϕ(n)),

where ϕ can be any formula in the language of second-order arithmetic in which X does not occur
freely. Full second-order arithmetic consists of the basic axioms, the induction axiom, and the
comprehension scheme.

RCA0 (for recursive comprehension axiom) consists of the basic axioms, the Σ0
1 induction scheme,

and the ∆0
1 comprehension scheme. The Σ0

1 induction scheme consists of all universal closures of
formulas of the form

(ϕ(0)∧∀n(ϕ(n)→ϕ(n+ 1)))→∀nϕ(n)
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where ϕ is Σ0
1. The ∆0

1 comprehension scheme consists of all universal closures of formulas of the
form

∀n(ϕ(n)↔ψ(n))→∃X∀n(n ∈ X↔ϕ(n))

where ϕ is Σ0
1, ψ is Π0

1, and X does not occur freely in ϕ. RCA0 is the standard weak system

for the purpose of reversals. RCA0 proves that the function 〈 i, j 〉 7→ (i + j)2 + i is injective (see
[9] Section II.2). For X ⊆ N and n ∈ N, we define

(X)n = {i | 〈 i, n 〉 ∈ X} and

(X)n = {〈 i,m 〉 | 〈 i,m 〉 ∈ X ∧m < n}.

RCA0 proves that if X exists, then so do (X)n and (X)n. We interpret (X)n as the (n+1)th column
of X and (X)n as set of the first n columns of X.

ACA0 (for arithmetical comprehension axiom) consists of the basic axioms, the induction ax-
iom, and the arithmetical comprehension scheme. The arithmetical comprehension scheme is the
restriction of the comprehension scheme to formulas ϕ that are arithmetical.

ATR0 (for arithmetical transfinite recursion) consists of ACA0 plus an axiom scheme that says if a
set can be constructed by iterating arithmetical comprehension along an existing well-order, then
that set exists. Let LO(X,<X) be a formula that says “<X is a linear order on the set X,” and let
WO(X,<X) be a formula that says “<X is a well-order on the set X.” Given a formula θ(n, Y ),
let Hθ(X,<X , Y ) be a formula that says “LO(X,<X) and Y = {〈n, j 〉 | j ∈ X ∧ θ(n, {〈m, i 〉 ∈ Y |
i <X j})}.” The axioms of ATR0 consist of those of ACA0 plus all universal closures of formulas of
the form

∀X∀<X (WO(X,<X)→∃Y Hθ(X,<X , Y ))

where θ is arithmetical. An easier-to-understand equivalent of ATR0 is the system Σ1
1 separation,

which consists of the axioms of RCA0 plus the all universal closures of formulas of the form

¬∃n(ϕ0(n)∧ϕ1(n))→∃Z∀n((ϕ0(n)→n ∈ Z)∧(ϕ1(n)→n /∈ Z)),

where ϕ0 and ϕ1 are Σ1
1 and Z does not occur freely in either ϕ0 or ϕ1 (see [9] Theorem V.5.1).

Σ1
1-DC0 (for Σ1

1 dependent choice) consists of ACA0 and the scheme of Σ1
1 dependent choice. The

scheme of Σ1
1 dependent choice consists of all universal closures of formulas of the form

∀n∀X∃Y η(n,X, Y )→∃Z∀nη(n, (Z)n, (Z)n)

where η is Σ1
1 and Z does not occur freely in η.

Π1
1-CA0 (for Π1

1 comprehension axiom) consists of the basic axioms, the induction axiom, and the
Π1

1 comprehension scheme. The Π1
1 comprehension scheme is the restriction of the comprehension

scheme to formulas ϕ that are Π1
1.

RCA0 is strictly weaker than ACA0, which is strictly weaker than both ATR0 and Σ1
1-DC0. ATR0 and

Σ1
1-DC0 are independent over RCA0. However, ATR0 proves the consistency of Σ1

1-DC0. Both ATR0

and Σ1
1-DC0 are strictly weaker than Π1

1-CA0.
Our proof of Menger’s theorem in Π1

1-CA0 relies on two key meta-mathematical facts. The first
key fact concerns the existence of β-models. The second key fact concerns the existence of models
of Σ1

1-DC0.

Definition 2.1. A countable coded ω-model is a set X ⊆ N viewed as coding the structure M =
(N, {(X)n | n ∈ N},+,×, 0, 1, <).

We usually identify a countable coded ω-model X with the structure M that it codes.

Definition 2.2. A countable coded β-model is a countable coded ω-model M that is absolute for
Σ1

1 formulas with parameters fromM. That is, if ϕ is a Σ1
1 formula with parameters fromM, then

M |= ϕ if and only if ϕ is true.
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Theorem 2.3 (see [9] Theorem VII.2.10). The statement “for every X there is a countable coded
β-model M with X ∈M” is equivalent to Π1

1-CA0 over ACA0.

It is helpful to keep in mind that ACA0 proves that every countable coded β-model is a model of
ATR0 (see [9] Theorem VII.2.7).

Theorem 2.4 (see [9] Theorem VIII.4.20). ATR0 proves that for every X there is a countable coded
ω-model M of Σ1

1-DC0 with X ∈M.

The statement “for every X there is a countable coded ω-model M of Σ1
1-DC0 with X ∈ M” is

in fact equivalent to ATR0 over RCA0. See [9] Lemma VIII.4.15 for the reversal.

3. Warps, waves, and alternating walks

In this section we use ACA0 to develop the basic tools we need to prove Menger’s theorem in
Π1

1-CA0. Our notation and terminology mostly follows [2] with some ideas borrowed from [5] Sec-
tion 8.4.

Definition 3.1. A warp in a web G = (G,A,B) is a subgraph W of G such that

• A ⊆ V (W ),
• every x ∈ V (W ) has in-degW (x) ≤ 1 and out-degW (x) ≤ 1, and
• every x ∈ V (W ) is reachable from some a ∈ A by a path in W .

A warp is thus a collection of disjoint paths in G with each path starting at a distinct vertex
in A and such that for every a ∈ A there is a path in the warp starting at a. Such paths may be
one-way infinite. It is often convenient to think of a warp W as the collection of its component
paths {Pa | a ∈ A∧ in(Pa) = a} with the understanding that this collection is coded by the set
{〈 a, 〈n, x 〉 〉 | x is the nth vertex of Pa}. “P is a path in W” always means that P is one of these
component paths.

If W is a warp, then let ter(W ) = {x ∈ V (W ) | out-degW (x) = 0}. That is, ter(W ) is the
set of terminal vertices of the paths in W . The statement “if W is a warp then ter(W ) exists” is
equivalent to ACA0 over RCA0, hence our assumption of ACA0 throughout this section.

Definition 3.2. A wave in a web G = (G,A,B) is a warp W such that ter(W ) is an A-B separator.

It is important to note that “X is an A-B separator in (G,A,B)” is an arithmetical property.
A-B paths are finite, and quantification over them can be coded by quantification over N. Thus
“W is a wave in G” is also an arithmetical property.

The warp {Pa | a ∈ A} in which each path Pa is the trivial path (a) is always a wave, and we
call it the trivial wave.

Definition 3.3. For warps W and Y in a web G = (G,A,B), Y is an extension of W (written
W ≤ Y ) if and only if W is a subgraph of Y .

Definition 3.4. If (Wi | i ∈ N) is a sequence of warps such that Wi ≤ Wi+1 for each i ∈ N,
then

⋃
i∈NWi denotes the limit warp defined by V

(⋃
i∈NWi

)
=
⋃
i∈N V (Wi) and E

(⋃
i∈NWi

)
=⋃

i∈NE(Wi).

It is easy to check in RCA0 that a limit warp, if it exists, is indeed a warp. However, the statement
“if (Wi | i ∈ N) is a sequence of warps such that Wi ≤ Wi+1 for each i ∈ N, then

⋃
i∈NWi exists”

is equivalent to ACA0 over RCA0.

Definition 3.5. Let W = {Pa | a ∈ A} be a wave in a web G = (G,A,B). Then

• Pa is W -essential in G if and only if Pa is finite and there is a ter(Pa)-B path in G disjoint
from V (W )− {ter(Pa)},
• a ∈ A is W -essential in G if and only if Pa is W -essential in G, and
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• essG(W ) = {a ∈ A | a is W -essential in G}.
The motivation behind the definition of W -essential in G is that if P is a path in a wave W

that is W -essential in G, then ter(W ) needs ter(P ) to separate A from B. If Q is a ter(P )-B path
disjoint from V (W ) − {ter(P )}, then PQ is an A-B path disjoint from ter(W ) − {ter(P )}. One
readily checks that {ter(P ) | P is a W -essential path in G} is an A-B separator.

Definition 3.6. If W and Y are waves in a web G = (G,A,B) with W ≤ Y , then Y is a good
extension of W if and only if essG(W ) = essG(Y ) and Y is a bad extension of W if and only if
essG(W ) 6= essG(Y ).

If W and Y are waves in a web G = (G,A,B) with W ≤ Y , then it is always the case that
essG(Y ) ⊆ essG(W ). Thus Y is a good extension of W if and only if essG(W ) ⊆ essG(Y ).

Lemma 3.7 (in ACA0; see [2] Lemma 2.5). If (Wi | i ∈ N) is a sequence of waves in a web
G = (G,A,B) such that Wi ≤Wi+1 for each i ∈ N, then

⋃
i∈NWi is a wave in G.

Proof. Let W =
⋃
i∈NWi. As mentioned above, it is easy to check that W is a warp. We need

to show that ter(W ) is an A-B separator. Let P be an A-B path, and let X = {〈x, i 〉 | x ∈
V (P ) ∩ ter(Wi)} which exists by arithmetical comprehension. Each Wi is a wave, hence X is
infinite. As V (P ) is finite, there must be an x ∈ V (P ) such that {i | x ∈ ter(Wi)} is infinite. Then
x = ter(Q) for the path Q in W containing x. If not, then there is a vertex following x on Q, the
corresponding edge must appear in Wn for some n, and so x /∈ ter(Wi) for all i ≥ n. �

Definition 3.8. Let W and Y be warps in a web G = (G,A,B) with W ≤ Y . Let Q be a
finite path in both Y and W (i.e., the path Q is in W and is not properly extended in Y ). A
(Y −W )-alternating walk from ter(Q) is a walk R = x0e0x1e1 · · · en−1xn such that

(i) x0 = ter(Q),
(ii) for all i ≤ n, xi ∈ (V (G)− V (W )) ∪ ter(W ),

(iii) for all i < n, if ei /∈ E(Y ), then ei = (xi, xi+1),
(iv) for all i < n, if ei ∈ E(Y ), then ei = (xi+1, xi) (i.e., R traverses ei backwards),
(v) for all i, j ≤ n with i 6= j, if xi = xj , then xi ∈ V (Y ), and

(vi) for all i, j ≤ n with i 6= j, ei 6= ej .
(vii) for all 0 < i ≤ n, if xi ∈ V (Y ), then either ei−1 or ei is in E(Y ).

Note that if xn is the last vertex on a (Y −W )-alternating walk from ter(Q) and xn ∈ V (Y ),
then item (vii) implies that en−1 ∈ E(Y ), and by item (iv) it must also be that en−1 = (xn, xn−1).
A (Y −W )-alternating walk from ter(Q) is similar to a Y -walk as defined in [2] and to a walk
which alternates with respect to Y as defined in [5] Section 3.3. The difference is that a (Y −W )-
alternating walk from ter(Q) is not allowed to use the vertices in V (W )−ter(W ), hence the notation
“Y −W .”

Definition 3.9. Let W = {Pa | a ∈ A} and Y = {Qa | a ∈ A} be warps in a web G = (G,A,B)
with W ≤ Y . Let Qa0 be a finite path in both Y and W . Then altG(Y −W, ter(Qa0)) denotes the
warp {Q′a | a ∈ A} where Q′a = Qax if x is the last vertex on Qa which lies on a (Y −W )-alternating
walk from ter(Qa0) and Q′a = Pa if no such x exists.

Our definition of altG(Y −W, ter(Qa0)) is analogous to the definition of M(a0,W ) in [2]. Also,
note that W ≤ altG(Y −W, ter(Qa0)) ≤ Y . The first inequality is by Definition 3.8 item (ii) and
the second inequality is clear.

The crucial lemma from this section is Lemma 3.12 below. Lemma 3.10 and Lemma 3.11 are
used to prove Lemma 3.12.

Lemma 3.10 (in ACA0). Let W and Y be warps in a web G = (G,A,B) with W ≤ Y . Let Q be a
finite path in both Y and W . Let R be a (Y −W )-alternating walk from ter(Q). Then there is a
warp Z ≥W in G with ter(Z) = (ter(Y )− {ter(Q)}) ∪ {ter(R)}.
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Proof. Let R = x0e0x1e1 · · · en−1xn where x0 = ter(Q) and xn = ter(R). Assume n > 0, for
otherwise we may take Z = Y . Let Z ′ be the subgraph of G with E(Z ′) = E(Y )4E(R) and
V (Z ′) = A ∪ {x | (∃e ∈ E(Z ′))(x is a vertex of e)}. One readily checks the following equalities:

• if x ∈ V (Y )− V (R), then in-degZ′(x) = in-degY (x) and out-degZ′(x) = out-degY (x),
• for 0 < i < n, if xi ∈ V (R)− V (Y ), then in-degZ′(xi) = 1 and out-degZ′(xi) = 1,
• for 0 < i < n, if xi ∈ V (R) ∩ V (Y ) is in V (Z ′), then in-degZ′(xi) = in-degY (xi) and

out-degZ′(xi) = out-degY (xi),
• in-degZ′(x0) = in-degY (x0) and out-degZ′(x0) = 1, and
• in-degZ′(xn) = 1 and out-deg(xn) = 0.

It follows that in-degZ′(x) ≤ 1 and out-degZ′(x) ≤ 1 for all x ∈ V (Z ′), which means that every
component of Z ′ is either a path or a cycle. Let Z be the subgraph of Z ′ consisting of the component
paths of Z ′ (i.e., Z is the subgraph of Z ′ induced by {x ∈ V (Z ′) | x is not on a cycle in Z ′}). Z
contains every vertex x ∈ V (Z ′) with in-degZ′(x) = 0 or out-degZ′(x) = 0. In particular, A ⊆ V (Z)
and ter(Z) = (ter(Y ) − {ter(Q)}) ∪ {ter(R)}. To show that Z is a warp, we need only show that
in(P ) exists and is in A for every path P in Z. The above equations imply that if x ∈ V (P )− A,
then in-degZ(x) 6= 0 and hence that x has an immediate predecessor on P . This fact together with
the fact that R is finite implies that there is an x ∈ V (P ) such that (V (Px)∩V (R))−A = ∅. Thus
the edges of Px must all be edges of Y , which means that Px must be an initial segment of some
path in Y . Hence in(P ) exists and is in A. Finally, Z ≥W by Definition 3.8 item (ii). �

Lemma 3.11 (in ACA0; see [2] Lemma 2.7). Let W and Y be waves in a web G = (G,A,B) with
W ≤ Y . Let Q be a finite path in both Y and W . Then altG(Y −W, ter(Q)) is a wave.

Proof. Let U = altG(Y −W, ter(Q)). Suppose for a contradiction that P is an A-B path disjoint
from ter(U). Let w be the last vertex on P that is in V (W ), and let S be the path inW containing w.
It must be that w = ter(S), for otherwise SwP is an A-B path disjoint from ter(W ), contradicting
that W is a wave. The path SwP is, however, an A-B path disjoint from ter(U). Y is a wave, so
wP intersects ter(Y ), which must happen at a vertex in V (Y )−V (U). Let y be the first vertex on
wP in V (Y )− V (U). Let z be the last vertex on wPy in V (U), which exists because w ∈ V (U).

Claim. There is a (Y −W )-alternating walk from ter(Q) ending at z.

Proof of claim. Let Q′ be the path in Y containing z. We show that there is a (Y −W )-alternating
walk R from ter(Q) that meets Q′ at a vertex r which is past z on Q′. If r is the first such vertex
on R, then RrQ′z (following the edges of Q′ backwards) is the desired walk. If z = w, then Q′

extends S, so if there is no such walk R then by Definition 3.9 S is a path in U which contradicts
that P is disjoint from ter(U). On the other hand, if z 6= w, then z /∈ V (W ) by choice of w.
As z ∈ V (U) − V (W ) and z /∈ ter(U), again by Definition 3.9 it must be the case that some
(Y −W )-alternating walk R from ter(Q) meets Q′ at a vertex past z. �

Now let R be the walk provided by the claim, let r be the last vertex of zPy on R, and let y′

be the vertex immediately preceding y on the path in Y containing y. Then RrPy(y′, y)y′ is a
(Y −W )-alternating walk from ter(Q) on which y lies which contradicts y /∈ V (U). �

Lemma 3.12 (in ACA0; see [2] Lemma 2.8). Let W be a wave in a web G = (G,A,B) that
has no bad extensions in G. Let x ∈ V (G) − V (W ) be such that there is a wave Y ≥ W in
G−{x} = (G−{x}, A−{x}, B−{x}) with essG−{x}(Y ) ( essG(W ). Then there is a wave Z ≥W
in G with x ∈ ter(Z).

Proof. Let G = (G,A,B), W = {Pa | a ∈ A}, x, and Y = {Qa | a ∈ A} be as in the statement of
the lemma. Let a0 ∈ essG(W )− essG−{x}(Y ). If we replace Qa0 with Pa0 in Y , then we retain that
this path is not Y -essential in G − {x}. Thus we may assume Qa0 = Pa0 . In particular, Qa0 is a
finite path that is not Y -essential in G− {x}.
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Claim. In G, there is an alternating (Y −W )-walk from ter(Qa0) ending at x.

Proof of claim. If there is a ter(Qa0)-x path disjoint from V (Y )−{ter(Qa0)}, then this path is the
desired walk. So suppose instead there is no such path. Let U = altG−{x}(Y −W, ter(Qa0)). U is
a wave in G− {x} by Lemma 3.11. Furthermore, a0 /∈ essG−{x}(Y ) implies that a0 /∈ essG−{x}(U)
because if P is a ter(Qa0)-B path in G − {x}, then the first vertex on P in V (Y ) − {ter(Qa0)}
is also in V (U). We prove that U is not a wave in G. To do this, it suffices to show that every
ter(Qa0)-B path in G intersects V (U)− {ter(Qa0)}. Therefore if U were a wave in G, it would be
a bad extension of W in G because a0 would be in essG(W ) − essG(U). This is a contradiction.
Consider a ter(Qa0)-B path P . If x /∈ V (P ), then P is a path in G − {x} and hence P intersects
V (U) − {ter(Qa0)} because a0 /∈ essG−{x}(U). If x ∈ V (P ), then by assumption Px intersects
V (Y )− {ter(Qa0)}. Again, the first vertex on P in V (Y )− {ter(Qa0)} is also in V (U).

We now know that U is a wave in G − x but not in G. Thus there is an A-B path S in G
avoiding ter(U), and x must lie on S. Let z be the last vertex of Sx that is in V (U). It must be
that z ∈ ((V (U)− V (W )) ∪ ter(W ))− ter(U). Hence there must be an alternating (Y −W )-walk
R from ter(Qa0) to z. Let y be the last vertex of zSx which lies on R. Then RySx is the desired
alternating (Y −W )-walk from ter(Qa0) to x. �

By the claim, let R be an alternating (Y −W )-walk from ter(Qa0) ending at x. Apply Lemma 3.10
to get a warp Z ≥ W in G with ter(Z) = (ter(Y ) − {ter(Qa0)}) ∪ {x}. Z is a wave because
ter(Y )−{ter(Qa0)} is an (A−{x})-(B−{x}) separator in G−{x}, thus (ter(Y )−{ter(Qa0)})∪{x}
is an A-B separator in G. �

4. Menger’s theorem in Π1
1-CA0

We plan to prove Menger’s theorem as follows. Given a web G = (G,A,B), start with W a
≤-maximal wave in G. Let C be the terminal vertices of the paths in W that are W -essential.
Then extend these W -essential paths to be the collection of disjoint A-B paths M . Lemma 4.1
below provides the ≤-maximal wave W , and Lemma 4.2 below is the tool we use to extend the W -
essential paths to a collection of disjoint A-B paths. The proof of Lemma 4.1 is the only argument
in which we employ the full strength of Π1

1-CA0.

Lemma 4.1 (in Π1
1-CA0; see [2] Corollary 2.5a). In every web there is a ≤-maximal wave.

Proof. Let G = (G,A,B) be a web, let (gn | n ∈ N) be an enumeration of V (G), and by Theorem 2.3
let M be a countable coded β-model with (G,A,B) ∈ M. Using ACA0 outside M, we construct a
sequence of integers (in | n ∈ N) such that (M)in is a wave for each n ∈ N and (M)in ≤ (M)in+1 for
each n ∈ N. Let i0 be an index such that (M)i0 is the trivial wave {(a) | a ∈ A}. Suppose we have
i0, . . . , in. If there is an i ∈ N such that (M)i is a wave with (M)i ≥ (M)in and gn ∈ V ((M)i),
then let in+1 be such an i. Otherwise let in+1 = in. With the desired sequence (in | n ∈ N) in
hand, let W be the limit W =

⋃
n∈N(M)in , which is a wave by Lemma 3.7. This W is ≤-maximal

in (G,A,B). If not, there is a wave Y ≥W with some gn ∈ V (Y )−V (W ). As (M)in ≤W ≤ Y , at
stage n+ 1 in the construction the Σ1

1 formula (∃Y )(Y is a wave∧Y ≥ (M)in ∧ gn ∈ V (Y )) is true
and hence is true inM becauseM is a β-model. Therefore we chose in+1 so that gn ∈ V ((M)in+1),
contradicting gn /∈ V (W ). �

In [2] and [5], Lemma 4.1 is obtained by a simple application of Zorn’s lemma. Our proof above
is the most effective proof possible, in the sense that Lemma 4.1 is equivalent to Π1

1-CA0 over RCA0

(see Corollary 5.3 below).
The following Lemma 4.2 is the key tool used to complete the proof of Menger’s theorem. We

first give a proof of Lemma 4.2 in the style of ordinary mathematics for the sake of clarity. We then
explain how to formalize Lemma 4.2 in a way that will allow us to complete the proof of Menger’s
theorem in Π1

1-CA0.
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Lemma 4.2 (see [2] Theorem 3.4). Let W be a wave in G = (G,A,B) that has no bad extensions
in G, let a ∈ essG(W ), and let Pa be the component path of W starting at a. Then there is a finite
a-B tree T with trunk Pa such that V (T ) ∩ (V (W )− V (Pa)) = ∅, and there is a wave Y in G− T
such that Y ≥W − Pa, essG−T (Y ) = essG(W )− {a}, and Y has no bad extensions in G− T .

Proof. We assume that the conclusion of the lemma is false and construct a bad extension of W in
G, which is a contradiction.

Let (Qn | n ∈ N) list all the ter(Pa)-B paths with each path occurring on the list infinitely often.
We construct sequences (Tn | n ∈ N) and (Yn | n ∈ N) such that for each n ∈ N

(i) Tn is a finite tree in G with trunk Pa,
(ii) Yn is a wave in G− Tn,

(iii) Tn−1 ⊆ Tn (if n > 0),
(iv) Yn−1 ≤ Yn (if n > 0),
(v) essG−Tn(Yn) = essG(W )− {a}, and

(vi) Yn has no bad extensions in G− Tn.

Start with T0 = Pa and Y0 = W − Pa. Items (i), (ii), and (v) are easily checked for n = 0.
Furthermore, if Y were a bad extension of Y0 in G− T0, then Y ∪ {Pa} would be a bad extension
of W in G. Hence we have item (vi) for n = 0 as well.

Suppose we have constructed Tn and Yn. If V (Qn) ∩ V (Yn) 6= ∅ or T = Tn ∪ Qn is not a tree
with trunk Pa, set Tn+1 = Tn and Yn+1 = Yn. Otherwise V (Qn) ∩ V (Yn) = ∅ and T = Tn ∪Qn is
a tree with trunk Pa. The situation now is that

• T is a finite a-B tree with trunk Pa such that V (T ) ∩ (V (W )− V (Pa)) = ∅ and
• Yn is a wave in G− T such that Yn ≥W − Pa.

We are assuming that the lemma is false, so either essG−T (Yn) ( essG(W ) − {a} or Yn has a bad
extension in G− T . Both cases imply the existence of a wave Y ≥ Yn in G− T with essG−T (Y ) (
essG(W )− {a} = essG−Tn(Yn) (where the equality is by item (v)). Let x be the first vertex on Qn
such that there exists a wave Y ≥ Yn in G−(Tn∪Qnx) with essG−(Tn∪Qnx)(Y ) ( essG−Tn(Yn) (note

x 6= ter(Pa) by item (vi)). Let Tn+1 = Tn ∪Qnx. By the choice of x, Yn has no bad extensions in
G−Tn+1, but there is an extension Y ≥ Yn in (G−Tn+1)−x with ess(G−Tn+1)−x(Y ) ( essG−Tn+1(Yn).
Thus by Lemma 3.12 there is a wave Yn+1 ≥ Yn in G − Tn+1 with x ∈ ter(Yn+1). With this Tn+1

and Yn+1, items (i)-(iv) are clear for n + 1. Item (v) is by the choice of x, which implies that
essG−Tn+1(Yn+1) = essG−Tn(Yn) = essG(W )−{a}. Item (vi) is again by the choice of x because a bad
extension Y ≥ Yn+1 in G−Tn+1 would be a Y ≥ Yn in G−Tn+1 with essG−Tn+1(Y ) ( essG−Tn(Yn).

Let T =
⋃
n∈N Tn, and let Y =

⋃
n∈N Yn. By construction, V (Yn) ∩ V (Tm) = ∅ for all n,m ∈ N,

which means that each Yn is a wave in G− T . Therefore Y is a wave in G− T by Lemma 3.7. It
remains to show that ter(Y ) is an A-B separator in G. Our desired contradiction follows because
then Y ∪ {Pa} would be a bad extension of W in G because a ∈ essG(W )− essG(Y ∪ {Pa}).

Let P be an A-B path in G. To show that P intersects ter(Y ), we show that there is a final
segment S of P that lies in G − T and intersects V (Y ). This suffices to finish the proof because
if x is the last vertex of S in V (Y ) and Q is the component path of Y containing x, then QxS
is an A-B path in G − T which means that xS (and hence P ) must intersect ter(Y ). Thus let x
be the last vertex of P on T (if there is no such x, then P is a path in G − T and thus intersects
ter(Y )), let n be such that x ∈ Tn, and let m > n be such that Qm = ter(Pa)TnxP . Consider stage
m+1 of the construction. If V (Qm)∩V (Ym) 6= ∅, then it must be that xP intersects Ym and hence
intersects Y as desired. Otherwise V (Qm)∩V (Ym) = ∅ and Tm∪Qm is a tree with trunk Pa. Thus
we choose Ym+1 to contain a vertex of xP , so Y intersects xP as desired. �

Lemma 4.3 (in ACA0). If M is a countable coded ω-model of Σ1
1-DC0, then Lemma 4.2 holds in

M.

Proof. Consider the formula ϕ(G, Y, P, x) which says there exists a number z such that
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(i) z codes a finite subset of V (P ),
(ii)

∀y(∀Y ′(Y ′ is a wave ≥ Y in G− Py→ essG−Py(Y
′) = essG(Y ))→ y ∈ z),

(iii)

∀s(s codes a finite set

∧∀y(∃Y ′(Y ′ is a wave ≥ Y in G− Py ∧ essG−Py(Y
′) ( essG(Y ))→ y ∈ s)

→V (P )− z ⊆ s), and

(iv) x is the first vertex on P not in z.

The reason for the somewhat convoluted definition of ϕ is that prenexing this ϕ yields a Σ1
1

formula.

Claim. In M, suppose that G = (G,A,B) is a web, Y is a wave in G, and P is a finite path in
G disjoint from V (Y ) such that Y has no bad extensions in G but there exists a wave Y ′ ≥ Y in
G − P with essG−P (Y ′) ( essG(Y ). Then M |= ϕ(G, Y, P, x) if and only if, in M, x is the first
vertex on P such that there exists a wave Y ′ ≥ Y in G− Px with essG−Px(Y ′) ( essG(Y ).

Proof of claim. For the forward direction, using ACA0 outside M, let

Z = {y ∈ V (P ) | essG−Py(Y
′) = essG(Y ) for all waves Y ′ ≥ Y in G− Py that are in M}.

Let z be a number coding Z and let s be a number coding V (P )−Z. InM, z and s code the same
sets that they do outside of M, and M interprets that

z codes {y ∈ V (P ) | essG−Py(Y
′) = essG(Y ) for all waves Y ′ ≥ Y in G− Py} and

s codes {y ∈ V (P ) | essG−Py(Y
′) ( essG(Y ) for some wave Y ′ ≥ Y in G− Py}.

Hence in M, this z is the only z which satisfies items (i)-(iii). Thus if ϕ(G, Y, P, x) holds in M, x
must be the first vertex on P not in z for this z. Thus x must be the first vertex on P such that,
in M, there exists a wave Y ′ ≥ Y in G− Px with essG−Px(Y ′) ( essG(Y ).

For the converse, by using ACA0 outside of M, let x be the first vertex on P such that, in M,
there exists a wave Y ′ ≥ Y in G − Px with essG−Px(Y ′) ( essG(Y ). Let z be a number coding
V (Px). In M, z also codes V (Px), and this z witnesses M |= ϕ(G, Y, P, x). �

Suppose for a contradiction that Lemma 4.2 is false in M and, in M, let W , G = (G,A,B),
and Pa be a counterexample to Lemma 4.2. We use Σ1

1-DC0 in M to run the construction from
Lemma 4.2. This produces in M a bad extension of W in G, which is a contradiction.

We apply Σ1
1-DC0 to the formula η(n,X, Y ) below. Our η has fixed parameters G, W , Pa, and

(Qn | n ∈ N) (a list of all ter(Pa)-B paths with each occurring infinitely often). We think of a
set Y ⊆ N as coding a pair Y = (tY, wY ) where wY is a wave in G − tY . Formally, tY = (Y )0

and wY = (Y )1. Our formula η(n,X, Y ) says that if t(X)n−1 is the tree and w(X)n−1 is the wave
constructed at stage n − 1 in Lemma 4.2, then tY is the tree and wY is the wave constructed at
stage n in Lemma 4.2. Formally, η(n,X, Y ) says:

• If n = 0, then tY = Pa and wY = W − Pa.
• If n > 0, t(X)n−1 is a finite tree with trunk Pa such that V (t(X)n−1)∩(V (W )−V (Pa)) = ∅,
w(X)n−1 ≥ W − Pa is a wave in G − t(X)n−1, essG−t(X)n−1

(w(X)n−1) = essG(W ) − {a},
and w(X)n−1 has no bad extensions in G− t(X)n−1, then

– if V (Qn−1) ∩ V (w(X)n−1) 6= ∅ or t(X)n−1 ∪ Qn−1 is not a tree, then tY = t(X)n−1

and wY = w(X)n−1, and
– if V (Qn−1) ∩ V (w(X)n−1) = ∅ and t(X)n−1 ∪ Qn−1 is a tree, then there is an x such

that tY = t(X)n−1 ∪ Qn−1x, wY is a wave in G − tY , x ∈ ter(wY ), wY ≥ w(X)n−1,
and ϕ(G− t(X)n−1, w(X)n−1, Qn−1, x).
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Prenexing η yields a Σ1
1 formula. To see this, observe that all the subformulas of η are arithmetical,

with the exception of “w(X)n−1 has no bad extensions in G− t(X)n−1,” which is Π1
1 and appears

in the antecedent of η, and ϕ, which is Σ1
1 and appears in the consequent of η.

We show thatM |= ∀n∀X∃Y η(n,X, Y ). The interesting case is when n > 0 and X ∈M is such
that, in M,

• t(X)n−1 is a finite tree in G with trunk Pa such that V (t(X)n−1) ∩ (V (W )− V (Pa)) = ∅,
• w(X)n−1 ≥W − Pa is a wave in G− t(X)n−1,
• essG−t(X)n−1

(w(X)n−1) = essG(W )− {a},
• w(X)n−1 has no bad extensions in G− t(X)n−1,
• V (Qn−1) ∩ V (w(X)n−1) = ∅, and
• t(X)n−1 ∪Qn−1 is a tree in G with trunk Pa.

By applying ACA0 outside M, let x be the first vertex on Qn−1 such that, in M, there is a wave
Z ≥ w(X)n−1 in G − (t(X)n−1 ∪Qn−1x) with essG−(t(X)n−1∪Qn−1x)(Z) ( essG−t(X)n−1

(w(X)n−1).
Such an x exists by the assumption that G, W , and Pa are a counterexample to Lemma 4.2
in M. By the claim, ϕ(G − t(X)n−1, w(X)n−1, Qn−1, x) holds in M. As M |= ACA0, apply
Lemma 3.12 insideM to get a wave Z ≥ w(X)n−1 in G− (t(X)n−1 ∪Qn−1x) with x ∈ ter(Z). Set
tY = t(X)n−1 ∪Qn−1x and wY = Z to get a Y ∈M witnessing ∃Y η(n,X, Y ).

Now apply Σ1
1-DC0 inside M to conclude that M |= ∃Z∀nη(n, (Z)n, (Z)n), and let Z ∈ M be

such a Z. By induction, for all n ∈ N,

• t(Z)n is a finite tree in G with trunk Pa such that V (t(Z)n) ∩ (V (W )− V (Pa)) = ∅,
• w(Z)n ≥W − Pa is a wave in G− t(Z)n,
• t(Z)n−1 ⊆ t(Z)n (if n > 0),
• w(Z)n−1 ≤ w(Z)n (if n > 0),
• essG−t(Z)n(w(Z)n) = essG(W )− a0,
• w(Z)n has no bad extensions in G− t(Z)n that are in M,

and additionally if V (Qn) ∩ V (w(Z)n) = ∅ and t(Z)n ∪ Qn is a finite tree in G with trunk Pa,
then ter(w(Z)n+1) contains a vertex of Qn. Notice that although the statement “w(Z)n has no bad
extensions in G − t(Z)n that are in M” is Π1

1 from M’s perspective, it is arithmetical outside of
M because quantifying over the sets inside M from outside M amounts to quantifying over (the
indices of) the columns of the set coding M. Thus the above-listed properties can be proven (in
ACA0) outside of M by induction using an appropriate arithmetical formula.

Inside M, let T =
⋃
n∈N t(Z)n and Y =

⋃
n∈Nw(Z)n. Just as in the proof of Lemma 4.2, Y is

a wave in G − T and ter(Y ) is an A-B separator in G. Thus Y ∪ {Pa} ∈ M is the desired bad
extension of W in G, which gives the contradiction. �

Theorem 4.4. Menger’s theorem for countable webs is provable in Π1
1-CA0.

Proof. Let G = (G,A,B) be a countable web. By Lemma 4.1, let W = {Pa | a ∈ A} be a ≤-
maximal wave in G. Let C = {ter(Pa) | a ∈ essG(W )}. We extend the paths in {Pa | a ∈ essG(W )}
to be a collection of disjoint A-B paths M . M and C then witness Menger’s theorem for G.

By Theorem 2.4, let M be a countable coded ω-model of Σ1
1-DC0 containing G and W . By

Lemma 4.3, Lemma 4.2 holds in M. Also, M |= “W is a ≤-maximal wave”, therefore M |=
“W has no bad extensions in G” because W has no proper extensions in G whatsoever. Let (an |
n ∈ N) enumerate essG(W ). Outside M, we construct sequences (Xn | n ∈ N), (Yn | n ∈ N), and
(Qn | n ∈ N) such that, for all n ∈ N,

• Xn ∈M, Yn ∈M, and Qn ∈M,
• Xn ⊆ V (G) is a finite set, Xn ∩A = {ai | i ≤ n}, and Xn ⊆ Xn+1,
• Yn is a wave in G−Xn such that Yn ≥W −

⋃
i≤n Pai , Yn has no bad extensions in G−Xn,

and essG−Xn(Yn) = {ai | i > n}, and
• Qn is an A-B path extending Pan .
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To get started, by Lemma 4.3 let T ∈ M be a finite a0-B tree in G with trunk Pa0 such that
V (T ) ∩ (V (W ) − V (Pa0)) = ∅, and let Y0 ∈ M be a wave in G − T such that Y0 ≥ W − Pa0 ,
essG−T (Y0) = {ai | i > 0}, and Y0 has no bad extensions in G − T . Let X0 = T , and let Q0

be the a0-B path in T . Suppose we have Xn, Yn and Qn. Let P ′an+1
be the path in Yn starting

at an+1, and note that P ′an+1
extends Pan+1 . By Lemma 4.3, let T ∈ M be a finite an+1-B tree

in G − Xn with trunk P ′an+1
such that V (T ) ∩ (V (Yn) − V (P ′an+1

)) = ∅, and let Yn+1 ∈ M be a

wave in G − (Xn ∪ T ) such that Yn+1 ≥ Yn − P ′an+1
, essG−(Xn∪T )(Yn+1) = {ai | i > n + 1}, and

Yn+1 has no bad extensions in G − (Xn ∪ T ). Let Xn+1 = Xn ∪ T and let Qn+1 be the an+1-B
path in T . In the end, the collection M = {Qn | n ∈ N} consists of disjoint A-B paths in G, and
C = {ter(Pa) | a ∈ essG(W )} is an A-B separator containing exactly one vertex from each path in
M . �

5. Extended Menger’s theorem

Although Menger’s theorem for countable webs cannot be equivalent to Π1
1-CA0 over RCA0 as

discussed in the introduction, the proof given in Theorem 4.4 is equivalent to Π1
1-CA0 in the sense

that it proves a stronger statement, called extended Menger’s theorem, that is equivalent to Π1
1-CA0

over RCA0. This additional strength comes from our application of Lemma 4.1.

Extended Menger’s Theorem. Let (G,A,B) be a countable web. Then there is a set of disjoint
A-B paths M and an A-B separator C such that C consists of exactly one vertex from each path
in M . Furthermore, C is the set of terminal vertices of the essential paths in a ≤-maximal wave.

Let G be a graph. For x ∈ V (G) and X ⊆ V (G), N(x) = {y ∈ V (G) | (x, y) ∈ E(G)} denotes the
set of neighbors of x and D(X) = {y ∈ V (G) | N(y) ⊆ X} denotes the demand of X. In the proof
of König’s duality theorem for countable bipartite graphs in [4], the following lemma plays the role
that Lemma 4.1 plays in the proof of Menger’s theorem for countable webs given in Theorem 4.4.

Lemma 5.1 ([4] Lemma 3.2). Let (X,Y,E) be a countable bipartite graph. Then there is a ⊆-
maximum Y0 ⊆ Y for which there is a matching of Y0 into D(Y0).

The application of Lemma 5.1 yields a stronger form of König’s duality theorem, called extended
König’s duality theorem.

Extended König’s Duality Theorem. Let (X,Y,E) be a countable bipartite graph. Then there
is a matching M and a cover C such that C consists of exactly one vertex from each edge in E.
Furthermore, for every y ∈ Y , y ∈ C if and only if there is a Y0 ⊆ Y containing y and a matching
of Y0 into D(Y0).

Extended König’s duality theorem is equivalent to Π1
1-CA0 over RCA0 by [4] Theorem 4.18. In

fact, Lemma 5.1 itself is equivalent to Π1
1-CA0 over RCA0 by [4] Corollary 4.20. In contrast, recall

from the introduction that König’s duality theorem is equivalent to ATR0 over RCA0. We show that
the existence of a ≤-maximal wave, that is, Lemma 4.1, implies Lemma 5.1 over RCA0. It follows
that both Lemma 4.1 and extended Menger’s theorem are equivalent to Π1

1-CA0 over RCA0.

Lemma 5.2. Lemma 4.1 implies Lemma 5.1 over RCA0.

Proof. We prove the lemma in two steps. First, we prove that Lemma 4.1 implies ACA0 over RCA0.
Second, we prove that Lemma 4.1 implies Lemma 5.1 over ACA0.

First work in RCA0. We use the fact that ACA0 is equivalent to the statement “for every injection
f : N→N there is a Z ⊆ N such that ∀n(n ∈ Z↔∃m(f(m) = n))” (see [9] Lemma III.1.3). So let
f : N→N be an injection. Let (X,Y,E) be the bipartite graph with sides X = {xn | n ∈ N} and
Y = {yn | n ∈ N} and edges E = {(xm, yn) | f(m) = n}. Let G be the web G = ((X,Y,E), X, Y ),
and by Lemma 4.1 let W be a ≤-maximal wave in G. Let Z = {n | yn ∈ V (W )}. We show that
∀n(n ∈ Z↔∃m(f(m) = n)). If f(m) = n, then (xm, yn) is the only edge incident to either xn or
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yn because f is an injection. Thus the path in W starting at xm is either the trivial path (xm)
or the path (xm, yn). If the path is (xm), then the path could be extended to (xm, yn), giving a
proper extension of the wave W and contradicting maximality. Thus the path is (xm, yn), hence
yn ∈ V (W ) and n ∈ Z. Conversely, if n ∈ Z, then yn ∈ V (W ) so (xm, yn) must be an edge for
some m ∈ N. This can only happen if f(m) = n.

Now work in ACA0. Let (X,Y,E) be a countable bipartite graph. By Lemma 4.1, let W be
a ≤-maximal wave in the web G = ((X,Y,E), X, Y ). Let Y0 = Y ∩ ter(W ). We show that Y0

witnesses Lemma 5.1 for (X,Y,E). Let M be the matching consisting of the paths in W of length
1. If y ∈ Y0, then by choice of Y0 and M there is an x ∈ X such that (x, y) in M . If x /∈ D(Y0),
then there is a y′ ∈ Y − Y0 such that (x, y′) ∈ E. Clearly y′ /∈ ter(W ), and x /∈ ter(W ) as well
because (x, y) is a path in W . Thus (x, y′) is an X-Y path in G avoiding ter(W ), contradicting
that W is a wave. Therefore M is a matching of Y0 into D(Y0).

To see that Y0 is ⊆-maximum, suppose for a contradiction that there is a Y ′ ⊆ Y and a matching
M ′ of Y ′ into D(Y ′) such that Y ′ * Y0. Let W ′ be the subgraph of (X,Y,E) with vertices V (W )∪Y ′
and edges E(W ) ∪ {(x, y) ∈ M ′ | y /∈ Y0}. W is a proper subgraph of W ′, so if we can show that
W ′ is a wave, then we have that W < W ′, contradicting the maximality of W . Consider an edge
(x, y) ∈ M ′ with y /∈ Y0. It must be that x ∈ ter(W ) because otherwise (x, y) would be an X-Y
path in G avoiding ter(W ). It follows that W ′ is a warp. To see that ter(W ′) is an X-Y separator,
consider an edge (x, y) ∈ E. We know ter(W ) is an X-Y separator, so either x ∈ ter(W ) or
y ∈ ter(W ). If y ∈ ter(W ) then y ∈ ter(W ′), so assume x ∈ ter(W ). If x /∈ ter(W ′), then there
must have been an edge (x, y′) ∈M ′ for some y′ ∈ Y ′−Y0. By assumption, M ′ is a matching from
Y ′ into D(Y ′), so x ∈ D(Y ′) because M ′ matches y′ and x. Therefore y ∈ Y ′ because x ∈ D(Y ′)
and (x, y) is an edge. Clearly Y ′ ⊆ ter(W ′), so y ∈ ter(W ′) as desired. �

Corollary 5.3. Lemma 4.1 is equivalent to Π1
1-CA0 over RCA0.

Proof. The given proof of Lemma 4.1 is in Π1
1-CA0. By Lemma 5.2, Lemma 4.1 implies Lemma 5.1

over RCA0. By [4] Corollary 4.20, Lemma 5.1 is equivalent to Π1
1-CA0 over RCA0. �

Corollary 5.4. Extended Menger’s theorem is equivalent to Π1
1-CA0 over RCA0.

Proof. Theorem 4.4 proves extended Menger’s theorem in Π1
1-CA0. Extended Menger’s theorem

asserts the existence of a ≤-maximal wave, which is equivalent to Π1
1-CA0 over RCA0 by Corollary 5.3.

�
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