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We investigate the complexity of mathematical problems from two perspectives:
Medvedev degrees and reverse mathematics. In the Medvedev degrees, we cal-
culate the complexity of its first-order theory, and we also calculate the complex-
ities of the first-order theories of several related structures. We characterize the
join-irreducible Medvedev degrees and deduce several consequences for the in-
terpretation of propositional logic in the Medvedev degrees. We equate the size
of chains of Medvedev degrees with the size of chains of sets of reals under ⊆.
In reverse mathematics, we analyze the strength of classical theorems of finite
graph theory generalized to the countable. In particular, we consider Menger’s
theorem, Birkhoff’s theorem, and unfriendly partitions.



BIOGRAPHICAL SKETCH

Paul was born on February 28, 1983 in Richland, Washington during the final
episode Goodbye, Farewell and Amen of the popular television series M*A*S*H.
He graduated from Dutch Fork High School in Irmo, South Carolina in 2001.
Paul has attended Cornell University in Ithaca, New York since 2001, earning a
B.S. in computer science in 2005 and a M.S. in computer science in 2010.

iii



Thanks Mom and Dad and Jessica and Lisey!

iv



ACKNOWLEDGEMENTS
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CHAPTER 1
INTRODUCTION

Medvedev degrees describe the relative complexity of subsets of ωω in a com-
putational sense. A set Y ⊆ ωω is at least as complicated as a set X ⊆ ωω if there
is a computational procedure for producing a member of X given a member of
Y . We interpret a set X ⊆ ωω as an abstract mathematical problem. Namely, X
corresponds to the problem of finding a member ofX . Under this interpretation,
the Medvedev degrees serve as a model for studying the relative complexity
of mathematical problems. We investigate the Medvedev degrees in Chapter 2,
Chapter 3, and Chapter 4. See Section 1.3 for a full introduction to the Medvedev
degrees and related structures.

Chapter 2 is mainly concerned with calculating the complexities of the first-
order theories of the Medvedev degrees and related structures. The main results
are as follows.
• The first-order theories of the Medvedev degrees and the Muchnik de-

grees are both recursively isomorphic to the third-order theory of arith-
metic (Theorem 2.3.10).
• The first-order theories of the closed Medvedev degrees, the compact

Medvedev degrees, the closed Muchnik degrees, and the compact Much-
nik degrees are all recursively isomorphic to the second-order theory of
arithmetic (Theorem 2.4.10 and Theorem 2.6.5).
• Neither the closed Medvedev degrees nor the compact Medvedev degrees

is elementarily equivalent to either the closed Muchnik degrees or the com-
pact Muchnik degrees (Theorem 2.7.2).

• The first-order theory of the Medvedev degrees of Π0
1 classes is recursively

isomorphic to the first-order theory of arithmetic (Theorem 2.9.4).
• For any of the above-mentioned degree structures and also for the Much-

nik degrees of Π0
1 classes, the structure’s three-quantifier theory as a lattice

is undecidable, and the structure’s four-quantifier theory as a partial or-
der is undecidable (Theorem 2.3.11, Theorem 2.4.11, Theorem 2.6.6, Theo-
rem 2.9.5, and Theorem 2.11.7).
• The degree of the Medvedev degrees of Π0

1 classes is 0′′′ in the sense that
there is a presentation of the Medvedev degrees of Π0

1 classes recursive in
0′′′ and that 0′′′ is recursive in any such presentation (Theorem 2.10.6).

In Chapter 3, we characterize the join-irreducible Medvedev degrees and in-
vestigate the Medvedev degrees as semantics for propositional logic. The main
results are as follows.

• A Medvedev degree is join-irreducible if and only if it is the degree of the
complement of a Turing ideal (Theorem 3.1.3).
• There is a Medvedev degree greater than the second-least degree that

bounds no join-irreducible degree greater than the second-least degree
(Theorem 3.2.5).
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• The filter in the Medvedev degrees generated by the non-minimum closed
degrees is not prime (Theorem 3.4.3).

In Chapter 4, we provide an explicit construction demonstrating that the
statement “there is no chain in (22ω ,⊆) of cardinality 22ω” is consistent with ZFC
(Corollary 4.2.6). We then compare the cardinalities of chains in the Medvedev
degrees to the cardinalities of chains in (22ω ,⊆). The main results are as follows.

• For any cardinal κ, there is a chain of cardinality κ in (22ω ,⊆) if and only if
there is a chain of cardinality κ in the Medvedev degrees (Theorem 4.3.1).
• The statements “there is a chain in the Medvedev degrees of cardinality

22ω ,” “there is a chain in the Muchnik degrees of cardinality 22ω ,” and “there
is a chain in (22ω ,⊆) of cardinality 22ω” are equivalent and are independent
of ZFC (Corollary 4.3.2).

Reverse mathematics is an analysis of the logical strength of theorems from
ordinary mathematics in the context of second-order arithmetic. Given a the-
orem, we wish to determine the weakest set of axioms required to prove that
theorem. Theorems requiring stronger axioms are considered more complicated
than theorems requiring weaker axioms. See Section 1.6 for a full introduction
to reverse mathematics.

We consider reverse mathematics in Chapter 5 and Chapter 6. The main
result is that Menger’s theorem for countable graphs is provable in the system
Π1

1-CA0 (Theorem 5.2.4). We also present several partial results concerning the
reverse mathematics of Birkhoff’s theorem and of unfriendly partitions.

1.1 Basic concepts and notation

Let n ∈ ω, σ, τ ∈ ω<ω, f, g ∈ ωω, and X ,Y ⊆ ωω. Then

• f � n is the initial segment of f of length n,
• |σ| is the length of σ,
• σ ⊆ τ means that σ is an initial segment of τ ,
• σ ⊂ f means that σ is an initial segment of f ,
• I(σ) = {f ∈ ωω | σ ⊂ f},
• σaf is the concatenation of σ and f :

(σaf)(n) =

{
σ(n) if n < |σ|
f(n− |σ|) if n ≥ |σ|,

• f ⊕ g is the function defined by

(f ⊕ g)(n) =

{
f(m) if n = 2m
g(m) if n = 2m+ 1,
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• σaX = {σaf | f ∈ X},
• X +Y = {f ⊕ g | f ∈ X ∧ g ∈ Y}, and

• X ×Y = 0aX ∪ 1aY .

The + and × in the last two items above correspond to the lattice-theoretic
operations of join and meet in the Medvedev and Muchnik degrees, which is
explained in the introduction to these degrees below. These symbols also retain
their more common meanings, such as addition for + and product and cartesian
product for ×. The meaning of a particular instance of either symbol will be
clear from context.

The function 〈 ·, · 〉 : ω × ω → ω is a fixed recursive bijection. Φe denotes the
eth Turing functional. Φ always denotes a Turing functional, and if f ∈ ωω,
then Φ(f) is the partial function computed when Φ uses f as its oracle. For
σ ∈ ω<ω, Φ(σ) is the partial function that, on input n ∈ ω, is computed by
running Φ on input n for at most |σ| steps and using σ to answer oracle queries.
The restriction on the running time of Φ(σ) ensures that oracle queries are only
made of numbers < |σ|. Consequently, if Φ(σ)(n)↓, then Φ(f)(n) = Φ(σ)(n) for
all f ⊃ σ.

Let A,B ⊆ ω. A≤1B if and only if there is a one-to-one recursive function f
such that ∀n(n ∈ A↔ f(n) ∈ B). A and B are recursively isomorphic if and only
if there is such an f that is a bijection. The Myhill isomorphism theorem states
thatA andB are recursively isomorphic if and only ifA≡1B, that is, if and only
if A≤1B and B≤1A (see [69] Section I.5).

A set X ⊆ ωω is independent if and only if g�T f0 ⊕ f1 ⊕ · · · ⊕ fn−1 for any
distinct g, f0, . . . , fn−1 ∈ X . Let {fn}n∈ω ⊆ ωω be a sequence of functions, and let
m ∈ ω. Define

⊕
n∈ω fn and

⊕
n∈ω\{m} fn by

(
⊕
n∈ω

fn)(〈 i, j 〉) = fi(j) and

(
⊕

n∈ω\{m}

fn)(〈 i, j 〉) =

{
fi(j) if i 6= m
0 if i = m.

The sequence {fn}n∈ω ⊆ ωω is strongly independent if and only if
∀m(fm�T

⊕
n∈ω\{m} fn). A sequence of sets {Xn}n∈ω with Xn ⊆ ωω for each n

is strongly independent if and only if {fn}n∈ω is strongly independent whenever
∀n(fn ∈ Xn).

We consider Baire space ωω and Cantor space 2ω, both with their usual prod-
uct topologies. Basic open sets in ωω have the form I(σ) for σ ∈ ω<ω. 2ω has
the subspace topology. When we are working in Cantor space, we usually write
I(σ) for I(σ) ∩ 2ω.

A tree is a set T ⊆ ω<ω closed under initial segments: (∀σ, τ ∈ ω<ω)(σ ∈
T ∧ τ ⊆ σ→ τ ∈ T ). A function f ∈ ωω is a path through T if and only if
(∀n ∈ ω)(f � n ∈ T ). If T is a tree, then [T ] denotes the set of all paths through
T . If X ⊆ ωω is closed, then X is the set of paths through the tree T = {σ | (∃f ∈
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X )(σ ⊂ f)}. Conversely, if T ⊆ ω<ω is a tree, then [T ] is a closed subset of ωω.
A set X ⊆ ωω is compact if and only if it is closed and bounded (i.e., there is a
g : ω → ω such that (∀f ∈ X )(∀n ∈ ω)(f(n) ≤ g(n))) if and only if it is the set of
paths through a finitely branching tree.

X ⊆ ωω is a Π0
1 class if and only if it has a Π0

1 definition. That is, if and only if
X = {f ∈ ωω | ∀nϕ(f, n)} for some recursive predicate ϕ. A useful characteriza-
tion of the Π0

1 classes are as the sets of paths through recursive trees: a setX ⊆ ωω

is a Π0
1 class if and only ifX = [T ] for some recursive tree T (see [17] Lemma 2.2).

For this reason, the Π0
1 classes are sometimes called the effectively closed sets.

The Π0
1 classes have been persistent objects of study throughout computabil-

ity theory, due in no small part to their applications to recursive mathematics
and reverse mathematics. The surveys by Cenzer [14] and by Cenzer and Rem-
mel [17] provide an extensive overview of the theory of the Π0

1 classes, as does
the forthcoming book by Cenzer and Remmel [16].

In this work, we only consider Π0
1 classes that are non-empty subsets of 2ω.

Henceforth the term “Π0
1 class” refers exclusively to a non-empty Π0

1 subset of
2ω.

1.2 Distributive lattices and Brouwer algebras

A lattice L is distributive if and only if + and × distribute over each other:

• (∀x, y, z ∈ L)(x+(y× z) = (x+ y)×(x+ z)) and
• (∀x, y, z ∈ L)(x×(y+ z) = (x× y) +(x× z)).

An element x of a lattice L is join-reducible if and only if (∃y, z < x)(y+ z = x).
Otherwise x is join-irreducible. Dually, x is meet-reducible if and only if (∃y, z >
x)(y× z = x). Otherwise x is meet-irreducible. We frequently use the following
well-known characterization without mention.

Lemma 1.2.1 (see [7] Section III.2). If L is a distributive lattice, then x ∈ L is join-
irreducible if and only if (∀y, z ∈ L)(x ≤ y+ z→x ≤ y ∨x ≤ z). Dually, x ∈ L is
meet-irreducible if and only if (∀y, z ∈ L)(x ≥ y× z→x ≥ y ∨x ≥ z).

Proof. Suppose x is join-irreducible and x ≤ y+ z. Then

x = x×(y+ z) = (x× y) +(x× z).

Thus x = x× y or x = x× z which means x ≤ y or x ≤ z. Conversely, if x is join-
reducible, then by definition there are y, z < x with y+ z = x. The proof for the
meet-irreducible case is obtained by dualizing the proof for the join-irreducible
case.

A lattice L is join-complete if and only if every non-empty X ⊆ L has a least
upper bound. L is meet-complete if and only if every non-empty X ⊆ L has a
greatest lower bound. L is complete if and only if it is both join-complete and
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meet-complete. Similarly, a lattice L is countably join-complete if and only if ev-
ery non-empty countable X ⊆ L has a least upper bound. L is countably meet-
complete if and only if every non-empty countable X ⊆ L has a greatest lower
bound. L is countably complete if and only if it is both countably join-complete
and countably meet-complete. In a lattice L, a set X ⊆ L is called strongly join-
incomplete if and only if for every finite {yi | i < n} ⊆ X there is an x ∈ X such
that x �

∑
i<n yi. Dually, a set X ⊆ L is called strongly meet-incomplete if and

only if for every finite {yi | i < n} ⊆ X there is an x ∈ X such that x �
∏

i<n yi.

Sometimes we want to ignore the lattice operations of a lattice L and con-
sider L as a partial order. When we do, we write (L;≤) to indicate that we are
considering only the partial order structure on L.

A Brouwer algebra is a distributive lattice B with least element 0 and greatest
element 1 such that for all x, y ∈ B there is a least z ∈ B such that x+ z ≥ y. This
least z is denoted x→ y.

Brouwer algebras give semantics for propositional logic. For a Brouwer al-
gebra B, a valuation is a function ν : propositional variables→B. A valuation ν
extends to all propositional formulas ϕ by defining

ν(ϕ∧ψ) = ν(ϕ) + ν(ψ),

ν(ϕ∨ψ) = ν(ϕ)× ν(ψ),

ν(ϕ→ψ) = ν(ϕ)→ ν(ψ), and
ν(¬ϕ) = ν(ϕ)→ 1.

A propositional formula ϕ is called valid in B if ν(ϕ) = 0 for every valuation
ν. Let PTh(B)1 denote the set of propositional formulas valid in B. The axioms
of intuitionistic logic are valid in every Brouwer algebra B, so IPC ⊆ Th(B) ⊆
CPC for every Brouwer algebra B. Here IPC denotes intuitionistic logic and
CPC denotes classical logic. Logics L for which IPC ⊆ L ⊆ CPC are called
intermediate logics.

1.3 Mass problems and reducibilities

A mass problem is a set of functions X ⊆ ωω. Mass problem X Medvedev reduces
(or strongly reduces) to mass problem Y (written X ≤s Y) if and only if there is a
Turing functional Φ such that (∀f ∈ Y)(Φ(f) ∈ X ) (written Φ(Y) ⊆ X ). Mass
problemsX andY are Medvedev equivalent (or strongly equivalent, writtenX ≡s Y)
if and only if X ≤s Y and Y ≤sX . The relation ≡s is an equivalence relation
on 2ω

ω , and the equivalence class degs(X ) is called the Medvedev degree of X .
Ds = {degs(X ) | X ⊆ ωω} denotes the collection of all Medvedev degrees.

Mass problem X Muchnik reduces (or weakly reduces) to mass problem Y (writ-
ten X ≤w Y) if and only if (∀f ∈ Y)(∃g ∈ X )(g≤T f). Muchnik reducibility is
the non-uniform version of Medvedev reducibility. Mass problems X and Y are

1Usually what we call PTh(B) is called Th(B). In this work, Th(B) always denotes the set of
first-order sentences true in B.
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Muchnik equivalent (or weakly equivalent, written X ≡w Y) if and only if X ≤w Y
and Y ≤w X . The equivalence class degw(X ) is called the Muchnik degree of X .
Dw = {degw(X ) | X ⊆ ωω} denotes the collection of all Muchnik degrees.

Medvedev introduced Ds in [41] as a formalization of Kolmogorov’s ideas of
a “calculus of problems” and a “logic of problem solving.” Medvedev’s intu-
ition was that a mass problem X represents a mathematical problem, namely
the problem of finding an element of X . For example, if A ⊆ ω, the problem
“find an enumeration of A” may be formalized as “find an element of the mass
problem X = {f ∈ ωω | ran(f) = A}.” Under this interpretation, X ≤s Y means
that problem X is at least as hard as problem Y in a strongly intuitionistic sense:
solutions to Y can be translated to solutions to X by a uniform effective proce-
dure. Muchnik introduced his non-uniform variant in [45].

Medvedev reducibility and Muchnik reducibility induce a partial orders on
the corresponding degrees: deg(X ) ≤ deg(Y) if and only if X ≤ Y , where deg =
degs and ≤ = ≤s in the Medvedev case, and deg = degw and ≤ = ≤w in the
Muchnik case. Ds and Dw are distributive lattices. For mass problems X and Y ,
it is an easy check that in both cases

deg(X ) + deg(Y) = deg(X +Y),

deg(X )× deg(Y) = deg(X ×Y),

and that join and meet distribute over each other. In the Muchnik case, the
equivalence X ×Y ≡w X ∪ Y always holds, and degw(X )× degw(Y) = degw(X ∪
Y ). This equivalence is not always true in the Medvedev case.

Ds and Dw have a least element 0 = deg(ωω) and a greatest element 1 =
deg(∅). In both structures, a mass problem has degree 0 if and only if it contains
a recursive function, and a mass problem has degree 1 if and only if it is empty.
Ds and Dw also both have a second-least element 0′ = deg({f ∈ ωω|f >T 0}).
The Medvedev degree 0′ and Muchnik degree 0′ have little to do with the Turing
degree 0′ (the Turing jump of the Turing degree 0). In this work, 0′ usually refers
to the second-least Medvedev or Muchnik degree, and it is clear from context
which degree is meant. Finally, both Ds and Dw are Brouwer algebras. For mass
problems X and Y ,

degs(X )→ degs(Y) = degs({eag | (∀f ∈ X )(Φe(f ⊕ g) ∈ Y)}) and
degw(X )→ degw(Y) = degw({g | (∀f ∈ X )(∃h ∈ Y)(h≤T f ⊕ g)}).

See Sorbi’s [74] for a good introduction to Ds and Dw.

1.4 Substructures of Ds and Dw

Substructures of Ds and Dw naturally arise by restricting the family of mass
problems under consideration. We consider the degrees of closed mass prob-
lems and effectively closed mass problems (i.e., Π0

1 classes).
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1.4.1 Closed degrees

A Medvedev or Muchnik degree is closed (compact) if it is of the form deg(X )
where X is closed (compact) in ωω. Let

Ds,cl = {degs(X ) | X ⊆ ωω ∧X is closed},
D01

s,cl = {degs(X ) | X ⊆ ωω ∧X is compact},
Dw,cl = {degw(X ) | X ⊆ ωω ∧X is closed}, and
D01

w,cl = {degw(X ) | X ⊆ ωω ∧X is compact}.

By inspecting the definitions, one can check that ifX andY are closed (compact),
then so are X +Y and X ×Y . Thus Ds,cl and D01

s,cl are distributive sublattices of
Ds, and Dw,cl and D01

w,cl are distributive sublattices of Dw. Similarly, D01
s,cl is a

distributive sublattice of Ds,cl and D01
w,cl is a distributive sublattice of Dw,cl. Ds,cl,

D01
s,cl, Dw,cl, and D01

w,cl all have least element 0 = deg(ωω) = deg(2ω) and greatest
element 1 = deg(∅). Notice that ωω is not compact, but it has the same degree as
2ω.

The closed subsets of ωω form the topologically simplest class which yields
non-trivial degree structures because every non-empty open set contains a re-
cursive function. As such, closed degrees are worthy objects of study. For ex-
ample, Bianchini and Sorbi [9] studied the filter in Ds generated by the non-
minimum closed degrees. Lewis, Shore, and Sorbi [39] have made a recent study
of topologically-defined collections of Medvedev degrees.

In general, every X ⊆ ωω is Medvedev equivalent (and hence also Muchnik
equivalent) to some Y ⊆ 2ω.

Lemma 1.4.1. If X ⊆ ωω then there is a Y ⊆ 2ω with X ≡s Y .

Proof. For f ∈ ωω, let graph(f) ∈ 2ω denote {〈n,m 〉 | f(n) = m}. Given X , let
Y = {graph(f) | f ∈ X}. Let Φ be the functional such that Φ(f)(〈n,m 〉) = 1 if
f(n) = m and Φ(f)(〈n,m 〉) = 0 otherwise. Then Φ(f) = graph(f) for all f . Thus
Φ(X ) = Y . Let Ψ be the functional such that Ψ(g)(n) searches for an m such that
g(〈n,m 〉) = 1 and outputs such an m if it is found. If g is the characteristic
function of graph(f), then Ψ(g) is total and equals f . Hence Ψ(X ) = Y .

If we let D01
s denote the Medvedev degrees of mass problems X ⊆ 2ω and let

D01
w denote the Muchnik degrees of mass problems X ⊆ 2ω, then Lemma 1.4.1

says Ds = D01
s and Dw = D01

w . However, if X ⊆ ωω is closed, then the Y ⊆ 2ω

produced by Lemma 1.4.1 need not be. Turing functionals are continuous, but
ωω and 2ω are not homeomorphic. Nevertheless, if X ⊆ ωω is compact, then
Lemma 1.4.1 produces a closed Y ⊆ 2ω. So every compact X ⊆ ωω is Medvedev
equivalent (and hence also Muchnik equivalent) to a closed (hence compact)
Y ⊆ 2ω. This explains the notations D01

s,cl and D01
w,cl for the collections of compact

degrees.

Our topological considerations of Medvedev reducibility are consequences
of the familiar use property (see [37] section I.3). If Φ(f)(m) = n, then there is
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a finite σ ⊂ f such that σ contains all the answers to the oracle queries made
during the computation of Φ(f)(m) = n. This is written Φ(σ)(m) = n and
implies Φ(g)(m) = n for any g ⊃ σ. The starting point is the following simple
lemma.

Lemma 1.4.2. Let m,n ∈ ω. For any program Φ, the set {f ∈ ωω | Φ(f)(m) = n} is
open. If Φ(f) is total for all f ∈ X , then {f ∈ X | Φ(f)(m) = n} is clopen in X .

Proof. If Φ(f)(m) = n, then by the use property there is some σ ⊂ f such that
Φ(σ)(m) = n. Hence {f ∈ ωω | Φ(f)(m) = n} =

⋃
{I(σ) | Φ(σ)(m) = n}.

If Φ is total on X , then

{f ∈ X | Φ(f)(m) = n} = X ∩ {f ∈ ωω | Φ(f)(m) = n}
= X ∩

(⋂
i 6=n

{f ∈ ωω | Φ(f)(m) 6= i}
)
.

The last equality holds because if Φ(f) is total and Φ(f)(m) 6= i for all i 6= n,
then it must be that Φ(f)(m) = n.

1.4.2 Effectively closed degrees

Recall our convention that a Π0
1 class is a non-empty Π0

1 subset of 2ω. Let

Es = {degs(X ) | X is a Π0
1 class} and

Ew = {degw(X ) | X is a Π0
1 class}.

By inspecting the definitions, one can check that if X and Y are both Π0
1 classes,

then so are X +Y and X ×Y . Thus Es is a distributive sublattice of Ds (in fact of
D01

s,cl) and Ew is a distributive sublattice of Dw (in fact of D01
w,cl). Moreover, given

indices for trees T0 and T1, we can effectively produce produce indices for trees
corresponding to [T0] +[T1] and [T0]×[T1]. Let T0 +T1 = {σ ⊕ τ | σ ∈ T0 ∧ τ ∈
T1 ∧ |τ | ≤ |σ| ≤ |τ |+1}. Then [T0] +[T1] = [T0 +T1] and [T0]×[T1] = [0aT0∪1aT1].
Es and Ew inherit the least element 0 = deg(2ω) from Ds and Dw, respectively.

The empty set is not a Π0
1 class, so deg(∅) is not in Es or Ew. However, Es and

Ew still have a greatest element 1. Let DNR2 = {f ∈ 2ω | ∀e(f(e) 6= Φe(e))}
(DNR stands for diagonally non-recursive). Then 1 = deg(DNR2) has greatest de-
gree in both Es and Ew (see [65] Lemma 3.20). There are many more natural Π0

1

classes which also have greatest degree. For example, the class of all (appropri-
ately Gödel numbered) complete consistent extensions of Peano arithmetic has
greatest degree in both Es and Ew.

Es and Ew are the effective counterparts of D01
s,cl and D01

w,cl. They have enjoyed
considerable attention from many authors, beginning with Simpson’s sugges-
tion to the Foundations of Mathematics discussion group that Ew is analogous
to ET, the Turing degrees of r.e. sets, but with more natural examples [64]. This
analogy with ET drives much of the research on Es and Ew. For example, ev-
ery non-minimum member of Es and Ew is join-reducible [10], reflecting Sacks’s
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splitting theorem for ET [51], and Es dense [15], reflecting Sacks’s density the-
orem for ET [53]. The question of whether Ew is dense remains open. See the
recent surveys by Simpson [61] and Hinman [26] for an overview of Es and Ew.

The interplay between uniformity and compactness gives us a simple de-
scription of Medvedev reducibility between two Π0

1 classes.

Lemma 1.4.3. [T0]≤s[T1] is Σ0
3 relative to the trees T0 and T1.

Proof. For a given Turing functional Φ, we show that

Φ([T1]) ⊆ [T0] if and only if
(∀n ∈ ω)(∃s ∈ ω)(∀σ ∈ 2s)(σ ∈ T1→Φ(σ) � n ∈ T0),

where Φ(σ) � n ∈ T0 abbreviates (∀i < n)(Φ(σ)(i)↓)∧Φ(σ) � n ∈ T0. It then
follows that

[T0]≤s[T1] if and only if
(∃e ∈ ω)(∀n ∈ ω)(∃s ∈ ω)(∀σ ∈ 2s)(σ ∈ T1→Φe(σ) � n ∈ T0),

which gives our Σ0
3 definition of ≤s.

For the forward direction, let n ∈ ω be given. Let Σ = {σ ∈ 2<ω | Φ(σ) � n ∈
T0}. The condition Φ([T1]) ⊆ [T0] implies that [T1] ⊆

⋃
σ∈Σ I(σ). By compactness,

there is a finite Σ0 ⊆ Σ such that [T1] ⊆
⋃
σ∈Σ0

I(σ) and an s ∈ ω such that
(∀σ ∈ 2s)(σ ∈ T1→(∃σ0 ∈ Σ0)(σ0 ⊆ σ)). Then (∀σ ∈ 2s)(σ ∈ T1→Φ(σ) � n ∈ T0).

For the reverse direction, consider f ∈ [T1]. Given any n ∈ ω, let s ∈ ω be such
that (∀σ ∈ 2s)(σ ∈ T1→Φ(σ) � n ∈ T0). Then Φ(f � s) � n ∈ T0, so Φ(f) � n ∈ T0.
Thus ∀n(Φ(f) � n ∈ T0). Hence Φ(f) ∈ [T0], and therefore Φ([T1]) ⊆ [T0].

A sequence of trees {Tn}n∈ω is uniformly recursive if and only if the set {〈n, σ 〉 |
σ ∈ Tn} is recursive. A recursive sequence of Π0

1 classes is a sequence of Π0
1 classes

{Xn}n∈ω for which there is a uniformly recursive sequence of trees {Tn}n∈ω such
that Tn ⊆ 2<ω and Xn = [Tn] for each n ∈ ω. For convenience, we also allow
indexing over recursive sets A and consider recursive sequences of Π0

1 classes
of the form {Xn}n∈A. Though not strictly necessary for our results, a convenient
fact is that there is a recursive sequence of all Π0

1 classes (with many repetitions).
Lemma 1.4.4 (see [16] Chapter XV and [17] Section 2.7). There is a uniformly re-
cursive sequence of infinite trees {Te}e∈ω such that if {Ze}e∈ω is the corresponding
recursive sequence of Π0

1 classes, then for every Π0
1 class X there is an e ∈ ω such that

X = Ze.

Proof. In fact, [17] Lemma 2.2 proves that every Π0
1 class is of the form [T ] for a

primitive recursive tree. Let {Pe}e∈ω be a recursive sequence of all primitive re-
cursive functions. Then define T ′e to be the tree T ′e = {σ ∈ 2<ω | (∀τ ⊆ σ)(Pe(τ) =
1)}. If Pe is the characteristic function of a tree, then T ′e is that tree. Thus if X is a
Π0

1 class, then X = [T ′e] for some e ∈ ω. We just need to make a final adjustment
to ensure that every tree in the sequence is infinite. To this end, let

Te = {σ ∈ 2<ω | σ ∈ T ′e ∨(∀m ≤ |σ|)(σ � m /∈ T ′e→(∀τ ∈ 2m)(τ /∈ Te))}.
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1.5 PA− and the standard model of arithmetic

In the next chapter, we code structures that model PA− (Peano arithmetic with-
out induction) in distributive lattices. For reference, we present the axioms of
PA− as they appear in [33].

Definition 1.5.1 (see [33] Section 2.1). PA− is the theory axiomatized by the fol-
lowing sentences.

(i) ∀x, y, z((x+ y) + z = x+ (y + z))

(ii) ∀x, y(x+ y = y + x)

(iii) ∀x, y, z((x× y)× z = x× (y × z))

(iv) ∀x, y(x× y = y × x)

(v) ∀x, y, z(x× (y + z) = (x× y) + (x× z))

(vi) ∀x(x+ 0 = x∧x× 0 = 0)

(vii) ∀x(x× 1 = x)

(viii) ∀x, y, z(x < y ∧ y < z→x < z)

(ix) ∀x¬(x < x)

(x) ∀x, y(x < y ∨x = y ∨ y < x)

(xi) ∀x, y, z(x < y→x+ z < y + z)

(xii) ∀x, y, z(0 < z ∧x < y→x× z < y × z)

(xiii) ∀x, y(x < y→∃z(x+ z = y))

(xiv) 0 < 1∧∀x(0 < x→x = 1∨ 1 < x)

(xv) ∀x(x = 0∨ 0 < x)

To reduce the quantifier complexity of axiom (xiii) for when we analyze the
fragments of Th(L) for various lattices L, we introduce the monus symbol “´”
and Skolemize. We call the resulting theory PA´

Definition 1.5.2. PA´ is the theory whose axioms are the same as PA− but with
axiom (xiii) replaced by the axiom ∀x, y(x < y→x+ (y ´ x) = y).

The standard relational model of arithmetic is the structure N = (ω;<
,+,×, 0, 1), where < is a 2-ary relation on ω, + and × are 3-ary relations on
ω, and 0 and 1 are constants in ω interpreted as the usual less-than, plus, times,
zero, and one respectively. Th(N ) denotes the first-order theory of N . We use
the relational versions of + and × instead of the usual functional versions be-
cause our coding techniques most naturally code relations. Any formula in
which + and × are relation symbols can be trivially translated into an equiv-
alent formula in which + and × are function symbols. Translations in the other
direction require unnesting. In general, a formula is said to be unnested if and
only if every atomic subformula is of the form x = y, c = y, f(x0, . . . , xn−1) = y,
or R(x0, . . . , xn−1), where x, y, and the xi for i < n are variables, c is a constant
symbol, f is a function symbol, andR is a relation symbol. Every formula can be
recursively translated into an equivalent unnested formula (see [28] section 2.6).
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When unnesting is applied to a first-order formula in the functional language
of arithmetic, we get an equivalent formula in which every atomic subformula
is of the form x = y, 0 = y, 1 = y, x < y, x + y = z, or x × y = z. That is, we
get an equivalent formula in the relational language of arithmetic. Therefore the
relational and functional versions of Th(N ) are recursively isomorphic.

Th2(N ) denotes the second-order theory of N , in which we allow second-
order variables X , quantification ∃X and ∀X , and second-order membership
x ∈ X . Th3(N ) denotes the third-order theory of N , in which we allow second-
order variables X , third-order variables X , quantification ∃X , ∀X , ∃X , and ∀X ,
second-order membership x ∈ X , and third-order membership X ∈ X .

We also make use of the structureN´ = (ω;<,+,×,´, 0, 1), where<, +,×, 0,
and 1 are as forN , and ´ is the 3-ary relation on ω corresponding to the function

x ´ y =

{
x− y if x ≥ y
0 if x < y.

Clearly, N |= PA−, N´ |= PA´, and PA´ ` PA−.

LetM |= PA−. An initial segment ofM is a <-downward-closed substructure
M′ ofM: (∀x ∈ M′)(∀y ∈ M)((M |= y < x)→(y ∈ M′)). An initial interval of
M is a subset ofM of the form {y ∈ M | M |= y < x∨ y = x} for some x ∈ M.
The reason that we have defined initial intervals to be non-empty is simply for
later convenience.

For us, the crucial facts about PA− and its models are the following.

Lemma 1.5.3 (see [33] Theorem 2.2). IfM |= PA−, then there is an initial segment
of M that is isomorphic to N . In particular, N is the unique model of PA−, up to
isomorphism, in which every initial interval is finite.

Lemma 1.5.4 (see [33] Corollary 2.9). If ϕ is a Σ0
1 sentence and N |= ϕ, then PA− `

ϕ.

1.6 Reverse mathematics

Reverse mathematics, introduced by Friedman [24], is an analysis of the logi-
cal strength of the theorems of ordinary mathematics in the context of second-
order arithmetic. A result in reverse mathematics typically has the form “T is
equivalent to strong system over weak system,” where strong system
and weak system are subsystems of second-order arithmetic and T is some
theorem from ordinary mathematics. This means that T is provable in
strong system and that all the axioms of strong system are provable in
weak system∪{T}. The proof of strong system from weak system∪{T}
is called a reversal.

We now describe the axiomatic systems relevant for our work. We fol-
low [67], the standard reference for reverse mathematics. Also see [4] Sec-
tion 2 for a thorough introduction to most of the systems we consider and for
computability-theoretic interpretations of these systems.
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Before we describe the systems, we need to know that the basic axioms are the
sentences

∀m(m+ 1 6= 0)

∀m∀n(m+ 1 = n+ 1→m = n)

∀m(m+ 0 = m)

∀m∀n(m+ (n+ 1) = (m+ n) + 1)

∀m(m× 0 = 0)

∀m∀n(m× (n+ 1) = (m× n) +m)

∀m¬(m < 0)

∀m∀n(m < n+ 1↔(m < n∨m = n)),

that the induction axiom is the sentence

∀X((0 ∈ X ∧∀n(n ∈ X→n+ 1 ∈ X))→∀n(n ∈ X)),

and that the comprehension scheme consists of all universal closures of formulas
of the form

∃X∀n(n ∈ X↔ϕ(n)),

where ϕ can be any formula in the language of second-order arithmetic in which
X does not occur freely. Full second-order arithmetic consists of the basic ax-
ioms, the induction axiom, and the comprehension scheme.

RCA0 (for recursive comprehension axiom) consists of the basic axioms, the Σ0
1

induction scheme, and the ∆0
1 comprehension scheme. The Σ0

1 induction scheme
consists of all universal closures of formulas of the form

(ϕ(0)∧∀n(ϕ(n)→ϕ(n+ 1)))→∀nϕ(n)

where ϕ is Σ0
1. The ∆0

1 comprehension scheme consists of all universal closures
of formulas of the form

∀n(ϕ(n)↔ψ(n))→∃X∀n(n ∈ X↔ϕ(n))

where ϕ is Σ0
1, ψ is Π0

1, and X does not occur freely in ϕ. RCA0 is the stan-
dard weak system for the purpose of reversals. RCA0 proves that the function
〈 i, j 〉 7→ (i+ j)2 + i is injective (see [67] Section II.2). For X ⊆ N and n ∈ N , we
define

(X)n = {i | 〈 i, n 〉 ∈ X} and
(X)n = {〈 i,m 〉 | 〈 i,m 〉 ∈ X ∧m < n}.

RCA0 proves that if X exists, then so do (X)n and (X)n. We interpret (X)n as the
nth column of X and (X)n as set of the first n columns of X .

WKL0 (for weak König’s lemma) consists of RCA0 plus the axiom “every infi-
nite subtree of 2<N has an infinite path.” The following equivalent formulation
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is useful. A tree T ⊆ N<N is called bounded if and only if there is a function
g : N→N such that (∀τ ∈ T )(∀m < |τ |)(τ(m) < g(m)). Over RCA0, WKL0 is
equivalent to the statement “every bounded infinite subtree of N<N has an infi-
nite path.” See [67] Lemma IV.1.4.

ACA0 (for arithmetical comprehension axiom) consists of the basic axioms, the in-
duction axiom, and the arithmetical comprehension scheme. The arithmetical com-
prehension scheme is the restriction of the comprehension scheme to formulas
ϕ that are arithmetical.

ATR0 (for arithmetical transfinite recursion) consists of ACA0 plus an axiom
scheme that says if a set can be constructed by iterating arithmetical compre-
hension along an existing well-order, then that set exists. Let LO(X,<X) be a
formula that says “<X is a linear order on the set X ,” and let WO(X,<X) be a
formula that says “<X is a well-order on the set X .” Given a formula θ(n, Y ),
let Hθ(X,<X , Y ) be a formula that says “LO(X,<X) and Y = {〈n, j 〉 | j ∈
X ∧ θ(n, {〈m, i 〉 ∈ Y | i <X j})}.” The axioms of ATR0 consist of those of ACA0

plus all universal closures of formulas of the form

∀X∀<X (WO(X,<X)→∃Y Hθ(X,<X , Y ))

where θ is arithmetical. An easier-to-understand equivalent of ATR0 is the sys-
tem Σ1

1 separation, which consists of the axioms of RCA0 plus the all universal
closures of formulas of the form

¬∃n(ϕ0(n)∧ϕ1(n))→∃Z∀n((ϕ0(n)→n ∈ Z)∧(ϕ1(n)→n /∈ Z)),

where ϕ0 and ϕ1 are Σ1
1 and Z does not occur freely in either ϕ0 or ϕ1 (see

[67] Theorem V.5.1).

Σ1
1-DC0 (for Σ1

1 dependent choice) consists of ACA0 and the scheme of Σ1
1 depen-

dent choice. The scheme of Σ1
1 dependent choice consists of all universal closures

of formulas of the form

∀n∀X∃Y η(n,X, Y )→∃Z∀nη(n, (Z)n, (Z)n)

where η is Σ1
1 and Z does not occur freely in η.

Π1
1-CA0 (for Π1

1 comprehension axiom) consists of the basic axioms, the induc-
tion axiom, and the Π1

1 comprehension scheme. The Π1
1 comprehension scheme is

the restriction of the comprehension scheme to formulas ϕ that are Π1
1.

RCA0 is strictly weaker than ACA0, which is strictly weaker than both ATR0

and Σ1
1-DC0. ATR0 and Σ1

1-DC0 are independent over RCA0. However, ATR0

proves the consistency of Σ1
1-DC0. Both ATR0 and Σ1

1-DC0 are strictly weaker
than Π1

1-CA0.

Our proof of Menger’s theorem in Π1
1-CA0 relies on two key meta-

mathematical facts. The first key fact concerns the existence of β-models. The
second key fact concerns the existence of models of Σ1

1-DC0.

Definition 1.6.1. A countable coded ω-model is a set X ⊆ N viewed as coding the
structureM = (N, {(X)n | n ∈ N},+, ·, 0, 1, <).
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We usually identify a countable coded ω-model X with the structureM that
it codes.

Definition 1.6.2. A countable coded β-model is a countable coded ω-modelM that
is absolute for Σ1

1 formulas with parameters fromM. That is, if ϕ is a Σ1
1 formula

with parameters fromM, thenM |= ϕ if and only if ϕ is true.

Theorem 1.6.3 (see [67] Theorem VII.2.10). The statement “for every X there is a
countable coded β-modelM with X ∈M” is equivalent to Π1

1-CA0 over ACA0.

It is helpful to keep in mind that ACA0 proves that every countable coded
β-model is a model of ATR0 (see [67] Theorem VII.2.7).

Theorem 1.6.4 (see [67] Theorem VIII.4.20). ATR0 proves that for every X there is a
countable coded ω-modelM of Σ1

1-DC0 with X ∈M.

The statement “for every X there is a countable coded ω-modelM of Σ1
1-DC0

with X ∈ M” is in fact equivalent to ATR0 over RCA0. See [67] Lemma VIII.4.15
for the reversal.
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CHAPTER 2
CODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK

DEGREES

The results of this chapter also appear in [54] and [57], both by the author.

A classic problem in computability theory is to determine the complexity of
the first-order theory of a given degree structure, such as DT, Ds, or Dw. The
benchmarks are theories of arithmetic, the comparisons are made via recursive
isomorphisms, and the results typically express that the first-order theories of
the degree structures are as complicated as possible. The original result of this
sort, due to Simpson, is that the first-order theory of DT is recursively isomor-
phic to the second-order theory of true arithmetic [62]. We show that the first-
order theories of Ds and Dw are both recursively isomorphic to the third-order
theory of true arithmetic (Theorem 2.3.10). This result was obtained indepen-
dently by Lewis, Nies, and Sorbi [38].

Various substructures arise in the study of degree structures, and the com-
plexities of their first-order theories naturally come into question. In the Turing
degrees, two popular substructures are DT(≤T 0′), the Turing degrees below 0′,
and ET, the Turing degrees of r.e. sets. Both DT(≤T 0′) and ET have first-order
theories that are recursively isomorphic to the first-order theory of true arith-
metic. TheDT(≤T 0′) case is due to Shore [59]. The ET case is due to unpublished
work of Harrington and Slaman (see also [46]). We consider the substructures
Ds,cl, D01

s,cl, and Es of Ds and the substructures Dw,cl, D01
w,cl, and Ew of Dw. Our

results are that the first-order theories of Ds,cl, D01
s,cl, Dw,cl, and D01

w,cl are all recur-
sively isomorphic to the second-order theory of true arithmetic (Theorem 2.6.5
and Theorem 2.6.5), that the first-order theory of Es is recursively isomorphic to
the first-order theory of true arithmetic (Theorem 2.9.4), and that the first-order
theory of Ew is undecidable (Theorem 2.11.7). The question of the exact com-
plexity of the first-order theory of Ew remains wide open. Cole and Simpson
conjecture that the first-order theory of Ew is recursively isomorphic toO(ω) (the
ωth Turing jump of Kleene’s O), the obvious upper bound [19]. As a bonus, our
coding methods also yield that neither Ds,cl nor D01

s,cl is elementarily equivalent
to either Dw,cl or D01

w,cl (Theorem 2.7.2).

We also consider the decidabilities of fragments of the first-order theories of
Ds, Dw, and their substructures. Our results are that if L is any of Ds, Dw, Ds,cl,
D01

s,cl, Dw,cl, D01
w,cl, Es, or Ew, then the Σ0

3-theory of L as a lattice and the Σ0
4-theory

of L as a partial order are undecidable (Theorem 2.3.11, Theorem 2.4.11, Theo-
rem 2.6.6, Theorem 2.9.5, and Theorem 2.11.7). In the positive direction, Binns
has shown that the Σ0

1-theories of Es and Ew as a lattices are identical and de-
cidable [10]. Binns’s results also imply that the Σ0

1-theories of Ds, Dw, Ds,cl, D01
s,cl,

Dw,cl, and D01
w,cl as lattices are decidable. Cole and Kihara have shown that the

Σ0
2-theory of Es as a partial order is decidable [18]. No further results of this

sort are known. There has been a huge amount of difficult work on the decid-
ability of various fragments of the first-order theories of DT and ET. In light
of the guiding analogy that Es and Ew are like ET, we summarize the results
for ET for comparison (see [60] for a survey of this area). The Σ0

1-theory of ET
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as an upper-semilattice is decidable [52]. The decidability of the Σ0
2-theory of

ET as a partial order and the decidability of the Σ0
2-theory of ET as an upper-

semilattice remain unknown. However, the Σ0
3-theory of ET as a partial order

is undecidable [36]. Moreover, if one extends the partial infimum function on
ET (as an upper-semilattice) to any total function, then the Σ0

2-theory of the re-
sulting structure is undecidable [43]. These two undecidability results for ET

suggest by analogy that the Σ0
2-theory of Es as a lattice, the Σ0

3-theory of Es as a
partial order, the Σ0

2-theory of Ew as a lattice, and the Σ0
3-theory of Ew as a partial

order may all be undecidable.

We prove that Es is as complicated as possible in terms of degree of presen-
tation (Theorem 2.10.6). Specifically, we prove that the degree of Es as a lattice
is 0′′′. This means that 0′′′ computes a presentation of Es as a lattice and that 0′′′
is computable in every presentation of Es as a lattice. A corollary is that Es has
no recursive presentation as a partial order. The natural presentation of Ew has
Turing degree O [19], so it is reasonable to expect that Ew has degree O, though
this question remains open. For comparison, it follows from the results of [46]
(though it is not stated explicitly) that the degree of ET as an upper-semilattice
is 0(4).

2.1 Interpreting the Medvedev and Muchnik degrees in arithmetic

Before we code arithmetic intoDs, Dw, and their substructures, we show how to
interpret these structures in arithmetic.

The reductions Th(Ds)≤1 Th3(N ) and Th(Dw)≤1 Th3(N ) follow from the
fact that every mass problem X is equivalent to some Y ⊆ 2ω (i.e., Lemma 1.4.1)
and that the Medvedev and Muchnik reducibilities are definable in third-order
arithmetic.

Lemma 2.1.1. Th(Ds;≤s)≤1 Th3(N ) and Th(Dw;≤w)≤1 Th3(N ).

Proof. The relation R(Y, e,m, n) expressing Φe(Y )(m) = n is definable by a for-
mula which says “there exists a number s coding a sequence of configurations
witnessing the computation Φe(Y )(m) = n.” The relation S(X, Y, e) expressing
Φe(Y ) = X is definable by the formula

∀m((m ∈ X→R(Y, e,m, 1))∧(m /∈ X→R(Y, e,m, 0))).

Thus the relation X ≤s Y is definable by the formula

ϕ(X ,Y) = ∃e∀Y (Y ∈ Y→∃X(X ∈ X ∧S(X, Y, e))).

Now, given a first-order sentence ψ in the language of partial orders, pro-
duce a third-order sentence ψ′ in the language of arithmetic by replacing quan-
tifications ∀x and ∃x with third-order quantifications ∀X and ∃X , by replacing
atomic formulas x ≤ y with ϕ(X ,Y), and by replacing atomic formulas x = y
with ϕ(X ,Y)∧ϕ(Y ,X ). Then N |= ψ′ if and only if Ds |= ψ.

The reduction Th(Dw;≤w)≤1 Th3(N ) is obtained by switching the quantifiers
∃e and ∀Y in the definition of the formula ϕ above.
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The interpretations of Ds,cl and Dw,cl (D01
s,cl and D01

w,cl) in second-order arith-
metic rely on the fact that X ⊆ ωω (X ⊆ 2ω) is closed if and only if it is the set of
paths through some tree T ⊆ ω<ω (T ⊆ 2<ω). Thus we quantify over all closed
mass problems by quantifying over all trees. Fix some definable coding of se-
quences, trees, and functions in second-order arithmetic. See [67] Section II.2 for
a particularly careful method.

Lemma 2.1.2. Th(Ds,cl;≤s)≤1 Th2(N ), Th(D01
s,cl;≤s)≤1 Th2(N ),

Th(Dw,cl;≤w)≤1 Th2(N ), and Th(D01
w,cl;≤w)≤1 Th2(N ).

Proof. The relation P (f, T ) expressing “function f is a path through tree T” is
definable by the formula

∀n∃σ(σ ∈ T ∧ |σ| = n∧(∀i < |σ|)(σ(i) = f(i))).

RelationsR(g, e,m, n) expressing Φe(g)(m) = n and S(f, g, e) expressing Φe(g) =
f are definable as in Lemma 2.1.1. Thus the relation [T ]≤s[S] is definable by the
formula

ϕ(T, S) = ∃e∀g(P (g, S)→∃f(P (f, T )∧S(f, g, e))).

Now, given a first-order sentence ψ in the language of partial orders, produce
a second-order sentence ψ′ in the language of arithmetic by replacing quantifi-
cations ∀x and ∃x with second-order quantifications ∀Tx and ∃Tx quantifying
over trees Tx ⊆ ω<ω, by replacing atomic formulas x ≤ y with ϕ(Tx, Ty), and
by replacing atomic formulas x = y with ϕ(Tx, Ty)∧ϕ(Ty, Tx). Then N |= ψ′

if and only if Ds,cl |= ψ. This proves Th(Ds,cl;≤s)≤1 Th2(N ). The reduc-
tion Th(D01

s,cl;≤s)≤1 Th2(N ) is exactly the same, except we quantify over trees
T ⊆ 2<ω.

The reductions Th(Dw,cl;≤w)≤1 Th2(N ) and Th(D01
w,cl;≤w)≤1 Th2(N ) are ob-

tained by switching the quantifiers ∃e and ∀g in the definition of the formula ϕ
above.

To interpret Es in first-order arithmetic, we use the recursive sequence con-
taining all Π0

1 classes {Ze}e∈ω from Lemma 1.4.4 and the fact that Zi≤sZj is a Σ0
3

property of i and j.

Lemma 2.1.3. Th(Es;≤s)≤1 Th(N ).

Proof. Let {Ze}e∈ω be a recursive sequence containing all Π0
1 classes as in

Lemma 1.4.4, and let {Te}e∈ω be the corresponding uniformly recursive se-
quence of trees. Given a first-order sentence ψ in the language of partial orders,
produce an equivalent sentence in the language of partial orders by replacing
every atomic formula x = y by the formula x ≤ y ∧ y ≤ x. Then produce a
first-order sentence ψ′ in the language of arithmetic by replacing every atomic
formula x ≤ y by the Σ0

3 formula from Lemma 1.4.3 expressing [Tx]≤s[Ty]. Then
N |= ψ′ if and only if Es |= ψ.
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2.2 Coding arithmetic in distributive lattices

We present our scheme for coding arithmetic in distributive lattices. Although
the definitions below make sense in any lattice, they were designed with the par-
ticular goal of codingN intoDs,Dw, and their sublattices in mind. For example,
meet-irreducible elements play a major role in the coding. One may dualize the
coding to replace meet-irreducible by join-irreducible, but this would not suffice
for our purposes because all non-zero elements of Es are join-reducible [10]. The
coding presented here has been slightly modified from the original version de-
veloped in [57] in order to reduce the quantifier complexity of coded relations.

2.2.1 Coding models of relational theories

Definition 2.2.1. For elements s and w of a lattice, s meets to w if and only if
∃y(y > w∧ s× y = w).

Definition 2.2.2. For a lattice L and a w ∈ L,

E(w) = {s ∈ L | s is meet-irreducible∧ s meets to w}.

The next two lemmas prove important properties ofE in distributive lattices.

Lemma 2.2.3. If L is a distributive lattice and w ∈ L, then E(w) is an antichain.

Proof. Suppose for a contradiction that there are s, s′ ∈ E(w) with s > s′. Let
y > w be such that s× y = w. Then s′ ≥ y because s′ is meet-irreducible,
s′ ≥ s× y, and s′ � s. Therefore s > s′ ≥ y > w, giving the contradiction
s× y = y > w.

Lemma 2.2.4. If L is a distributive lattice and {si}i<n ⊆ L is a finite non-empty
antichain of meet-irreducible, non-maximum elements, then E(

∏
i<n si) = {si}i<n.

Proof. Suppose n = 1. There is a y > s0 because s0 is not maximum. Thus
s0× y = s0, so y witnesses that s0 meets to s0. Thus s0 ∈ E(s0). On the other
hand, if x ∈ E(s0), then there is a y > s0 such that x× y = s0. Since s0 is
meet-irreducible and s0 � y, it must be that s0 ≥ x. E(s0) is an antichain by
Lemma 2.2.3 and s0 ∈ E(s0), so it must be that x = s0. Hence E(s0) = {s0}.

Suppose n > 1, and let w =
∏

i<n si. First we show that si ∈ E(w) for each
i < n. Fix i < n and let ti =

∏
{sj | j < n∧ j 6= i} so that si× ti = w. Then si � ti

because otherwise the meet-irreducibility of si implies that si ≥ sj for some
j 6= i, contradicting that {si}i<n is an antichain. Thus si is meet-irreducible and
ti witnesses that si meets to w. Hence si ∈ E(w). Conversely, if x ∈ E(w), then
x is meet-irreducible and x ≥ w. Thus x ≥ si for some i < n, so x = si because
E(w) is an antichain by Lemma 2.2.3. Thus E(w) = {si}i<n.

In the above lemma, the non-maximum hypothesis is only for the n = 1 case.
If n > 1, then no member of {si}i<n is maximum because it is an antichain, so
the non-maximum hypothesis is automatically satisfied. If L has a maximum
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element 1, then E(1) = ∅ even though 1 is meet-irreducible. This is by the
definition of “meets to,” because there is no y ∈ Lwith y > 1.

Given an element w of a lattice, we think of w as code for the set E(w). The
symbol “E” stands for “elements,” as in the elements of the set coded by w.1

Now we code 2-ary and 3-ary relations onE(w0) for an element w0 of a lattice
L. The same scheme can code n-ary relations for any n ∈ ω, but we only need
to code 2-ary and 3-ary relations to code N . The intuition behind the follow-
ing definition is that if s0, u0 ∈ E(w0), then s0 +u0 should code the pair (s0, u0).
However, this coding makes the pairs (s0, u0) and (u0, s0) indistinguishable be-
cause s0 +u0 = u0 + s0. To solve this problem, we fix additional parameters
w1, w2,m ∈ L. Once w0, w1, w2,m ∈ L are fixed, any c ∈ L can be interpreted as
coding a 2-ary relation R2

c on E(w0) and a 3-ary relation R3
c on E(w0).

Definition 2.2.5. Let L be a lattice and fix elements w0, w1, w2,m ∈ L. Then any
c ∈ L defines a 2-ary relation R2

c on E(w0) and a 3-ary relation R3
c on E(w0) by

R2
c(s0, u0) if and only if s0 ∈ E(w0)∧u0 ∈ E(w0)

∧∃u1(u1 meets to w1 ∧u0 +u1 ≥ m∧ s0 +u1 ≥ c)

R3
c(s0, u0, v0) if and only if s0 ∈ E(w0)∧u0 ∈ E(w0)∧ v0 ∈ E(w0)

∧∃u1∃v2(u1 meets to w1 ∧ v2 meets to w2

∧u0 +u1 ≥ m∧ v0 + v2 ≥ m∧ s0 +u1 + v2 ≥ c).

With Definition 2.2.5 in hand, we can define codes for models of various the-
ories. For PA− we have the following definitions.

Definition 2.2.6. In a lattice L, a code (for a structure in the language of arithmetic)
is a sequence of elements

~w = (w0, w1, w2,m, `, p, t, z, o)

from L interpreted as coding the structure

M~w = (E(w0);R2
` , R

3
p, R

3
t , z, o)

where R2
` , R

3
p, and R3

t are the relations on E(w0) defined from `, p, and t, respec-
tively, as in Definition 2.2.5.

In Definition 2.2.6, w is for “ω,”m is for “match,” ` is for “less,” p is for “plus,”
t is for “times,” z is for “zero,” and o is for “one.”

If ~w is a code in a lattice L, then sentences in the language of arithmetic are
interpreted inM~w in the obvious way.

Definition 2.2.7. Let ϕ be a first-order sentence in the language of arithmetic.
The translation of ϕ is the first-order formula ϕ′(w0, w1, w2,m, `, p, t, z, o) (with
the displayed variables free) in the language of lattices obtained from ϕ by mak-
ing the following replacements.

1In [57], E(w) was called Ẽ(w) (see [57] Definition 4.4) and its definition required that the
s ∈ Ẽ(w) also be minimal with respect being meet-irreducible and meeting tow. The minimality
requirement is unnecessary by Lemma 2.2.3.
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• Replace < by the formula defining R2
` ,

• replace + by the formula defining R3
p,

• replace × by the formula defining R3
t ,

• replace 0 by z,
• replace 1 by o,
• replace ∃x by the formula expressing ∃x ∈ E(w0), and
• replace ∀x by the formula expressing ∀x ∈ E(w0).

If L is a lattice and ~w is a code, thenM~w |= ϕ means that L |= ϕ′(~w).

Definition 2.2.8. In a lattice L, a code for a model of PA− is a code ~w such that
M~w |= PA−.

If ϕ is a first-order sentence in the language of arithmetic, then its translation
ϕ′ is a first-order formula in the language of lattices. Thus for such a sentence ϕ,
the property “~w is a code such thatM~w |= ϕ” is first-order. The property “~w is a
code for a model of PA−” is therefore expressible by a first-order formula in the
language of lattices.

To code true first-, second-, or third-order arithmetic in a lattice, we impose
an extra first-, second-, or third-order correctness condition on a code ~w for a
model of PA−, and we impose additional assumptions on the properties of the
lattice in which the coding is done. In this way we ensure that coded structures
M~w are isomorphic to N and that first-, second-, and third-order quantification
overM~w can be simulated by first-order quantification over L.

2.2.2 The finite matching property and the first-order correctness condition

In this section we present sufficient conditions for interpreting true first-order
arithmetic in a distributive lattice. Our strategy is to recognize the codes ~w such
thatM~w

∼= N as the codes ~w of models of PA− such that every initial interval of
M~w is finite. The following definitions allows us to compare the cardinalities of
initial intervals of coded models of PA−.

Definition 2.2.9. Let L be a lattice and let ~w be a code for a model of PA−. An
a ∈ L codes an initial interval of M~w if and only if (∃s ∈ E(w0))(∀b ∈ L)(b ∈
E(a)↔R2

` (b, s)∨ b = s).

Definition 2.2.10. For a lattice L and elements r, q ∈ L, E(r) matches E(q) if and
only if there is a z ∈ L such that

(i) (∀x ∈ E(q))(∃!y ∈ E(r))(x+ y ∈ E(z)), and
(ii) (∀x ∈ E(r))(∃!y ∈ E(q))(x+ y ∈ E(z)).

Clearly if E(r) matches E(q), then |E(r)| = |E(q)|. The next definition en-
forces a weak converse of this fact.
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Definition 2.2.11. A lattice L has the finite matching property if and only if when-
ever q, q′ ∈ L are such that |E(q)| = |E(q′)| = n for some n ∈ ω then there is an
r ∈ L such that E(r) matches both E(q) and E(q′).

We can now define the first-order correctness condition and prove that a code
for a model of PA− that satisfies the first-order correctness condition always
codes a structure isomorphic toN provided that L is distributive, that L has the
finite matching property, and that some code in L codes a structure isomorphic
to N . It follows that Th(N )≤1 Th(L).

Definition 2.2.12. In a lattice L, a code ~w satisfies the first-order correctness condi-
tion if and only if

(i) (∀s ∈ E(w0))(∃a ∈ L)(∀b ∈ L)(b ∈ E(a)↔R2
` (b, s)∨ b = s) (that is, every

initial interval ofM~w is coded by some a ∈ L), and
(ii) for every a ∈ L that codes an initial interval ofM~w and every code ~w′ for a

model of PA− that satisfies item (i), there is an a′ ∈ L that codes an initial
interval ofM~w′ and an r ∈ L such that E(r) matches both E(a) and E(a′).

Observe that the property “~w is a code a model of PA− that satisfies the first-
order correctness condition” can be expressed by a first-order formula in the
language of lattices.

Lemma 2.2.13. Let L be a distributive lattice with the finite matching property.

(i) If ~w is a code such thatM~w
∼= N , then ~w is a code for a model of PA− satisfying

the first-order correctness condition.
(ii) If there is a code ~w such thatM~w

∼= N , thenM~w′
∼= N for every ~w′ that is a that

is a code for a model of PA− satisfying the first-order correctness condition.

Proof. For item (i), let ~w be a code such thatM~w
∼= N . The code ~w is a code for

a model of PA− becauseM~w
∼= N . For Definition 2.2.12 item (i), let s ∈ E(w0)

and notice that {b | R2
` (b, s)∨ b = s} is finite because it is an initial interval of

a structure isomorphic to N and that it is an antichain because it is a subset of
E(w0) which is an antichain by Lemma 2.2.3. Thus a =

∏
{b | R2

` (b, s)∨ b = s}
witnesses Definition 2.2.12 item (i) for s because E(a) = {b | R2

` (b, s)∨ b = s} by
Lemma 2.2.4. For Definition 2.2.12 item (ii), let a ∈ L code an initial interval of
M~w and let ~w′ be a code for a model of PA− satisfying Definition 2.2.12 item (i).
|E(a)| = n for some n ∈ ω because E(a) is an initial interval of a structure
isomorphic to N . M~w′ |= PA−, so by Lemma 1.5.3 there is an initial interval of
M~w′ of cardinality n and, by Definition 2.2.12 item (i), there is an a′ ∈ L coding
this initial interval. Thus |E(a)| = |E(a′)| = n, so by the finite matching property
there is an r ∈ L such that E(r) matches both E(a) and E(a′). Thus ~w is indeed
a code for a model of PA− satisfying the first-order correctness condition.

For item (ii), let ~w be a code such that M~w
∼= N , and let ~w′ be a code for

a model of PA− satisfying the first-order correctness condition. We show that
M~w′

∼= N . By Lemma 1.5.3, it suffices to show that every initial interval M~w′
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is finite. Thus let s′ ∈ E(w′0), let {b′ | R2
`′(b
′, s′)∨ b′ = s′} be the corresponding

initial interval, and, by Definition 2.2.12 item (i), let a′ ∈ L code this initial
interval. By item (i), ~w is a code for a model of PA− satisfying Definition 2.2.12
item (i), so by Definition 2.2.12 item (ii) (applied to ~w′) there is an a ∈ L coding
an initial interval ofM~w

∼= N such that |E(a)| = |E(a′)|. E(a) is finite, hence the
initial interval {b′ | R2

`′(b
′, s′)∨ b′ = s′} is finite.

Lemma 2.2.14. Let L be a distributive lattice with the finite matching property such
that there exists a code ~w such thatM~w

∼= N . Then Th(N )≤1 Th(L;≤).

Proof. It suffices to prove Th(N )≤1 Th(L) because Th(L)≤1 Th(L;≤) as the lat-
tice operations + and × are first-order definable from the partial order ≤. Let
ϕ be a first-order sentence in the language of arithmetic. Let θ be the first-order
sentence

θ = ∃~w(~w is a code for a model of PA−

∧ ~w satisfies the first-order correctness condition
∧M~w |= ϕ)

in the language of lattices. By Lemma 2.2.13, there are codes in L for models of
PA− satisfying the first-order correctness condition, and every code in L for a
model of PA− satisfying the first-order correctness condition codes a structure
isomorphic to N . Thus N |= ϕ if and only if L |= θ.

2.2.3 The coding countable subsets property and the second-order correct-
ness condition

In this section we present sufficient conditions for interpreting true second-
order arithmetic in a distributive lattice. Our strategy is to use first-order quan-
tification over the lattice to quantify over all countable subsets of a coded struc-
ture. We then recognize the codes ~w such thatM~w

∼= N as the codes ~w of models
of PA− such thatM~w is well-founded.

Consider a code ~w for a structureM~w in a lattice L. Given a ∈ L, let F (a) =
{s ∈ L | s ≥ a}. Every element a ∈ L codes the subset F (a) ∩ E(w0) ⊆ E(w0).
Using this coding, we extend the translation described in Definition 2.2.7 to
second-order sentences ϕ in the language of arithmetic.

Definition 2.2.15. Let ϕ be a second-order sentence in the language of arith-
metic. The translation of ϕ is the first-order formula ϕ′(w0, w1, w2,m, `, p, t, z, o)
(with the displayed variables free) in the language of lattices obtained from ϕ
by making the replacements described in Definition 2.2.7 and by also making
the following replacements.

• Replace the second-order variable X by the first-order variable vX ,
• replace x ∈ X by the formula expressing x ∈ F (vX) ∩ E(w0), and
• replace quantifiers ∃X and ∀X by ∃vX and ∀vX respectively.
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If L is a lattice and ~w is a code, thenM~w |= ϕ means that L |= ϕ′(~w).

Notice that even though ϕ is allowed to be a second-order sentence in the lan-
guage of arithmetic, its translation ϕ′ is still a first-order formula in the language
of lattices.

The next definition ensures that if ~w is a code such that M~w
∼= N , then for

every S ⊆ E(w0) there is an a ∈ L such that F (a) ∩ E(w0) = S. That is, every
subset of E(w0) has a code, so quantifying over all subsets of E(w0) is the same
as quantifying over all coded subsets of E(w0).

Definition 2.2.16. A lattice L has the coding countable subsets property if and only
if for every w ∈ L and every countable S ⊆ E(w) there is an a ∈ L such that
F (a) ∩ E(w) = S.

The following second-order correctness condition recognizes the structures
isomorphic to N among the coded models of PA− in a distributive lattice with
the coding countable subsets property.

Definition 2.2.17. In a lattice L, a code ~w satisfies the second-order correctness
condition if and only if for every a ∈ L, if there is an s ∈ F (a)∩E(w0), then there
is an R2

` -least such s.

Observe that the property “~w is a code a model of PA− that satisfies the
second-order correctness condition” can be expressed by a first-order formula
in the language of lattices.

Lemma 2.2.18. Let L be a distributive lattice with the coding countable subsets prop-
erty.

(i) If ~w is a code such thatM~w
∼= N , then ~w is a code for a model of PA− satisfying

the second-order correctness condition.
(ii) If ~w is a code for a model of PA− satisfying the second-order correctness condition,

thenM~w′
∼= N .

Proof. Item (i) is true because N is a well-founded model of PA−. For item (ii),
let ~w be a code for a model of PA− satisfying the second-order correctness condi-
tion. IfM~w were not well-founded, then there would be a countable S ⊆ E(w0)
with noR2

` -least element. By the coding countable subsets property, there would
be an a ∈ L such that F (a) ∩ E(w0) = S. This contradicts the second-order
correctness condition. ThusM~w is a well-founded model of PA− and hence is
isomorphic to N .

Lemma 2.2.19. Let L be a distributive lattice with the coding countable subsets prop-
erty such that there exists a code ~w such thatM~w

∼= N . Then Th2(N )≤1 Th(L;≤).

Proof. It suffices to prove Th2(N )≤1 Th(L) because Th(L)≤1 Th(L;≤) as the lat-
tice operations + and × are first-order definable from the partial order ≤. Let ϕ
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be a second-order sentence in the language of arithmetic. Let θ be the first-order
sentence

θ = ∃~w(~w is a code for a model of PA−

∧ ~w satisfies the second-order correctness condition
∧M~w |= ϕ)

in the language of lattices. By Lemma 2.2.18 item (i), there is a code ~w for a
model of PA− satisfying the second-order correctness condition. Thus to show
thatN |= ϕ if and only if L |= θ, it suffices to show that, for every such ~w,N |= ϕ
if and only ifM~w |= ϕ. Let ~w be such a code. ThenM~w

∼= N by Lemma 2.2.18
item (ii). In this case E(w0) is countable, so if S ⊆ E(w0), then there is an a ∈ L
such that F (a) ∩ E(w0) = S by the coding countable subsets property. That is,
quantifying over all coded subsets of E(w0) quantifies over all subsets of E(w0).
Therefore N |= ϕ if and only ifM~w |= ϕ.

2.2.4 The coding all subsets property and the third-order correctness condi-
tion

In this section we present sufficient conditions for interpreting true third-order
arithmetic in a distributive lattice. Our strategy for recognizingN among coded
models of PA− is the same as in the previous section. Given w ∈ L, we show
how to simulate quantification over subsets of 2E(w) by quantification over the
subsets of E(r) for some other r ∈ L.

Consider a code ~w for a structureM~w in a latticeL. As in the previous section,
every a ∈ L codes the subset F (a) ∩ E(w0) ⊆ E(w0). Fix an r ∈ L. Then every
b ∈ L also codes a set Sr(b) ⊆ 2E(w0), where

Sr(b) = {X ⊆ E(w0) | (∃s ∈ F (b) ∩ E(r))(∀u ∈ E(w0))(u ∈ X↔u ≤ s)}.

Here “r” stands for “reals,” and we think of E(r) as the set 2E(w). F (b) ∩ E(r)
ranges over subsets of E(r) as b ranges over L, and this is how we simulate
third-order quantification overM~w by first-order quantification over L.

We can express F (a) ∩ E(w0) ∈ Sr(b) (that is, “the subset of E(w0) coded
by a is an element of the subset of 2E(w0) coded by b and r”) by the following
first-order formula in the language of lattices:

(∃s ∈ F (b) ∩ E(r))(∀u ∈ E(w0))(a ≤ u↔u ≤ s).

Using this coding, we extend the translations described in Definition 2.2.7 and
Definition 2.2.15 to third-order sentences ϕ in the language of arithmetic.

Definition 2.2.20. Let ϕ be a third-order sentence in the language of arithmetic.
The translation of ϕ is the first-order formula ϕ′(w0, w1, w2,m, `, p, t, z, o, r) (with
the displayed variables free) in the language of lattices obtained from ϕ by mak-
ing the replacements described in Definition 2.2.7 and Definition 2.2.15 and by
also making the following replacements.
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• Replace the third-order variable X by the first-order variable vX ,
• replace X ∈ X by the formula expressing F (vX) ∩ E(w0) ∈ Sr(vX ), and
• replace quantifiers ∃X and ∀X by ∃vX and ∀vX respectively.

If L is a lattice, ~w is a code, and r ∈ L, thenM~w,r |= ϕ means that L |= ϕ′(~w, r).

Again, even though ϕ is allowed to be a third-order sentence in the language
of arithmetic, its translation ϕ′ is still a first-order formula in the language of
lattices. Note the inclusion of the new parameter r in the translation ϕ′.

The next definitions ensure that if ~w is a code such thatM~w
∼= N , then there

is an r ∈ L such that for every S ⊆ 2E(w0) there is a b ∈ L such that Sr(b) = S.
That is, every subset of 2E(w0) has a code, so quantifying over all subsets of 2E(w0)

is the same as quantifying over all coded subsets of 2E(w0).

Definition 2.2.21. A lattice L has the coding all subsets property if and only if for
every w ∈ L and every S ⊆ E(w) there is an a ∈ L such that F (a) ∩ E(w) = S.

Lemma 2.2.22.

(i) If L is a meet-complete distributive lattice with 1, then L has the coding all subsets
property.

(ii) If L is a countably meet-complete distributive lattice with 1, then L has the coding
countable subsets property.

Proof. For (i), Let w ∈ L, and let S ⊆ E(w). If S = ∅, then take a = 1. Then
F (a) ∩ E(w) = ∅ because by definition 1 does not meet to any element of L. If
S 6= ∅, then let a =

∏
S. Clearly S ⊆ F (a)∩E(w). For the converse, suppose for

a contradiction that there is an x ∈ (F (a) ∩E(w)) \ S. This x meets to a because
xmeets to w and x ≥ a ≥ w. Let y > a be such that x× y = a. Then, for all s ∈ S,
we have that s ≥ x× y, that s � x because E(w) is an antichain by Lemma 2.2.3
and x /∈ S, and that s is meet-irreducible. Thus s ≥ y for all s ∈ S which gives
the contradiction a ≥ y.

The same proof works for (ii) when S is countable.

Definition 2.2.23. In a lattice L, a code ~w satisfies the third-order correctness con-
dition if and only if ~w satisfies the second-order correctness condition and there
is an r ∈ L such that

(∀a ∈ L)(∃s ∈ E(r))(∀u ∈ E(w0))(a ≤ u↔u ≤ s).

Observe that the property “~w is a code a model of PA− that satisfies the third-
order correctness condition” can be expressed by a first-order formula in the
language of lattices.

Lemma 2.2.24. Let L be a distributive lattice with the coding all subsets property such
that there exists a code ~w such thatM~w

∼= N and such that ~w satisfies the third-order
correctness condition. Then Th3(N )≤1 Th(L;≤).
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Proof. It suffices to prove Th3(N )≤1 Th(L) because Th(L)≤1 Th(L;≤) as the lat-
tice operations + and × are first-order definable from the partial order ≤. Let ϕ
be a third-order sentence in the language of arithmetic. Let θ be the first-order
sentence

θ = ∃~w∃r(~w is a code for a model of PA−

∧ r witnesses that ~w satisfies the third-order correctness condition
∧M~w,r |= ϕ)

in the language of lattices. By hypothesis there exist ~w and r such that ~w is a code
for a model of PA− and r witnesses that ~w satisfies the third-order correctness
condition. Thus to show that N |= ϕ if and only if L |= θ, it suffices to show
that, for every such ~w and r, N |= ϕ if and only if M~w,r |= ϕ. Fix such a ~w
and r. M~w

∼= N by Lemma 2.2.18 item (ii). Every subset of E(w0) is of the form
F (a)∩E(w0) for some a ∈ L by the coding all subsets property. We need to show
that every subset of 2E(w0) is of the form Sr(b) for some b ∈ L. To this end, let
X ⊆ 2E(w0). For each X ∈ X , let aX ∈ L be such that F (aX) ∩ E(w0) = X by the
coding all subsets property, and let sX ∈ E(r) be such that (∀u ∈ E(w0))(aX ≤
u↔u ≤ sX) by the third-order correctness condition. Again by the coding all
subsets property, let b ∈ L be such that F (b) ∩ E(r) = {sX | X ∈ X}. Then
Sr(b) = X . We have shown that quantifying over all coded subsets of E(w0)
quantifies over all subsets of E(w0) and that quantifying over all coded subsets
of 2E(w0) quantifies over all subsets of 2E(w0). Therefore N |= ϕ if and only if
M~w,r |= ϕ.

2.2.5 Counting quantifiers

An analysis of the quantifier complexity of our coding scheme shows that to
determine the truth of existential sentences inN we only need to determine the
truth of Π0

3 sentences in L.

We switch to coding models of PA´ because the axioms of PA´ are all of the
form ∀~xψ(~x) for quantifier-free ψ. Here code now means a code for a structure
in the language of N´. A code is now a sequence

~w = (w0, w1, w2,m, `, p, t, d, z, o)

(with “d” for “difference”) interpreted as coding the structure

M´
~w = (E(w0);R2

` , R
3
p, R

3
t , R

3
d, z, o).

As in Definition 2.2.7, sentences in the language of N´ translate to formulas
in the language of lattices. The new ´ relation is replaced in the translation
by the formula defining R3

d. A code for a model of PA´ is a code ~w such that
M´

~w |= PA´.

In the language of lattices, “s is meet-irreducible” is a Π0
1 property and “s

meets to w” is a Σ0
1 property, so “s ∈ E(w)” is a ∆0

2 property. Hence R2
c(s0, u1)
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and R3
c(s0, u1, v2) are both ∆0

2 properties of s0, u1, v2, and the coding parameters
w0, w1, w2, m, and c. Therefore, our coding translates atomic formulas in the
language of N´ to ∆0

2 properties of lattices. Every Boolean combination of ∆0
2

properties is again a ∆0
2 property, so our coding also translates quantifier-free

formulas in the language of N´ to ∆0
2 properties of lattices. Thus if ϕ = ∃~xψ(~x)

is a sentence in the language of N´ where ψ is quantifier-free, then the transla-
tion ϕ′(~w) may be taken to be a Σ0

2 formula in the language of lattices. Similarly,
if ϕ = ∀~xψ(~x), then the translation ϕ′(~w) is Π0

2. Thus “M´
~w |= PA´” can be ex-

pressed by a Π0
2 formula in the language of lattices. The axioms of PA´ need to

be unnested before they are translated, but this can be done in such a way that
they all remain of the form ∀~xψ(~x) for quantifier-free ψ.

In a lattice, the relations x+ y = z and x× y = z are definable by Π0
1 formu-

las in the language of partial orders. This translation increases the quantifier-
complexities calculated in the previous paragraph by one alternation. Existen-
tial sentences in the language of N´ translate to Σ0

3 formulas in the language
of partial orders, and universal sentences in the language of N´ translate to Π0

3

formulas in the language of partial orders. The property “M´
~w |= PA´” is a Π0

3

property of ~w in the language of partial orders.

Lemma 2.2.25. Let L be a lattice, and let ~w be a code such that M´
~w
∼= N´. Then

Σ0
3-Th(L) and Σ0

4-Th(L;≤) are undecidable.

Proof. We prove

{∃~xψ(~x) | ψ is quantifier-free∧N |= ∃~xψ(~x)}≤1 Π0
3-Th(Es).

It is well-known that the problem of determining whether N |= ∃~xψ(~x) for
quantifier-free ψ is undecidable.2 Clearly Σ0

3-Th(L)≡1 Π0
3-Th(L).

Let ϕ = ∃~xψ(~x) be a sentence in the language of arithmetic where ψ is
quantifier-free. Let θ be the sentence

θ = ∀~w(M´
~w |= PA´→M´

~w |= ϕ)

in the language of lattices. As calculated above,M´
~w |= PA´ is a Π0

2 property of
~w, andM´

~w |= ϕ is a Σ0
2 property of ~w. Thus θ is a Π0

3 sentence in the language
of lattices. We need to show N |= ϕ if and only if L |= θ. Suppose N |= ϕ. Then
PA´ ` ϕ by Lemma 1.5.4, which implies that L |= θ. Suppose N 6|= ϕ. Then by
assumption there is a code ~w such thatM´

~w
∼= N´. For this ~w,M´

~w |= PA´ but
M´

~w 6|= ϕ, which implies L 6|= θ.

The proof that Σ4
0-Th(L;≤) is undecidable is the same. The above sentence θ

is Π0
4 in the language of partial orders.

2For example, undecidability is implied by Matiyasevich’s solution to Hilbert’s tenth prob-
lem [40]. It is a standard fact in computability theory that determining whether N |= ∃~xψ(~x)
is undecidable if ψ is allowed bounded quantifiers, but allowing bounded quantifiers in ψ in-
creases the quantifier complexity of the translated formula.

27



2.3 The complexities of Th(Ds;≤s) and Th(Dw;≤w)

In this section we prove Th3(N )≤1 Th(Dw;≤w)≤1 Th(Ds;≤s), thereby complet-
ing the proof that all three theories are pairwise recursively isomorphic.

2.3.1 Defining Dw in Ds

The Muchnik degrees are definable in the Medvedev degrees [22], thereby giv-
ing Th(Dw;≤w)≤1 Th(Ds;≤s).

Definition 2.3.1. For a mass problem A, let C(A) denote the Turing upward-
closure of A: C(A) = {f | (∃g ∈ A)(g≤T f)}.
Definition 2.3.2. A Medvedev degree s is called a degree of solvability if s =
degs({f}) for some f ∈ ωω.

Definition 2.3.3. A Medvedev degree m is called a Muchnik degree if m =
degs(C(A)) for some mass problem A.

Notice thatC(A)≤s B if and only if B ⊆ C(A). Medvedev degrees of the form
degs(C(A)) are called Muchnik degrees because A≤w B if and only if C(B) ⊆
C(A) if and only if C(A)≤s C(B). The mapping degw(A) 7→ degs(C(A)) embeds
Dw into Ds as an upper-semilattice but not as a lattice [71].

Lemma 2.3.4 (Medvedev [41], Dyment [22]). The degrees of solvability and the
Muchnik degrees are definable in Ds.

The formula defining the degrees of solvability is

θ(x) = ∃y(x < y ∧∀z(x < z→ y ≤ z)).

For a degree of solvability x = degs({f}), the witnessing y is the degree
degs({eag | Φe(g) = f ∧ g�T f}). Complete proofs that θ defines the degrees
of solvability are found in [22] and [74]. We reproduce the definability of the
Muchnik degrees here. The result essentially appears in [22], but is not phrased
in terms of definability.

Proof that the Muchnik degrees are definable in Ds.
The defining formula is χ(x) = ∀y(∀z((θ(z)∧ y ≤ z)→x ≤ z)→x ≤ y), where
θ is the formula defining the degrees of solvability as above. Let degs(C(A))
be a Muchnik degree. If B satisfies (∀f ∈ ωω)(B≤s{f}→C(A)≤s{f}), then
in particular we must have C(A)≤s{f} for all f ∈ B. Hence B ⊆ C(A)
and so χ(degs(C(A))) holds. Conversely, suppose χ(degs(A)). As (∀f ∈
ωω)(C(A)≤s{f}→A≤s{f}), we have A≤s C(A). Thus A≡s C(A), so degs(A)
is a Muchnik degree.

Corollary 2.3.5. Th(Dw;≤w)≤1 Th(Ds;≤s).
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Proof. Interpret Th(Dw) inside Th(Ds) by restricting quantification inDs to quan-
tify only over degrees of the form degs(C(A)). That is, given a sentence ψ in
the language of partial orders, generate a sentence ψ′ by inductively replacing
subformulas ∃xϕ and ∀xϕ by formulas ∃x(χ(x)∧ϕ) and ∀x(χ(x)→ϕ). Then
Dw |= ψ if and only if Ds |= ψ′.

In Dw, a degree s is also called a degree of solvability if s = degw({f}) for
some f ∈ ωω. The formula θ(x) as above defines the degrees of solvability in
Dw, and the proof is similar to that for Ds.

2.3.2 Coding third-order arithmetic in Dw

We find a code ~w in Dw such thatM~w
∼= N . First, it is well-known and an easy

observation that Dw is a complete lattice. Hence Dw has the coding all subsets
property by Lemma 2.2.22.

Lemma 2.3.6. Dw is a complete lattice.

Proof. Let X ⊆ Dw be non-empty, and let 〈 Xi | i ∈ I 〉 be a selection of
one representative for each degree in X. Then the least upper bound of X is
degw

(⋂
i∈I C(Xi)

)
and the greatest lower bound of X is degw

(⋃
i∈I C(Xi)

)
(which

equals degw

(⋃
i∈I Xi

)
).

The crucial point is now the existence of the degree r witnessing that our ~w
satisfies the third-order correctness condition.

Lemma 2.3.7. LetW be a ≤T-antichain, and let w = degw(W).

(i) If x ∈ Dw meets to w, then x≤w degw({f}) for some f ∈ W .
(ii) E(w) = {degw({f}) | f ∈ W}.

Proof. (i) Let x ∈ Dw be such that x meets to w. Suppose for a contradiction
that (∀f ∈ W)(x�w degw({f})). Let y ∈ Dw witness that x meets to w. That is,
y>w w and x×y = w. Then, for all f ∈ W , degw({f}) is meet-irreducible (as it
is the degree of a singleton), x�w degw({f}), and x×y≤w degw({f}). Therefore
(∀f ∈ W)(y≤w degw({f})) which gives the contradiction y≤w w.

(ii) Given f ∈ W , it is an easy check (using the fact thatW is a ≤T-antichain)
that degw(W\{f}) witnesses that degw({f}) meets to w. Hence {degw({f}) | f ∈
W} ⊆ E(w). To see equality, let x ∈ E(w). By item (i), x≤w degw({f}) for some
f ∈ W . We have just shown that degw({f}) ∈ E(w), and E(w) is an antichain
by Lemma 2.2.3. So it must be that x = degw({f}).

The following lemma is proved using standard recursion theoretic tech-
niques.

Lemma 2.3.8. If A = {fi | i ∈ ω} is a countable independent set, then there exists a
Turing antichain R = {gX | X ∈ 2ω} such that {fi | i ∈ X} = {f ∈ A | f ≤T gX}
for each X ∈ 2ω.
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Proof. We construct partial functions gσ : ω→ω for σ ∈ 2<ω and put gX =
∪n∈ωgX�n. The gσ will have the following properties.

(i) If σ ⊂ τ then dom gσ ⊆ dom gτ and the two functions agree on their common
domain.

(ii) If s < |σ| and σ(s) = 0 then gσ(〈 s, j 〉) is defined for all j and equals 0 for all
but finitely many j.

(iii) If s < |σ| and σ(s) = 1 then gσ(〈 s, j 〉) is defined for all j and equals fs(j)
for all but finitely many j.

(iv) gσ(〈 s, j 〉) is defined for only finitely many 〈 s, j 〉with s ≥ |σ|.

Items (i)–(iii) ensure that each gX is a total function, and item (iii) ensures
fs≤T gX for all s ∈ X . In addition we satisfy the following requirements for
all e, i ∈ ω and all X, Y ⊆ ω.

• RX
e,i: i /∈ X→Φe(gX) 6= fi

• QX,Y
e : X 6= Y →Φe(gX) 6= gY

Let g∅ = ∅. At stage s we have gσ for all σ of length s.

At stage s = 2 〈 e, i 〉we handle requirementRX
e,i. For each σ of length s do the

following. If σ(i) = 0, if there is a finite partial function hσ with domain disjoint
from gσ, and if there is a number n such that Φe(gσ ∪ hσ)(n)↓ 6= fi(n), then
redefine gσ to be gσ∪hσ. Then for each σ of length s put gσa0 = gσ∪{〈 〈 s, j 〉, 0 〉 |
〈 s, j 〉 /∈ dom gσ} and put gσa1 = gσ ∪ {〈 〈 s, j 〉, fs(j) 〉 | 〈 s, j 〉 /∈ dom gσ}.

At stage s = 2e + 1 we handle requirement QX,Y
e . List the pairs (σ, τ) with

|σ| = |τ | = s and σ 6= τ . For each such (σ, τ) do the following. Let n be least
such that n /∈ dom gτ . If there is a finite partial function hσ with domain disjoint
from gσ and if there is a number m such that Φe(gσ ∪ hσ)(n)↓ = m, then redefine
gσ to be gσ∪hσ and redefine gτ to be gτ ∪{〈n,m+1 〉}. After these extensions are
made for each pair (σ, τ), then for each σ of length s put gσa0 = gσ∪{〈 〈 s, j 〉, 0 〉 |
〈 s, j 〉 /∈ dom gσ} and put gσa1 = gσ ∪ {〈 〈 s, j 〉, fs(j) 〉 | 〈 s, j 〉 /∈ dom gσ}.

We verify i /∈ X→ fi�T gX . Suppose that i /∈ X and Φe(gX) = fi. Consider
stage s = 2 〈 e, i 〉 of the construction. Let σ = X � s and let f =

⊕
{ft | t <

s∧σ(t) = 1}. The function f computes the graph of the partial function gσ.
Thus we can use f to simulate the computation Φe(gσ∪h)(n) for any finite partial
function h with domain disjoint from gσ. We now have the contradiction fi≤T f
as follows. Given input n, use f to search for a finite partial function h with
domain disjoint from gσ such that Φe(gσ ∪ h)(n)↓ = m for some m. There must
be such an h because gX extends gσ and Φe(gX)(n)↓. Moreover, we must have
m = fi(n). Otherwise at stage s we would have been able to find an hσ such that
Φe(gσ ∪ hσ)(n)↓ 6= fi(n), and this would imply Φe(gX) 6= fi.

We verify X 6= Y → gY �T gX . Suppose for a contradiction that Φ(gX) = gY .
Choose an index e for Φ greater than the least e such that X(e) 6= Y (e), put
s = 2e + 1, and let σ = X � s, τ = Y � s. Consider the gσ and gτ we have right
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before we process the pair (σ, τ) in stage s. Let n be least such that n /∈ dom gτ .
Since gX extends gσ and Φe(gX) is total, we must have found a finite hσ and
number m such that Φe(gσ ∪ hσ)(n)↓ = m. But then we extended gτ so that
gτ (n) = m+ 1. Thus Φe(gX)(n) = m 6= gY (n), a contradiction.

Lemma 2.3.9. There is a code ~w in Dw such thatM´
~w
∼= N´ and such that ~w satisfies

the third-order correctness condition.

Proof. Let W0 = {f0,n}n∈ω, W1 = {f1,n}n∈ω, and W2 = {f2,n}n∈ω be such that
W0 ∪W1 ∪W2 is independent. Then let

w0 = degw(W0),

w1 = degw(W1),

w2 = degw(W2),

m = degw(M) for M = {f0,n ⊕ f1,n}n∈ω ∪ {f0,n ⊕ f2,n}n∈ω,
` = degw(L) for L = {f0,i ⊕ f1,j | i < j},
p = degw(P) for P = {f0,i ⊕ f1,j ⊕ f2,k | i+ j = k},
t = degw(T ) for T = {f0,i ⊕ f1,j ⊕ f2,k | i× j = k},
d = degw(D) for D = {f0,i ⊕ f1,j ⊕ f2,k | i ´ j = k},
z = degw({f0,0}), and
o = degw({f0,1}).

These degrees give the code ~w. By Lemma 2.3.8, let R = {gX | X ∈ 2ω} be a
Turing antichain such that {f0,i ∈ W0 | i ∈ X} = {f0,i ∈ W0 | f0,i≤T gX} for each
X ∈ 2ω. Let r = degw(R).

By Lemma 2.3.7 item (ii), E(w0) = {degw({f0,n})}n∈ω. The map
degw({f0,n}) 7→ n is the isomorphism witnessingM´

~w
∼= N´. Clearly z 7→ 0 and

o 7→ 1. We show that the map preserves <. The proofs that the map preserves
+, ×, and ´ are similar. Let i, j ∈ ω. If i < j, then degw({f1,j}) meets to w1 by
Lemma 2.3.7 item (ii), and it is easy to see that degw({f0,j}) + degw({f1,j})≥w m
and that degw({f0,i}) + degw({f1,j})≥w `. Thus R2

`(degw({f0,i}), degw({f0,j})).
Conversely, suppose that R2

`(degw({f0,i}), degw({f0,j})). Let u1 ∈ Dw be such
that u1 meets to w1, degw({f0,j}) +u1≥w m, and degw({f0,i}) +u1≥w `. Since u1

meets to w1, it must be that u1≤w degw({f1,k}) for some k ∈ ω by Lemma 2.3.7
item (i). Thus degw({f0,j}) + degw({f1,k})≥w m. However, if k 6= j, then f0,j⊕f1,k

does not compute any member ofM by independence. Thus u1≤w degw({f1,j}),
which implies that degw({f0,i}) + degw({f1,j})≥w `. Again by independence, if
i ≮ j, then f0,i ⊕ f1,j does not compute any member of L. Hence i < j.

We now check the third-order correctness condition. To do this, we first
need to check the second-order correctness condition. Let a ∈ Ds be such
that F (a) ∩ E(w0) is non-empty. Let n ∈ ω be least such that degw({f0,n}) ∈
F (a) ∩ E(w0). Then this degw({f0,n}) is the R2

`-least element of F (a) ∩ E(w0).
Thus the second-order correctness condition holds. Now, given an a ∈ Dw,
let X = {i | degw({f0,i}) ∈ F (a) ∩ E(w0)}, and let s = degw({gX}). Then
s ∈ E(r) by Lemma 2.3.7 item (ii) because R is a ≤T-antichain. Also, for
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all degw({f0,i}) ∈ E(w0), a≤w degw({f0,i}) if and only if i ∈ X if and only if
degw({f0,i})≤w s. Thus the third-order correctness condition holds.

The following theorem was proved independently by Lewis, Nies, and
Sorbi [38].

Theorem 2.3.10. Th(Dw;≤w)≡1 Th(Ds;≤s)≡1 Th3(N ).

Proof. Th(Ds;≤s)≤1 Th3(N ) by Lemma 2.1.1. Th(Dw;≤w)≤1 Th(Ds;≤s) by
Corollary 2.3.5. For Th3(N )≤1 Th(Dw;≤w), by Lemma 2.3.9 let ~w be a code
in Dw such thatM´

~w
∼= N´ and such that ~w satisfies the third-order correctness

condition. Removing the degree d from the code ~w gives a code ~v such that
M~v
∼= N and such that ~v satisfies the third-order correctness condition. Dw has

the coding all subsets property by Lemma 2.2.22 because Dw has a greatest el-
ement and is meet-complete by Lemma 2.3.6. Hence Th3(N )≤1 Th(Dw;≤w) by
Lemma 2.2.24.

Theorem 2.3.11. Σ0
3-Th(Dw) and Σ0

4-Th(Dw;≤w) are both undecidable.

Proof. By Lemma 2.3.9, there is a code ~w in Dw such thatM´
~w
∼= N´. The results

then follow from Lemma 2.2.25.

The undecidability of Σ0
3-Th(Ds) and the undecidability of Σ0

4-Th(Ds;≤s) are
proved in Theorem 2.6.6.

2.4 The complexities of Th(Dw,cl;≤w) and Th(D01
w,cl;≤w)

In this section, we prove Th2(N )≤1 Th(Dw,cl;≤w),Th(D01
w,cl;≤w), and in the next

section we prove Th2(N )≤1 Th(Ds,cl;≤s),Th(D01
s,cl;≤s). Recall from Lemma 2.3.4

that the degrees of solvability are definable in Ds and Dw. The definability of
the degrees of solvability in any of L = Ds,cl,D01

s,cl,Dw,cl,D01
w,cl would give an

immediate proof of Th2(N )≤1 Th(L;≤) for that L. This is because the Turing
degrees are isomorphic to the degrees of solvability and because the first-order
theory of the Turing degrees is recursively isomorphic to Th2(N ) [62]. Singleton
mass problems {f} are compact, so the degrees of solvability are in all these
lattices. However, we do not know if the degrees of solvability are definable in
any of these lattices.

Question 2.4.1. Are the degrees of solvability definable in Ds,cl, D01
s,cl, Dw,cl, or

D01
w,cl?

We show that Dw,cl and D01
w,cl are countably meet-complete. Hence both lat-

tices have the coding countable subsets property by Lemma 2.2.22.

Lemma 2.4.2. Both Dw,cl and D01
w,cl are countably meet-complete.
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Proof. Let X = {xi | i ∈ ω} be a countable set of degrees in Dw,cl. Let Xi ⊆ ωω be
a closed representative of xi for each i. The degree x = degw

(⋃
i∈ω i

aXi
)

is the
greatest lower bound of X in Dw and

⋃
i∈ω i

aXi is closed. Hence x ∈ Dw,cl, so x
is the greatest lower bound of X in Dw,cl.

The above proof does not work for D01
w,cl because

⋃
i∈ω i

aXi is not compact.
We provide a modified proof for D01

w,cl. Let X = {xi | i ∈ ω} be a countable set of
degrees in D01

w,cl. Let Xi ⊆ 2ω be a closed representative of xi for each i. Choose
any g in any non-empty Xi (if all the Xi are empty, then 1 is the greatest lower
bound). Let σi = (g � i)a(1− g(i)) for each i ∈ ω. The set X = {g}∪

(⋃
i∈ω σi

aXi
)

is closed in 2ω, so let x = degw(X ). Then x ∈ D01
w,cl, and it is easy to see that

x = degw

(⋃
i∈ω i

aXi
)
. Hence x is the greatest lower bound of X in D01

w,cl (and in
Dw).

Question 2.4.3. Are Dw,cl and D01
w,cl countably join-complete?

Lemma 2.4.4. LetW ⊆ ωω be a closed ≤T-antichain, and let w = degw(W).

(i) If x ∈ Dw,cl meets to w, then x≤w degw({f}) for some f ∈ W .
(ii) E(w) = {degw({f}) | f ∈ W}.

The same is true with 2ω in place of ωω and D01
w,cl in place of Dw,cl.

Proof. (i) The proof of Lemma 2.3.7 item (i) works in both the Dw,cl case and the
D01

w,cl case.

(ii) First consider theDw,cl case. Let f ∈ W . Let T be a tree such thatW = [T ].
Let 〈 τi | i ∈ ω 〉 list the sequences in T that are not initial segments of f (so that
(∀g ∈ W)(g 6= f↔∃i(τi ⊂ g))). Let Ti denote the full subtree of T rooted at τi:
Ti = {σ ∈ ω<ω | τiaσ ∈ T}. Let R be the tree

⋃
i∈ω i

aTi where iaTi = {iaσ | σ ∈
Ti} for each i. Let Y = [R], and let y = degw(Y). If, for a mass problem A, we let
degT(A) = {degT(f) | f ∈ A} denote the set of Turing degrees of the members of
A, we see that degT(Y) = degT(W)\{degT(f)}. From this and the fact thatW is a
≤T-antichain, it follows that y>w w and degw({f})×y = w. Hence degw({f}) is
meet-irreducible (because it is the degree of a singleton) and meets to w. Thus
{degw({f}) | f ∈ W} ⊆ E(w). To see equality, let x ∈ E(w). By item (i),
x≤w degw({f}) for some f ∈ W . We have just shown that degw({f}) ∈ E(w),
and E(w) is an antichain by Lemma 2.2.3. So it must be that x = degw({f}).

For the D01
w,cl case, as before let f ∈ W , and let T be a tree such thatW = [T ].

Let 〈 τi | i ∈ ω 〉 list the sequences in T that are not initial segments of f . Let Ti
denote the full subtree of T rooted at τi. Choose any g ∈ W \ {f} (ifW = {f},
then the lemma is trivial). Let σi = (g � i)a(1− g(i)) for each i ∈ ω. Let R be the
tree

⋃
i∈ω σi

aTi. Let Y = [R]. Then degT(Y) = degT(W) \ {degT(f)}. The proof
now proceeds exactly as in the Dw,cl case.

Definition 2.4.5 (Dyment [22]). W ⊆ ωω is called effectively discrete if (∀f ∈
W)(∀g ∈ W)(f 6= g→ f(0) 6= g(0)).
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An effectively discrete mass problem is closed and at most countable.

Lemma 2.4.6. There is a code ~w in Dw,cl such thatM´
~w
∼= N´.

Proof. LetW0 = {naf0,n}n∈ω,W1 = {naf1,n}n∈ω, andW2 = {naf2,n}n∈ω be such
thatW0 ∪W1 ∪W2 is independent. Then let

w0 = degw(W0),

w1 = degw(W1),

w2 = degw(W2),

m = degw(M) for M = {(2n)a(f0,n ⊕ f1,n)}n∈ω
∪ {(2n+ 1)a(f0,n ⊕ f2,n)}n∈ω,

` = degw(L) for L = {〈 i, j 〉a(f0,i ⊕ f1,j) | i < j},
p = degw(P) for P = {〈 〈 i, j 〉, k 〉a(f0,i ⊕ f1,j ⊕ f2,k) | i+ j = k},
t = degw(T ) for T = {〈 〈 i, j 〉, k 〉a(f0,i ⊕ f1,j ⊕ f2,k) | i× j = k},
d = degw(D) for D = {〈 〈 i, j 〉, k 〉a(f0,i ⊕ f1,j ⊕ f2,k) | i ´ j = k},
z = degw({0af0,0}), and
o = degw({1af0,1}).

The above mass problems are all effectively discrete, so their degrees are all in
Dw,cl. These degrees give the code ~w. The proof thatM´

~w
∼= N´ is the same as

in the proof of Lemma 2.3.9. Use Lemma 2.4.4 in place of Lemma 2.3.7.

An infinite effectively discrete Turing antichain is not compact, so we can no
longer rely on them to provide codes. Instead we use the following definitions.

Definition 2.4.7. Let g ∈ 2ω. A set X ⊆ 2ω is called a g-spine (or just a spine) if it
is of the form {g}∪ {σiafi | i ∈ A}where A ⊆ ω is infinite, σi = (g � i)a(1− g(i))
for each i ∈ A, and fi ∈ 2ω for each i ∈ A.

Definition 2.4.8. Let g ∈ 2ω and let X ⊆ 2ω be countable. Fix an enumeration
〈 fi | i ∈ ω 〉 of X . We denote by spine(g,X ) the g-spine {g} ∪ {σiafi | i ∈ ω}
where σi = (g � i)a(1− g(i)) for each i ∈ ω. We denote by spine(X ) the f0-spine
spine(f0,X \ {f0}).

Notice that a spine is a closed subset of 2ω.

Lemma 2.4.9. There is a code ~w in D01
w,cl such thatM´

~w
∼= N´.

Proof. Let W ′0 = {f0,n}n∈ω, W ′1 = {f1,n}n∈ω, and W ′2 = {f2,n}n∈ω be such that
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W ′0 ∪W ′1 ∪W ′2 ⊆ 2ω is independent. Then let

w0 = degw(W0) for W0 = spine(W ′0),

w1 = degw(W1) for W1 = spine(W ′1),

w2 = degw(W2) for W2 = spine(W ′2),

m = degw(M) for M = spine({f0,n ⊕ f1,n}n∈ω ∪ {f0,n ⊕ f2,n}n∈ω),

` = degw(L) for L = spine({f0,i ⊕ f1,j | i < j}),
p = degw(P) for P = spine({f0,i ⊕ f1,j ⊕ f2,k | i+ j = k}),
t = degw(T ) for T = spine({f0,i ⊕ f1,j ⊕ f2,k | i× j = k}),
d = degw(D) for D = spine({f0,i ⊕ f1,j ⊕ f2,k | i ´ j = k}),
z = degw({f0,0}), and
o = degw({f0,1}).

These degrees give the code ~w. The proof thatM´
~w
∼= N´ is the same as in the

proof of Lemma 2.3.9. Use Lemma 2.4.4 in place of Lemma 2.3.7.

Theorem 2.4.10. Th(Dw,cl;≤w)≡1 Th(D01
w,cl;≤w)≡1 Th2(N ).

Proof. Th(Dw,cl;≤w)≤1 Th2(N ) and Th(D01
w,cl;≤w)≤1 Th2(N ) by Lemma 2.1.2.

For Th2(N )≤1 Th(Dw,cl;≤w), by Lemma 2.4.6 let ~w be a code in Dw,cl such
that M´

~w
∼= N´. Removing the degree d from the code ~w gives a code

~v such that M~v
∼= N . Dw,cl has the coding countable subsets property by

Lemma 2.2.22 because Dw,cl has a greatest element and is countably meet-
complete by Lemma 2.4.2. Hence Th2(N )≤1 Th(Dw;≤w) by Lemma 2.2.19. The
proof that Th2(N )≤1 Th(D01

w,cl;≤w) is the same. Use Lemma 2.4.9 in place of
Lemma 2.4.6.

Theorem 2.4.11. The fragments Σ0
3-Th(Dw,cl), Σ0

4-Th(Dw,cl;≤w), Σ0
3-Th(D01

w,cl), and
Σ0

4-Th(D01
w,cl;≤w) are all undecidable.

Proof. By Lemma 2.4.6, there is a code ~w in Dw,cl such that M´
~w
∼= N´. By

Lemma 2.4.9, there is a code ~w in D01
w,cl such thatM´

~w
∼= N´. The results then

follow from Lemma 2.2.25.

2.5 Ds,cl and D01
s,cl have the coding countable subsets property

Ds,cl andD01
s,cl are not countably meet-complete by Lemma 2.7.1, so Lemma 2.2.22

does not apply to them. We need to prove that both Ds,cl and D01
s,cl have the

coding countable subsets property. The next lemma is a clarifying example. It
implies that a closed (compact) W has meet-reducible degree in Ds,cl (D01

s,cl) if
and only if it has meet-reducible degree in Ds.

Lemma 2.5.1 (Dyment [22]). IfW≡sX ×Y , thenW = X̂ ∪ Ŷ where X̂ and Ŷ are
disjoint and clopen inW , X̂ ≥sX , Ŷ ≥s Y , andW≡s X̂ × Ŷ .
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Proof. Let Φ be such that Φ(W) ⊆ 0aX ∪ 1aY . Put X̂ = {f ∈ W | Φ(f)(0) = 0}
and put Ŷ = {f ∈ W | Φ(f)(0) = 1}. By Lemma 1.4.2, X̂ and Ŷ are clopen inW ,
and it is easily checked that X̂ ≥sX and Ŷ ≥s Y (hence W≤s X̂ × Ŷ). We have
W≥s 0aX̂ ∪1aŶ by the reduction which sends f to 0af if Φ(f)(0) = 0 and sends
f to 1af if Φ(f)(0) = 1.

For comparison with the Muchnik case, if a closed (compact) W has meet-
reducible degree in Dw,cl (D01

w,cl), then it has meet-reducible degree in Dw. How-
ever, we do not know the converse.

Question 2.5.2. IfW is closed (compact) andW≡w X ×Y for X ,Y >wW , then
are there closed (compact) such X and Y?

If the X in Lemma 2.5.1 has meet-irreducible degree, then we have the fol-
lowing refinement.

Lemma 2.5.3. IfW≡sX ×Y where X has meet-irreducible degree and Y >sW , then
W = X̂ ∪ Ŷ where X̂ and Ŷ are disjoint and clopen inW , X̂ ≡sX , and X̂ �s Ŷ .

Proof. As in Lemma 2.5.1, let Φ be such that Φ(W) ⊆ 0aX ∪ 1aY , put X̂ = {f ∈
W | Φ(f)(0) = 0}, and put Ŷ = {f ∈ W | Φ(f)(0) = 1}. Then W = X̂ ∪ Ŷ ,
X̂ ∩ Ŷ = ∅, X̂ and Ŷ are clopen in W , X̂ ≥sX , Ŷ ≥s Y , and W≡s X̂ × Ŷ . To
see that X ≥s X̂ , observe that X ≥sW≡s X̂ × Ŷ . X has meet-irreducible degree,
so X ≥s X̂ or X ≥s Ŷ . We cannot have X ≥s Ŷ because Ŷ ≥s Y and this would
imply W≡sX ×Y ≡s Y >sW . Thus X ≥s X̂ . Similarly X̂ �s Ŷ for otherwise
W≡s Ŷ ≥s Y >sW .

Corollary 2.5.4. For all w ∈ Ds, E(w) is at most countable.

Proof. Fix a representativeW for w. Lemma 2.5.3 shows that if x ∈ E(w), then
x has a representative of the form {f ∈ W | Φ(f)(0) = 0} for some program
Φ. There are only countably many programs, so there can be at most countably
many x ∈ E(w).

Notice that Corollary 2.5.4 is in contrast to the Muchnik case, in which a
degree may have uncountably many meet-irreducibles that meet to it. For ex-
ample, ifW is a≤T-antichain, then, inDw, |E(degw(W))| = |W| by Lemma 2.3.7.
There exist uncountable≤T-antichains, and there even exist uncountable closed
≤T-antichains (see [69] Section VI.1). Also notice that if w is closed (compact)
and x is meet-irreducible and meets to w, then Lemma 2.5.3 produces a closed
(compact) representative for x. Thus for a closed (compact) degree w, the meet-
irreducible degrees that meet to w are the same whether they are computed in
Ds or in Ds,cl (D01

s,cl).

Lemma 2.5.5. Let W be a mass problem such that E(degs(W)) is countable, and let
〈 Xi | i ∈ ω 〉 be a list of representatives for the degrees in E(degs(W)). Then there are
mass problems 〈 X̂i | i ∈ ω 〉 such that:
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(i) X̂i ⊆ W is clopen inW for each i,

(ii) X̂i ∩ X̂j = ∅ for i 6= j,

(iii) X̂i≡sXi for each i,

(iv) X̂i�sW \ X̂i for each i.

Proof. Inductively construct the sequence 〈 X̂i | i ∈ ω 〉. At the start of step
n + 1 we have 〈 X̂i | i ≤ n 〉 satisfying (i)–(iv) for i, j ≤ n, and we have indices
e0, . . . , en such that, for i ≤ n, X̂i =

{
f ∈ W \

⋃
j<i X̂j | Φei(f)(0) = 0

}
and

W \
⋃
j≤i X̂j =

{
f ∈ W \

⋃
j<i X̂j | Φei(f)(0) = 1

}
.

We first showW≡s X̂0× · · ·× X̂n×
(
W \

⋃
i≤n X̂i

)
. The meet is ≥sW because

each term is a subset of W . To see the reverse inequality, write the meet as⋃
i≤n i

aX̂i ∪
(
n + 1

)a(W \ ⋃i≤n X̂i
)
. Then apply the following reduction. For

each i ≤ n in order, check if Φei(f)(0) is 0 or 1. If it is 0, send f to iaf . If it is 1,
go to the next i. If Φei(f)(0) = 1 for each i ≤ n, then send f to (n+ 1)af .

We now have Xn+1≥sW≡s X̂0× · · ·× X̂n×
(
W \

⋃
i≤n X̂i

)
. We cannot have

Xn+1≥s X̂i for any i ≤ n because X̂i≡sXi and the Xi’s are incomparable be-
cause E(degs(W)) is an antichain by Lemma 2.2.3. However, Xn+1 has meet-
irreducible degree. Therefore Xn+1≥sW \

⋃
i≤n X̂i. Moreover, by distributivity

degs

(
Xn+1

)
meets to degs

(
W\

⋃
i≤n X̂i

)
because degs

(
Xn+1

)
meets to degs

(
W
)

and
degs

(
Xn+1

)
≥s degs

(
W \

⋃
i≤n X̂i

)
≥s degs

(
W
)
. Thus, as in Lemma 2.5.3, there is

an X̂n+1 ⊆ W \
⋃
i≤n X̂i clopen in W \

⋃
i≤n X̂i and an en+1 such that

X̂n+1 =
{
f ∈ W \

⋃
i≤n

X̂i | Φen+1(f)(0) = 0
}
,

W \
⋃

i≤n+1

X̂i =
{
f ∈ W \

⋃
i≤n

X̂i | Φen+1(f)(0) = 1
}
,

X̂n+1≡sXn+1, and

X̂n+1�sW \
⋃

i≤n+1

X̂i.

Clearly X̂n+1 is disjoint from X̂i for i ≤ n. X̂n+1 is clopen in W because it is
clopen inW \

⋃
i≤n X̂i which is clopen inW . Finally, X̂n+1�sW \ X̂n+1 because

X̂n+1 has meet-irreducible degree, X̂n+1�s X̂i for i ≤ n, X̂n+1�sW \
⋃
i≤n+1 X̂i,

andW \ X̂n+1≡s X̂0× · · ·× X̂n×
(
W \

⋃
i≤n+1 X̂i

)
.

Lemma 2.5.6. Let W be a mass problem. Then for any S ⊆ E(degs(W)) there is an
A ⊆ W closed inW such that F (degs(A)) ∩ E(degs(W)) = S. In particular, ifW is
closed, then so is A. Thus Ds,cl and D01

s,cl have the coding countable subsets property.
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Proof. We only consider the case in which E(w) is infinite. By Corollary 2.5.4,
E(w) is countable. Let 〈 Xi | i ∈ ω 〉 be a list of representatives for the degrees
in E(w). Apply Lemma 2.5.5 to W and 〈 Xi | i ∈ ω 〉 to get a new set of repre-
sentatives 〈 X̂i | i ∈ ω 〉 disjoint and clopen in W with X̂i�sW \ X̂i for each i.
Put A = W \

⋃
{X̂i | degs(X̂i) /∈ S}, and note that A is closed in W . We show

X̂i≥sA if and only if degs(X̂i) ∈ S. If degs(X̂i) ∈ S then X̂i ⊆ A and so X̂i≥sA.
If degs(X̂i) /∈ S then A ⊆ W \ X̂i and so A≥sW \ X̂i. Thus X̂i�sA because
X̂i�sW \ X̂i.

2.6 The complexities of Th(Ds,cl;≤s) and Th(D01
s,cl;≤s)

We can now prove that Th2(N )≤1 Th(Ds,cl;≤s) and Th2(N )≤1 Th(D01
s,cl;≤s).

Lemma 2.6.1. Let W ⊆ ωω be an effectively discrete ≤T-antichain, and let w =
degs(W).

(i) If x ∈ Ds,cl meets to w, then x≤s degs({f}) for some f ∈ W .
(ii) E(w) = {degs({f}) | f ∈ W}.

Proof. (i) Let x ∈ Ds,cl be such that x meets to w. Suppose for a contradiction that
(∀f ∈ W)(x�s degs({f})). Let y ∈ Ds,cl witness that x meets to w. That is, y≥s w
and x×y = w. Let X be a representative for x, and let Y be a representative for
y. Then X ×Y ≡sW , so let Φ be a Turing functional such that Φ(W) ⊆ 0aX ∪
1aY . If Φ(f) ∈ 0aX for some f ∈ W , then x≤s degs({f}) for this f , contrary to
assumption. Thus it must be that Φ(f) ∈ 1aY for all f ∈ W . That is, Φ witnesses
that w≥s y, a contradiction.

(ii) Given f ∈ W , it is an easy check (using the fact that W is an effectively
discrete ≤T-antichain) that degs(W \ {f}) witnesses that degs({f}) meets to w.
Hence {degs({f}) | f ∈ W} ⊆ E(w). To see equality, let x ∈ E(w). By item (i),
x≤s degs({f}) for some f ∈ W . We have just shown that degs({f}) ∈ E(w), and
E(w) is an antichain by Lemma 2.2.3. So it must be that x = degs({f}).

Lemma 2.6.2. There is a code ~w in Ds,cl such thatM´
~w
∼= N´.

Proof. IfW0,W1,W2,M,L,P , T ,D, {0af0,0}, and {1af0,1} are the mass problems
defined in the proof of Lemma 2.4.6, then their Medvedev degrees give a code
~w in Ds,cl such thatM´

~w
∼= N´. The proof thatM´

~w
∼= N´ is the same as in the

proof of Lemma 2.3.9. Use Lemma 2.6.1 in place of Lemma 2.3.7.

To code N in D01
s,cl, we need to reprove Lemma 2.6.1 for spines.

Lemma 2.6.3. Let W = {g} ∪ {σiafi | i ∈ X} ⊆ 2ω be a g-spine that is a ≤T-
antichain, and let w = degs(W).

(i) If x ∈ D01
s,cl meets to w, then x≤s degs({fi}) for some i ∈ X .
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(ii) E(w) = {degs({fi}) | i ∈ X}.

Proof. (i) Let x ∈ D01
s,cl be such that x meets to w. Suppose for a contradiction that

(∀f ∈ W)(x�s degs({f})). Let y ∈ D01
s,cl witness that x meets to w. That is, y>s w

and x×y = w. Let X be a representative for x, and let Y be a representative for
y. Then X ×Y ≡sW , so let Φ be a Turing functional such that Φ(W) ⊆ 0aX ∪
1aY . If Φ(σi

afi) ∈ 0aX for some i ∈ X , then x≤s degs({fi}) for this i, contrary
to assumption. Thus it must be that Φ(σi

afi) ∈ 1aY for all i ∈ X . It must also
be that Φ(g) ∈ 1aY . If not, then Φ(g)(0) = 0 and there is some τ ⊂ g such that
Φ(τ)(0) = 0. Choose i ∈ X with i > |τ |. Then τ ⊂ σi, giving the contradiction
Φ(σi

afi)(0) = 0. Therefore Φ(W) ⊆ 1aY . Thus w≥s y, a contradiction.
(ii) Given i ∈ X , it is an easy check (using the fact that W is a g-spine that

is a ≤T-antichain) that degs(W \ {σiafi}) witnesses that degs({fi}) meets to w.
Hence {degs({fi}) | i ∈ X} ⊆ E(w). To see equality, let x ∈ E(w). By item (i),
x≤s degs({fi}) for some i ∈ X . We have just shown that degs({fi}) ∈ E(w), and
E(w) is an antichain by Lemma 2.2.3. So it must be that x = degs({fi}).

Notice the difference between Lemma 2.4.4 and Lemma 2.6.3. If W is a g-
spine that is a ≤T-antichain, then in D01

w,cl we have degw({g}) ∈ E(degw(W)), but
in D01

s,cl we have degs({g}) /∈ E(degs(W)).

Lemma 2.6.4. There is a code ~w in D01
s,cl such thatM´

~w
∼= N´.

Proof. Let g, W ′0 = {f0,n}n∈ω, W ′1 = {f1,n}n∈ω, and W ′2 = {f2,n}n∈ω be such that
{g} ∪W ′0 ∪W ′1 ∪W ′2 ⊆ 2ω is independent. Then let

w0 = degs(W0) for W0 = spine(g,W ′0),

w1 = degs(W1) for W1 = spine(g,W ′1),

w2 = degs(W2) for W2 = spine(g,W ′2),

m = degs(M) for M = spine(g, {f0,n ⊕ f1,n}n∈ω ∪ {f0,n ⊕ f2,n}n∈ω),

` = degs(L) for L = spine(g, {f0,i ⊕ f1,j | i < j}),
p = degs(P) for P = spine(g, {f0,i ⊕ f1,j ⊕ f2,k | i+ j = k}),
t = degs(T ) for T = spine(g, {f0,i ⊕ f1,j ⊕ f2,k | i× j = k}),
d = degs(D) for D = spine(g, {f0,i ⊕ f1,j ⊕ f2,k | i ´ j = k}),
z = degs({f0,0}), and
o = degs({f0,1}).

These degrees give the code ~w. The proof thatM´
~w
∼= N´ is the same as in the

proof of Lemma 2.3.9. Use Lemma 2.6.3 in place of Lemma 2.3.7.

Theorem 2.6.5. Th(Ds,cl;≤s)≡1 Th(D01
s,cl;≤s)≡1 Th2(N ).

Proof. Th(Ds,cl;≤s)≤1 Th2(N ) and Th(D01
s,cl;≤s)≤1 Th2(N ) by Lemma 2.1.2. For

Th2(N )≤1 Th(Ds,cl;≤s), by Lemma 2.6.2 let ~w be a code in Ds,cl such thatM´
~w
∼=

N´. Removing the degree d from the code ~w gives a code ~v such that M~v
∼=
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N . Ds,cl has the coding countable subsets property by Lemma 2.5.6. Hence
Th2(N )≤1 Th(Ds;≤s) by Lemma 2.2.19. The proof that Th2(N )≤1 Th(D01

s,cl;≤s)
is the same. Use Lemma 2.6.4 in place of Lemma 2.6.2.

Theorem 2.6.6. Σ0
3-Th(Ds), Σ0

4-Th(Ds;≤s), Σ0
3-Th(Ds,cl), Σ0

4-Th(Ds,cl;≤s), Σ0
3-

Th(D01
s,cl), and Σ0

4-Th(D01
s,cl;≤s) are all undecidable.

Proof. By Lemma 2.6.2, there is a code ~w in Ds,cl such that M´
~w
∼= N´. One

readily checks that this ~w is also satisfiesM´
~w
∼= N´ whenM´

~w is interpreted in
Ds instead ofDs,cl because Lemma 2.6.1 is valid inDs. By Lemma 2.6.4, there is a
code ~w inD01

s,cl such thatM´
~w
∼= N´. The results then follow from Lemma 2.2.25.

2.7 A first-order sentence distinguishing Ds,cl and D01
s,cl from Dw,cl and D01

w,cl

Dw,cl and D01
w,cl are countably meet-complete by Lemma 2.4.2. In contrast, if

X ⊆ Ds,cl or X ⊆ D01
s,cl is countable and strongly meet-incomplete, then X does

not have a greatest lower bound by the following lemma. Recall that a subset X
of a lattice L is strongly meet-incomplete if and only if for every finite {yi | i <
n} ⊆ X there is an x ∈ X such that x �

∏
i<n yi.

Lemma 2.7.1 (Dyment [23]; See also [74]). No countable strongly meet-incomplete
X ⊆ Ds has a greatest lower bound.

The proof of Lemma 2.7.1 works in Ds,cl, and it only requires a slight modifi-
cation for D01

s,cl.

If ~w is a code for a model of PA− that satisfies the second-order correctness
condition in any of Ds,cl, D01

s,cl, Dw,cl, D01
w,cl, then E(w0) is countable. This obser-

vation gives us the following theorem.

Theorem 2.7.2. Neither Ds,cl nor D01
s,cl is elementarily equivalent to either Dw,cl or

D01
w,cl.

Proof. Let ϕ be the first-order sentence “for all ~w, if ~w is a code for a model
of PA− that satisfies the second-order correctness condition, then E(w0) has a
greatest lower bound.” The sentence ϕ is true in both Dw,cl and D01

w,cl because
such an E(w0) is countable and these lattices are countably meet-complete by
Lemma 2.4.2. On the other hand, ϕ fails in both Ds,cl and D01

s,cl. If ~w is the code
produced in either Lemma 2.6.2 or Lemma 2.6.4, then E(w0) = {degs({fi}) |
i ∈ ω} where {fi | i ∈ ω} is a ≤T-antichain. It is then easy to check that
E(w0) is strongly meet-incomplete and hence has no greatest lower bound by
Lemma 2.7.1.

The relationship between Ds,cl and D01
s,cl and the relationship between Dw,cl

and D01
w,cl require further study.
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Question 2.7.3.

• Is every closed X ⊆ ωω Medvedev equivalent to some closed Y ⊆ 2ω? If
not, are Ds,cl and D01

s,cl isomorphic? If not, are Ds,cl and D01
s,cl elementarily

equivalent?
• Is every closed X ⊆ ωω Muchnik equivalent to some closed Y ⊆ 2ω? If

not, are Dw,cl and D01
w,cl isomorphic? If not, are Dw,cl and D01

w,cl elementarily
equivalent?

2.8 Meet-irreducibles in Es and r.e. separating degrees

In this section we present facts about the meet-irreducibles in Es that allow us
to implement our coding in Es. We begin with a characterization of the meet-
irreducibles in Es.

Lemma 2.8.1 ([6] Corollary 3.5). Let Q be a Π0
1 class. Then degs(Q) is meet-

irreducible if and only if for every clopen C ⊆ 2ω either Q∩ C ≡sQ or Q∩ Cc≡sQ.

Proof. We prove the contrapositive in both directions. First, suppose C ⊆ 2ω

is clopen, Q ∩ C 6≡sQ, and Q ∩ Cc 6≡sQ. Q ∩ C ≥sQ and Q ∩ Cc≥sQ by the
identity functional, so it must be that Q ∩ C>sQ and Q ∩ Cc>sQ. C is clopen,
so there is a finite set of strings {σi}i<n ⊆ 2<ω such that C =

⋃
i<n I(σ). Then

0a(Q∩ C) ∪ 1a(Q∩ Cc)≤sQ by the functional

f 7→
{

0af if (∃i < n)(σi ⊂ f)
1af otherwse.

What we have shown is degs(Q ∩ C)>s degs(Q), degs(Q ∩ Cc)>s degs(Q), and
degs(Q∩ C)× degs(Q∩ Cc)≤s degs(Q). Thus degs(Q) is meet-reducible.

Conversely, suppose degs(Q) is meet-reducible, and let X and Y be Π0
1 classes

such that X >sQ, Y >sQ, andQ≡s 0aX ∪1aY . Let Φ be such that Φ(Q) ⊆ 0aX ∪
1aY . Consider the set X̂ = {f ∈ Q | Φ(f)(0) = 0}. Φ(f) is total for all f ∈ Q,
so we can write X̂ = Q ∩ {f ∈ 2ω | Φ(f)(0) 6= 1} (where Φ(f)(0) 6= 1 includes
the possibility that Φ(f)(0) diverges), which is the intersection of two closed
subsets of 2ω. Hence X̂ is compact. Let Σ = {σ ∈ 2<ω | Φ(σ)(0) = 0}. Then X̂ ⊆⋃
σ∈Σ I(σ), so by compactness there is a finite Σ0 ⊆ Σ such that X̂ ⊆

⋃
σ∈Σ0

I(σ).
Let C =

⋃
σ∈Σ0

I(σ) be this clopen set. Φ witnesses that Q ∩ C ≥s 0aX and that
Q∩Cc≥s 1aY . As 0aX ≡sX >sQ and 1aY ≡s Y >sQ, we have the desired clopen
set C ⊆ 2ω such that Q∩ C 6≡sQ and Q∩ Cc 6≡sQ.

Degrees of r.e. separating classes are the main examples of meet-irreducibles
in Es.

Definition 2.8.2. For A,B ⊆ ω, define

S(A,B) = {f ∈ 2ω | ∀n((n ∈ A→ f(n) = 1)∧(n ∈ B→ f(n) = 0))}.
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An f ∈ S(A,B) is said to separate A from B. S ⊆ 2ω is an r.e. separating class if
and only if there are disjoint r.e. sets A,B ⊆ ω such that S = S(A,B).

From the definition, an r.e. separating class is always a Π0
1 class. An s ∈ Es is

an r.e. separating degree if and only if s = degs(S) for an r.e. separating class S.

Lemma 2.8.3 ([15] Lemma 6). If S is an r.e. separating class and C ⊆ 2ω is a clopen
set such that S ∩ C 6= ∅, then S ∩ C ≡s S.

Proof. Let S = S(A,B) be an r.e. separating class and let C ⊆ 2ω be a clopen set
such that S ∩ C 6= ∅. S ≤s S ∩ C by the identity functional. To see S ≥s S ∩ C, let
σ be such that I(σ) ⊆ C and S ∩ I(σ) 6= ∅. For any f ∈ 2ω, let fσ be the function
obtained from f by replacing the initial segment of f of length |σ| by σ:

fσ(n) =

{
σ(n) if n < |σ|
f(n) if n ≥ |σ|.

The condition S ∩ I(σ) 6= ∅ implies that σ separates {n ∈ A | n < |σ|} from
{n ∈ B | n < |σ|}. Thus if f separates A from B, then so does fσ. Therefore the
functional f 7→ fσ witnesses S ≥s S ∩ C.

Lemma 2.8.1 and Lemma 2.8.3 imply that every r.e. separating degree is
meet-irreducible. It is important to note (as in [15]) that the r.e. separating
classes are closed under + and consequently that the r.e. separating degrees
are closed under join: if S(A0, B0) and S(A1, B1) are r.e. separating classes then
S(A0, B0) +S(A1, B1) = S(A0⊕A1, B0⊕B1). Thus the join of two r.e. separating
degrees is meet-irreducible. In fact, the join of any r.e. separating degree and
any meet-irreducible degree is again meet-irreducible.

Lemma 2.8.4. Let q ∈ Es be meet-irreducible and let s ∈ Es be an r.e. separating degree.
Then q+ s is meet-irreducible.

Proof. Suppose q+ s≥s x×y for some x,y ∈ Es. We show q+ s≥s x or
q+ s≥s y. Let Q, X , and Y be Π0

1 classes such that degs(Q) = q, degs(X ) = x,
and degs(Y) = y respectively, and let S be an r.e. separating class such that
degs(S) = s. Let Φ be such that Φ(Q+S) ⊆ 0aX ∪ 1aY . By compactness, choose
a σ ∈ 2<ω such that S ∩ I(σ) 6= ∅ and an n ∈ ω such that

(∀τ ∈ 2n)((∃f ∈ Q)(τ ⊂ f)→Φ(τ ⊕ σ)(0)↓).

Let C =
⋃
{I(τ) | τ ∈ 2n ∧Φ(τ ⊕ σ)(0) = 0}. Then C is clopen, and Φ witnesses

that (Q∩ C) +(S ∩ I(σ))≥s 0aX ≡sX and that (Q∩ Cc) +(S ∩ I(σ))≥s 1aY ≡s Y .
Since S ∩ I(σ)≡s S by Lemma 2.8.3 and either Q ∩ C ≡sQ or Q ∩ Cc≡sQ by
Lemma 2.8.1, we have either Q+S ≥sX or Q+S ≥s Y as desired.

Our proof that Es has the finite matching property uses the following lemma
of Cole and Kihara. It is the main tool in their proof that the Σ0

2-theory of Es as a
partial order is decidable.
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Lemma 2.8.5 ([18] Lemma 1). Let {qi}i<n ⊆ Es and let m ∈ ω. Then there is a set
{ri}i<m ⊆ Es such that(

∀I ⊆ m
)(
∀J,K ⊆ n

)
(
J ∩K = ∅∧

∑
i∈J

qi�s

∏
i∈K

qi→
(∑
i∈J

qi +
∑
i∈I

ri

)
�s

(∏
i∈K

qi×
∏
i/∈I

ri

))
,

where
∑

i∈∅ xi = 0 and
∏

i∈∅ xi = 1 = degs(DNR2).

Cole and Kihara note that the {ri}i<m that they construct in Lemma 2.8.5
are all r.e. separating degrees. Their proof of Lemma 2.8.5 is an elaboration of
Cenzer and Hinman’s proof that Es is dense [15]. Cenzer and Hinman prove that
if p,q ∈ Es are such that q�s p, then there is an r.e. separating degree r ∈ Es such
that q× r�s p and q�s p+ r. Thus if p<s q, then p<s(p+ r)×q<s q, yielding
density. To make Lemma 2.8.5 somewhat easier to read and apply, we note that
we only need the following special case.

Lemma 2.8.6. Let {qi}i<n ⊆ Es \{1} and let m ∈ ω. Then there is a set of r.e. separat-
ing degrees {ri}i<m ⊆ Es such that

(i) (∀i, i′ < n)(∀j < m)(qi�s qi′→qi + rj �s qi′),

(ii) (∀i < n)(∀j, j′ < m)(j 6= j′→qi + rj �s rj′), and

(iii) (∀i < n)(∀j < m)(qi + rj �s 1).

Notice that item (iii) follows from item (ii) unless m = 1.
We can now show that Es has the finite matching property.

Lemma 2.8.7. Es has the finite matching property. That is, if q,q′ ∈ Es are such that
|E(q)| = |E(q′)| = n for some n ∈ ω, then there is an r ∈ Es such that E(r) matches
both E(q) and E(q′).

Proof. If n = 0, then let r = q. Any degree z vacuously witnesses that E(r)
matches E(q) and that E(r) matches E(q′). So suppose n > 0, let E(q) =
{qi}i<n, and let E(q′) = {q′i}i<n. Apply Lemma 2.8.6 to {qi}i<n ∪ {q′i}i<n with
m = n, noting that {qi}i<n and {q′i}i<n are both antichains by Lemma 2.2.3, to
get r.e. separating degrees {ri}i<n such that

(i) qi + rj �s qk and q′i + rj �s q
′
k whenever i, j, k < n are such that i 6= k, and

(ii) qi + rj �s rk and q′i + rj �s rk whenever i, j, k < n are such that j 6= k.

(iii) qi + rj �s 1 and q′i + rj �s 1 whenever i, j < n.

(Lemma 2.8.6 applies because, by definition, 1 does not meet to any degree and
so cannot be in E(q) or E(q′).)

Put r =
∏

i<n ri, z =
∏

i<n(qi + ri), and z′ =
∏

i<n(q′i + ri). We show that z
witnesses that E(r) matches E(q). The proof that z′ witnesses that E(r) matches
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E(q′) is similar. Item (ii) implies that {ri}i<n and {qi + ri}i<n are both antichains.
Lemma 2.8.4 implies that qi + ri is meet-irreducible for each i < n. Therefore
E(r) = {ri}i<n and E(z) = {qi + ri}i<n by Lemma 2.2.4. Suppose qi + rj ≥s z for
some i, j < n. Then qi + rj ≥s qk + rk for some k < n because qi + rj is meet-
irreducible by Lemma 2.8.4. Item (i) implies that i = k, and item (ii) implies that
j = k. Thus for each i < n, ri is the unique y ∈ E(r) such that qi +y ∈ E(z), and
qi is the unique y ∈ E(q) such that ri +y ∈ E(z). Thus z witnesses that E(r)
matches E(q).

We need one last fact about the r.e. separating classes to implement our cod-
ing in Es.

Lemma 2.8.8 ([32] Theorem 4.1). There is a recursive sequence {Sn}n∈ω r.e. separat-
ing classes that is strongly independent.

2.9 The complexity of Th(Es;≤s)

In this section we prove that Th(Es;≤s)≡1 Th(N ) and that Π0
3-Th(Es) and Π0

4-
Th(Es;≤s) are undecidable. By Lemma 2.2.14 and Lemma 2.2.25, it suffices to
find a code ~w in Es such thatM´

~w
∼= N´.

Definition 2.9.1. LetQ be a Π0
1 class with no recursive member. Let A be an infi-

nite recursive set, and let {σn}n∈A be a recursive sequence of pairwise incompa-
rable strings such that

⋃
n∈A I(σn) = 2ω \Q (for example, let T be a recursive tree

such that Q = [T ] and let {σn}n∈A be the strings σ /∈ T of minimal length). Let
{Sn}n∈A be an infinite recursive sequence of Π0

1 classes. Define spine(Q, {Sn}n∈A)
to be the Π0

1 class

spine(Q, {Sn}n∈A) = Q∪
⋃
n∈A

σn
aSn.

Lemma 2.9.2. LetQ be a Π0
1 class with no recursive member. Let {Sn}n∈A be an infinite

recursive sequence of r.e. separating classes (indexed by a recursive set A) that is an
antichain and is such that Q�s Sn for all n ∈ A. Let w = degs(spine(Q, {Sn}n∈A)).

(i) If x ∈ Es meets to w, then x≤s degs(Sn) for some n ∈ A.
(ii) E(w) = {degs(Sn) | n ∈ A}.

Proof. LetW = spine(Q, {Sn}n∈A).

(i) Let x ∈ Es be such that x meets to w. Suppose for a contradiction that
x�s degs(Sn) for all n ∈ A. Let X be a Π0

1 class such that x = degs(X ), and let Y
be a Π0

1 class such that degs(Y) witnesses that x meets to w. That is, Y >sW and
W≡s 0aX ∪ 1aY . Let Φ be such that Φ(Q∪

⋃
n∈A σn

aSn) ⊆ 0aX ∪ 1aY .

Claim.

(a) Φ(σn
aSn) ⊆ 1aY for all n ∈ A and
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(b) Φ(Q) ⊆ 1aY .

Proof of claim. If item (a) fails, then for some n ∈ A there is a clopen C ⊆ 2ω such
that (σn

aSn)∩C 6= ∅ and Φ((σn
aSn)∩C) ⊆ 0aX . So (σn

aSn)∩C ≥s 0aX ≡sX . The
class σnaSn is an r.e. separating class because Sn is, so (σn

aSn)∩C ≡s σn
aSn≡s Sn,

where the first equivalence is by Lemma 2.8.3. Thus the contradiction X ≤s Sn.

If item (b) fails, then there is an f ∈ Q and a σ ⊂ f such that Φ(σ)(0)↓ = 0.
Since I(σ) * Q, there is an n ∈ A such that σn ⊇ σ. Hence Φ(σn

aSn) * 1aY ,
contradicting item (a).

The claim shows that Φ(Q ∪
⋃
n∈ω σn

aSn) ⊆ 1aY . Thus Y ≤sW , which con-
tradicts Y >sW .

(ii) Let n ∈ A. To see that degs(Sn) ∈ E(w), let Y = Q∪
⋃
i∈A\{n} σi

aSi.

Claim. Sn�s Y

Proof of claim. Suppose for a contradiction that Φ is such that Φ(Sn) ⊆ Y . If there
is an i ∈ A \ {n} such that Φ(Sn) ∩ (σi

aSi) 6= ∅, then there is a clopen C ⊆ 2ω

such that Sn ∩ C 6= ∅ and Φ(Sn ∩ C) ⊆ σi
aSi. Sn≡s Sn ∩ C by Lemma 2.8.3,

and Sn ∩ C ≥s σi
aSi≡s Si. This contradicts that {Sn}n∈A is an antichain. Thus

Φ(Sn) ∩ (σi
aSi) = ∅ for all n ∈ A. Therefore Φ(Sn) ⊆ Q. This contradicts

Q�s Sn.

It is easy to check thatW≡s 0aSn ∪ 1aY , so, by the claim, degs(Y) witnesses
that degs(Sn) meets to w. The degree degs(Sn) is meet-irreducible because it is
an r.e. separating degree. Thus degs(Sn) ∈ E(w).

We have shown that {degs(Sn) | n ∈ A} ⊆ E(w). To see equality, let
x ∈ E(w). By item (i), x≤s degs(Sn) for some n ∈ A. E(w) is an antichain
by Lemma 2.2.3 and degs(Sn) ∈ E(w), so it must be that x = degs(Sn).

We now have all the ingredients to find a code for N in Es.

Lemma 2.9.3. There is a code ~w in Es such thatM´
~w
∼= N´.

Proof. By Lemma 2.8.8, let Q be an r.e. separating class and let {S0,n}n∈ω,
{S1,n}n∈ω, and {S2,n}n∈ω be recursive sequences of r.e. separating classes such
that {Q} ∪ {S0,n}n∈ω ∪ {S1,n}n∈ω ∪ {S2,n}n∈ω is strongly independent. Then let

w0 = degs(W0) for W0 = spine(Q, {S0,n}n∈ω),

w1 = degs(W1) for W1 = spine(Q, {S1,n}n∈ω),

w2 = degs(W2) for W2 = spine(Q, {S2,n}n∈ω),

m = degs(M) for M = spine(Q, {S0,n +S1,n}n∈ω ∪ {S0,n +S2,n}n∈ω),

` = degs(L) for L = spine(Q, {S0,i +S1,j | i < j}),
p = degs(P) for P = spine(Q, {S0,i +S1,j +S2,k | i+ j = k}),
t = degs(T ) for T = spine(Q, {S0,i +S1,j +S2,k | i× j = k}),
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d = degs(D) for D = spine(Q, {S0,i +S1,j +S2,k | i ´ j = k}),
z = degs(S0,0), and
o = degs(S0,1).

By Lemma 2.9.2 item (ii), E(w0) = {degs(S0,n)}n∈ω. The map degs(S0,n) 7→ n
is the isomorphism witnessing M´

~w
∼= N´. Clearly z 7→ 0 and o 7→ 1.

We show that the map preserves <. The proofs that the map preserves +,
×, and ´ are similar. Let i, j ∈ ω. If i < j, then degs(S1,j) meets to w1

by Lemma 2.9.2 item (ii), and it is easy to see that degs(S0,j) + degs(S1,j)≥s m
and that degs(S0,i) + degs(S1,j)≥s `. Thus R2

`(degs(S0,i), degs(S0,j)). Conversely,
suppose that R2

`(degs(S0,i), degs(S0,j)). Let u1 ∈ Es be such that u1 meets
to w1, degs(S0,j) +u1≥s m, and degs(S0,i) +u1≥s `. Since u1 meets to w1, it
must be that u1≤s degs(S1,k) for some k ∈ ω by Lemma 2.9.2 item (i). Thus
degs(S0,j) + degs(S1,k)≥s m. However, if k 6= j, then no member of S0,j +S1,k

computes any member of M by strong independence. Thus u1≤s degs(S1,j),
which implies that degs(S0,i) + degs(S1,j)≥s `. Again by strong independence, if
i ≮ j, then no member of S0,i +S1,j computes any member ofL. Hence i < j.

Higuchi also used spines of recursive sequences of independent r.e. separat-
ing classes to prove that Es is not a Brower algebra [25].

Theorem 2.9.4. Th(Es;≤s)≡1 Th(N ).

Proof. Th(Es;≤s)≤1 Th(N ) by Lemma 2.1.3. For Th(N )≤1 Th(Es;≤s), by
Lemma 2.9.3 let ~w be a code in Es such thatM´

~w
∼= N´. Removing the degree d

from the code ~w gives a code ~v such thatM~v
∼= N . Es has the finite matching

property by Lemma 2.8.7, thus Th(N )≤1 Th(Es;≤s) by Lemma 2.2.14.

Theorem 2.9.5. Σ0
3-Th(Es) and Σ0

4-Th(Es;≤s) are undecidable.

Proof. There is a code ~w in Es such thatM´
~w
∼= N´ by Lemma 2.9.3. The results

then follow from Lemma 2.2.25.

2.10 The degree of Es is 0′′′

In this section, we consider the complexities of presentations of Es.

Definition 2.10.1. A presentation of Es as a partial order consists of a relation ≤P⊆
ω×ω such that the structure P = (ω;≤P) is isomorphic to (Es;≤s). A presentation
of Es as a lattice consists of a relation≤L⊆ ω×ω and functions +L : ω×ω→ω and
×L : ω × ω→ω such that the structure L = (ω;≤L,+L,×L) is isomorphic to Es.

We measure the complexities of presentations by their Turing degrees.

Definition 2.10.2. The degree of a presentation P of Es as a partial order is
degT(P) = degT(≤P). The degree of a presentation L of Es as a lattice is
degT(L) = degT(≤L ⊕+L⊕×L).
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Equivalently, the degree of a presentation is the Turing degree of its atomic
diagram, suitably Gödel numbered.

Lemma 2.10.3. There is a presentation L of Es as a lattice with degT(L)≤T 0′′′.

Proof. Let {Ze}e∈ω be a recursive sequence containing all Π0
1 classes as in

Lemma 1.4.4, and let {Te}e∈ω be the corresponding uniformly recursive se-
quence of trees. Since [Ti]≤s[Tj] is a Σ0

3 property of 〈 i, j 〉 by Lemma 1.4.3, we
can use 0′′′ to make a new sequence of trees {T ′e}e∈ω such that {[T ′e]}e∈ω con-
tains exactly one representative for each degree in Es. Inductively, let T ′e be Ti
for the least i ∈ ω such that (∀j < e)([Ti] 6≡s[T

′
j ]). Again using 0′′′, for i, j ∈ ω

define i ≤L j if and only if [T ′i ]≤s[T
′
j ], define +L(i, j) to be the k ∈ ω such that

[T ′k]≡s[T
′
i +T ′j ], and define ×L(i, j) to be the k ∈ ω such that [T ′k]≡s[0

aT ′i ∪ 1aT ′j ].
Then L ∼= Es and degT(L)≤T 0′′′.

We prepare to show that every presentation of Es as a lattice computes 0′′′. Let
{Xn}n∈ω be a recursive sequence of Π0

1 classes, and let m ∈ ω. Define
∑

n∈ω Xn
and

∑
n∈ω\{m}Xn by∑

n∈ω

Xn =
{⊕
n∈ω

fn

∣∣∣ ∀n(fn ∈ Xn)
}

and∑
n∈ω\{m}

Xn =
{ ⊕
n∈ω\{m}

fn

∣∣∣ ∀n(n 6= m→ fn ∈ Xn)
}
.

The predicates ∀n(fn ∈ Xn) and ∀n(n 6= m→ fn ∈ Xn) are Π0
1 because the se-

quence {Xn}n∈ω is recursive. Hence
∑

n∈ω Xn and
∑

n∈ω\{m}Xn are Π0
1 classes. If

{S(An, Bn)}n∈ω is a recursive sequence of r.e. separating classes, then one checks
that ∑

n∈ω

S(An, Bn) = S
(⊕
n∈ω

An,
⊕
n∈ω

Bn

)
and∑

n∈ω\{m}

S(An, Bn) = S
( ⊕
n∈ω\{m}

An,
( ⊕
n∈ω\{m}

Bn

)
∪ {〈m, k 〉 | k ∈ ω}

)
.

These two Π0
1 classes are in fact r.e. separating classes because any Π0

1 class that
is a separating class must be an r.e. separating class. If T is a recursive tree
such that [T ] = S(A,B) for A,B ⊆ ω, then A = {n | (∃s > n)(∀σ ∈ 2s)(σ ∈
T →σ(n) = 1)} and B = {n | (∃s > n)(∀σ ∈ 2s)(σ ∈ T →σ(n) = 0)}, both of
which are r.e.

Lemma 2.10.4. Let Q be an r.e. separating class, and let ϕ(e,m, k, `) be a recursive
predicate. Then there is a recursive sequence of Π0

1 classes {X〈 e,m 〉}〈 e,m 〉∈ω such that for
all e,m ∈ ω

degs(X〈 e,m 〉) =

{
0 if ∀k∃`ϕ(e,m, k, `)
degs(Q) if ∃k∀`¬ϕ(e,m, k, `).
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Proof. Let A and B be disjoint r.e. sets such that Q = S(A,B). Let {As}s∈ω and
{Bs}s∈ω be recursive stage enumerations of A and B respectively. For e,m ∈ ω,
let X〈 e,m 〉 be the r.e. separating class X〈 e,m 〉 = S(C〈 e,m 〉, D〈 e,m 〉) where

C〈 e,m 〉 = {〈 k, x 〉 | ∃s(x ∈ As ∧(∀` ≤ s)(¬ϕ(e,m, k, `)))} and
D〈 e,m 〉 = {〈 k, x 〉 | ∃s(x ∈ Bs ∧(∀` ≤ s)(¬ϕ(e,m, k, `)))}.

For all k ∈ ω, the kth column of C〈 e,m 〉 is a subset of A, and the kth column
of D〈 e,m 〉 is a subset of B. Thus C〈 e,m 〉 and D〈 e,m 〉 are disjoint. The sequences
{C〈 e,m 〉}〈 e,m 〉∈ω and {D〈 e,m 〉}〈 e,m 〉∈ω are uniformly r.e., which implies that the
sequence {X〈 e,m 〉}〈 e,m 〉∈ω is a recursive sequence of Π0

1 classes.

To see that X〈 e,m 〉 has the desired degree, first suppose that ∀k∃`ϕ(e,m, k, `).
In this case, the set C〈 e,m 〉 is recursive. To determine if 〈 k, x 〉 ∈ C〈 e,m 〉, search
for the least ` such that ϕ(e,m, k, `), which must exist by assumption. Once ` is
found, enumerate A up to stage `. Then 〈 k, x 〉 ∈ C〈 e,m 〉 if and only if x ∈ A`.
X〈 e,m 〉 contains the characteristic function of C〈 e,m 〉, which we have just shown
is recursive, so degs(X〈 e,m 〉) = 0. On the other hand, if ∃k∀`¬ϕ(e,m, k, `), then
fix a witnessing k. In this case, the kth column of C〈 e,m 〉 is A, and the kth column
of D〈 e,m 〉 is B. Given f ∈ 2ω, let fk be the function fk(x) = f(〈 k, x 〉). If f
separates C〈 e,m 〉 from D〈 e,m 〉, then fk separates A from B. Thus the functional
f 7→ fk witnesses X〈 e,m 〉≥sQ. The functional f 7→ g where g(〈 i, x 〉) = f(x)
always witnesses Q≥sX〈 e,m 〉. Hence degs(X〈 e,m 〉) = degs(Q).

Lemma 2.10.5. If L is a presentation of Es as a lattice, then 0′′′≤T degT(L).

Proof. Let L = (ω;≤L,+L,×L) be a presentation of Es. Let f : Es→L be an iso-
morphism. Fix a Σ0

3-complete set C ⊆ ω. We show how to compute C from
degT(L).

By Lemma 2.8.8, let Q be an r.e. separating class and let {S0,n}n∈ω and
{S1,n}n∈ω be recursive sequences of r.e. separating classes such that {Q} ∪
{S0,n}n∈ω ∪ {S1,n}n∈ω is strongly independent. Then let

w0 = degs(W0) for W0 = spine(Q, {S0,n}n∈ω),

w1 = degs(W1) for W1 = spine(Q, {S1,n}n∈ω),

v = degs(V) for V =
∑
n∈ω

S0,n,

r = degs(R) for R = spine(Q, {Rn}n∈ω), whereRn =
∑

m∈ω\{n}

S0,m,

m = degs(M) for M = spine(Q, {S0,n +S1,n}n∈ω), and
p = degs(P) for P = spine(Q, {S0,n +S1,n+1}n∈ω).

Let {Ze}e∈ω be a recursive sequence containing all Π0
1 classes as in

Lemma 1.4.4. Let D ⊆ ω be the set

D = {e | ∃n(n ∈ C ∧Ze≤s S0,n ∧V ≤sZe +Rn)}.
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D is Σ0
3 because C is Σ0

3, the sequences {Ze}e∈ω, {S0,n}n∈ω, and {Rn}n∈ω are re-
cursive, and ≤s is Σ0

3 by Lemma 1.4.3. Let ϕ(e,m, k, `) be a recursive predicate
such that D = {e | ∃m∀k∃`ϕ(e,m, k, `)}. By Lemma 2.10.4, let {X〈 e,m 〉}〈 e,m 〉∈ω be
a recursive sequence of Π0

1 classes such that for all e,m ∈ ω

degs(X〈 e,m 〉) =

{
0 if ∀k∃`ϕ(e,m, k, `)
degs(Q) if ∃k∀`¬ϕ(e,m, k, `).

Let x = degs(X ) for X = spine(Q, {Ze +X〈 e,m 〉}〈 e,m 〉∈ω).

The procedure for determining whether n ∈ C from degT(L) uses the fixed
parameters f(w0), f(w1), f(v), f(r), f(m), f(p), f(degs(S0,0)), and f(x). Given
n ∈ ω search L for elements ai,j for i < 2 and 1 ≤ j ≤ n and for an element b
satisfying the conditions

(i) ai,j meets to f(wi) for all i < 2 and all 1 ≤ j ≤ n,
(ii) a0,j +L a1,j ≥L f(m) for all 1 ≤ j ≤ n,

(iii) a0,j +L a1,j+1 ≥L f(p) for all 0 ≤ j ≤ n− 1 (where a0,0 = f(degs(S0,0))),
(iv) b meets to f(r), and
(v) a0,n +L b ≥L f(v).

When the search is completed, output “yes” if f(x) ≤L a0,n and output “no”
otherwise.

First, observe that the above search is recursive in degT(L) because the “meets
to” relation is r.e. in degT(L). Furthermore, the search will always terminate
because the elements ai,j = f(degs(Si,j)) for all i < 2 and all 1 ≤ j ≤ n and the
element b = f(degs(Rn)) satisfy conditions (i)–(v), and the search will eventually
find them. Conditions (i) and (iv) follow from Lemma 2.9.2 item (ii). Notice that
Q and {Rj}j∈ω satisfy the hypothesis of Lemma 2.9.2 because {Q} ∪ {S0,j}j∈ω is
strongly independent. Conditions (ii) and (iii) are easy to see. For condition (v),
it is also easy to see that S0,n +Rn≡s V .

We need to show that the procedure outputs “yes” on input n if and only if
n ∈ C. Let ai,j for i < 2 and 1 ≤ j ≤ n and b be the elements found in the search
performed on input n.

Claim. For all i < 2 and all 1 ≤ j ≤ n, ai,j ≤L f(degs(Si,j)).

Proof of claim. For each i < 2 and each 1 ≤ j ≤ n, let Ai,j be a Π0
1 class such

that degs(Ai,j) = f−1(ai,j). By condition (i) of the search and Lemma 2.9.2
item (i), A0,1≤s S0,m and A1,1≤s S1,k for some m, k ∈ ω. Condition (iii) implies
that S0,0 +S1,k≥sP , which is false by strong independence unless k = 1. So
A1,1≤s S1,1. Knowing this, condition (ii) implies that S0,m +S1,1≥sM, which
is false by strong independence unless m = 1. So A0,1≤s S0,1. Now proceed
by induction. Let 1 ≤ j < n and assume that A0,j ≤s S0,j and that A1,j ≤s S1,j .
Just as in the argument for the base case, A0,j+1≤s S0,m and A1,j+1≤s S1,k for
some m, k ∈ ω. S0,j +S1,k≥sP by condition (iii), which implies that k = j + 1.
S0,m +S1,j+1≥sM by condition (ii), which implies that m = j + 1.
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At the end of the search, a0,n ≤L f(degs(S0,n)) by the claim, b meets to f(r) by
condition (iv), and a0,n +L b ≥L f(v) by condition (v). By Lemma 2.9.2 item (ii),
b ≤L f(degs(Rm)) for some m ∈ ω. However, if m 6= n, then S0,n≤sRm, in which
case S0,n +Rm≡sRm�s V . Thus it must be that b ≤L f(degs(Rn)).

Suppose n ∈ C. Since {Ze}e∈ω lists all the Π0
1 classes, there is an e ∈ ω such

that degs(Ze) = f−1(a0,n). This e satisfies ∃n(n ∈ C ∧Ze≤s S0,n ∧V ≤sZe +Rn).
Thus e ∈ D, which means ∃m∀k∃`ϕ(e,m, k, `). If m witnesses this property
for e, then degs(X〈 e,m 〉) = 0 and Ze +X〈 e,m 〉≡sZe. Thus X ≤sZe, which means
f(x) ≤L a0,n. Thus “yes” was the output.

Suppose n /∈ C. We show X �s S0,n.

Claim. For all e,m ∈ ω, S0,n�sZe +X〈 e,m 〉.

Proof of claim. If degs(X〈 e,m 〉) = degs(Q), then S0,n�sZe +X〈 e,m 〉 because
S0,n�sQ by strong independence. If degs(X〈 e,m 〉) = 0, then ∀k∃`ϕ(e,m, k, `).
Therefore e ∈ D, so there is an n′ such that n′ ∈ C, Ze≤s S0,n′ , and V ≤sZe +Rn′ .
Notice that n 6= n′ because n /∈ C and n′ ∈ C. Therefore S0,n≤sRn′ . So
if S0,n≥sZe, then Rn′ ≥sZe. So V �sRn′ ≡sZe +Rn′ , a contradiction. Hence
S0,n�sZe +X〈 e,m 〉.

Suppose for a contradiction that Φ is such that Φ(S0,n) ⊆ X . If there are n,m ∈
ω such that Φ(S0,n) ∩ (σ〈 e,m 〉

a(Ze +X〈 e,m 〉)) 6= ∅, then there is a clopen C ⊆ 2ω

such that S0,n ∩ C 6= ∅ and Φ(S0,n ∩ C) ⊆ σ〈 e,m 〉
a(Ze +X〈 e,m 〉). S0,n≡s S0,n ∩ C

by Lemma 2.8.3, and S0,n ∩ C ≥s(σ〈 e,m 〉
a(Ze +X〈 e,m 〉))≡sZe +X〈 e,m 〉. This con-

tradicts the claim. Thus Φ(S0,n) ∩ (σ〈 e,m 〉
a(Ze +X〈 e,m 〉)) = ∅ for all e,m ∈ ω.

Therefore Φ(S0,n) ⊆ Q. This contradicts Q�s S0,n. Hence X �s S0,n. It follows
that f(x) �L a0,n because a0,n ≤L f(degs(S0,n)). Thus “no” was the output.

Theorem 2.10.6. The degree of Es as a lattice is 0′′′. That is, there is a presentation of
Es as a lattice recursive in 0′′′ and 0′′′ is recursive in every presentation of Es as a lattice.

Proof. Lemma 2.10.3 proves that there is a presentation recursive in 0′′′, and
Lemma 2.10.5 proves that 0′′′ is recursive in every presentation.

Corollary 2.10.7. Es has no recursive presentation as a partial order.

Proof. In any lattice, the relations x+ y = z and x× y = z are definable from the
partial order by Π0

1 formulas. Thus if Es had a recursive presentation as a partial
order, it would have a presentation as a lattice recursive in 0′. This contradicts
the theorem.

2.11 The undecidability of Th(Ew) and Th(Ew;≤w)

In this section, we code N´ in Ew, thereby showing that Σ0
3-Th(Ew) and Σ0

4-
Th(Ew;≤w) are undecidable. In place of separating classes, our coding of N´ in
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Ew uses Simpson’s Σ0
3 embedding lemma and his embedding of ET into Ew. A set

X ⊆ ωω is Σ0
3 if and only if it is of the form X = {f ∈ ωω | ∃m∀k∃`ϕ(f,m, k, `)}

for some recursive predicate ϕ.

Lemma 2.11.1 (Σ0
3 embedding lemma [66] Lemma 3.3). Let S ⊆ ωω be Σ0

3 and let
P ⊆ 2ω be a Π0

1 class. Then there is a Π0
1 class Q ⊆ 2ω such that Q≡w S ∪ P .

In the Muchnik case, degw(S)× degw(P) = degw(S ∪ P) for any S,P ⊆ ωω.
For this reason, the Σ0

3 embedding lemma may be phrased as “if S is Σ0
3 and P is

a Π0
1 class then degw(S)× degw(P) ∈ Ew.” For our purposes, P is always DNR2,

so degw(P) = degw(DNR2) = 1, the greatest element of Ew.

If A is an r.e. set, then {A} is a Σ0
3 (in fact a Π0

2) subset of 2ω. One of Simp-
son’s original applications of his Σ0

3 embedding lemma is to show that the map
degT(A) 7→ degw({A})×1 is an upper-semilattice embedding of ET into Ew pre-
serving the least and greatest elements [66]. To show that this map is indeed an
embedding, Simpson uses the following variant of the Arslanov completeness
criterion, which we also employ.

Lemma 2.11.2 (see [31] Lemma 4.1 and [69] Theorem V.5.1). If A is an r.e. set, then
DNR2≤w{A} if and only if A≡T 0′.

Proof. It is easy to compute a function in DNR2 from 0′. Conversely, if A com-
putes a function in DNR2, then A computes a function f such that ∀e(Wf(e) 6=
We), where here {We}e∈ω is the standard enumeration of the r.e. sets (such an
f is called fixed-point free; see [31] Lemma 4.1). Thus A≡T 0′ by the Arslanov
completeness criterion (see [69] Theorem V.5.1).

For comparison, it is not known whether ET embeds into Es. See [11] for
further results concerning embedding distributive lattices in Es and Ew.

For us, the key property of the degrees degw({A})×1 for r.e. sets A is that
they are all meet-irreducible in Ew (of course these degrees are generally meet-
reducible in Dw).

Lemma 2.11.3. If A is an r.e. set, then degw({A})×1 is meet-irreducible in Ew.

Proof. Suppose that x,y ∈ Ew are such that degw({A})×1≥w x×y. Either
degw({A})≥w x or degw({A})≥w y because degw({A}) is the degree of a single-
ton. As 1≥w x and 1≥w y, either degw({A})×1≥w x or degw({A})×1≥w y.

If {An}n∈B is a uniformly r.e. sequence of r.e. sets indexed by a recursive set
B (i.e., the set {〈n,m 〉 | n ∈ B ∧m ∈ An} is r.e.), then {An}n∈B is a Σ0

3 subset of
2ω and degw({An}n∈B)×1 ∈ Ew. In place of Lemma 2.8.8, we use the following
simpler fact.

Lemma 2.11.4 (see [69] Section VII.2). There is a uniformly r.e. sequence of r.e. sets
{An}n∈ω that is strongly independent.

Notice that Lemma 2.11.4 is also a consequence of Lemma 2.8.8. If
{S(An, Bn)}n∈ω is a recursive sequence of r.e. separating classes that is strongly
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independent, then {An}n∈ω and {Bn}n∈ω are both uniformly r.e. sequences of r.e.
sets that are strongly independent.

Lemma 2.11.5. Let {An}n∈B be an infinite uniformly r.e. sequence of r.e. sets (indexed
by a recursive set B) that is a ≤T-antichain. Let w = degw({An}n∈B)×1.

(i) If x ∈ Ew meets to w, then x≤w degw({An})×1 for some n ∈ B.
(ii) E(w) = {degw({An})×1 | n ∈ B}.

Proof. (i) Let x ∈ Ew be such that x meets to w, and suppose that
x�w degw({An})×1 for all n ∈ B for a contradiction. Since x≤w 1, it must be
that x�w degw({An}) for all n ∈ B. Let y ∈ Ew witness that x meets to w. That
is, y>w w and x×y = w. Let X and Y be Π0

1 classes such that x = degw(X ) and
y = degw(Y). Then X ∪ Y ≤w{An} for all n ∈ B. Thus Y ≤w{An} for all n ∈ B
because X �w{An} for all n ∈ B. Therefore Y ≤w{An}n∈B, which implies that
y≤w w, a contradiction.

(ii) Let n ∈ B. To see that degw({An})×1 ∈ E(w), let y =
degw({Ai}i∈B\{n})×1. It is easy to check that (degw({An})×1)×y = w. More-
over, degw({An})×1�w y. This is because {An}�w{Ai}i∈B\{n} as {Ai}i∈B is a
≤T-antichain and because {An}�w DNR2 by Lemma 2.11.2 (note that An<T 0′

because {Ai}i∈B is a ≤T-antichain). Thus y>w w, and therefore y witnesses that
degw({An})×1 meets to w. The degree degw({An})×1 is meet-irreducible in Ew

by Lemma 2.11.3. Thus degw({An})×1 ∈ E(w).

We have shown that {degw({An})×1 | n ∈ B} ⊆ E(w). To see equality,
let x ∈ E(w). By item (i), x≤w degw({An})×1 for some n ∈ B. E(w) is an
antichain by Lemma 2.2.3 and degw({An})×1 ∈ E(w), so it must be that x =
degw({An})×1.

We are now able to code N´ in Ew.
Lemma 2.11.6. There is a code ~w in Ew such thatM´

~w
∼= N´.

Proof. By Lemma 2.11.4, let {A0,n}n∈ω, {A1,n}n∈ω, and {A2,n}n∈ω be uniformly r.e.
sequences of r.e. sets such that {A0,n}n∈ω ∪ {A1,n}n∈ω ∪ {A2,n}n∈ω is strongly
independent. Let

w0 = degw(W0)×1 for W0 = {A0,n}n∈ω,
w1 = degw(W1)×1 for W1 = {A1,n}n∈ω,
w2 = degw(W2)×1 for W2 = {A2,n}n∈ω,
m = degw(M)×1 for M = {A0,n ⊕ A1,n}n∈ω ∪ {A0,n ⊕ A2,n}n∈ω,
` = degw(L)×1 for L = {A0,i ⊕ A1,j | i < j},
p = degw(P)×1 for P = {A0,i ⊕ A1,j ⊕ A2,k | i+ j = k},
t = degw(T )×1 for T = {A0,i ⊕ A1,j ⊕ A2,k | i× j = k},
d = degw(D)×1 for D = {A0,i ⊕ A1,j ⊕ A2,k | i ´ j = k},
z = degw({A0,0})×1, and
o = degw({A0,1})×1 .
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To aid readability, let ai,j = degw({Ai,j}) for all i < 3 and j ∈ ω. By
Lemma 2.11.5 item (ii), E(w0) = {a0,n×1}n∈ω. The map a0,n×1 7→ n is the
isomorphism witnessingM´

~w
∼= N´. Clearly z 7→ 0 and o 7→ 1. We show that

the map preserves<. The proofs that the map preserves +,×, and ´ are similar.
Let i, j ∈ ω. If i < j, then a1,j ×1 meets to w1 by Lemma 2.11.5 item (ii), and by
distributivity

(a0,j ×1) +(a1,j ×1) = (a0,j + a1,j)×1

= degw({A0,j ⊕ A1,j})×1

≥w m, and
(a0,i×1) +(a1,j ×1) = (a0,i + a1,j)×1

= degw({A0,i ⊕ A1,j})×1
≥w ` .

Thus R2
`(a0,i×1, a0,j ×1). Conversely, suppose that R2

`(a0,i×1, a0,j ×1). Let
u1 ∈ Ew be such that u1 meets to w1, (a0,j ×1) +u1≥w m, and (a0,i×1) +u1≥w `.
Since u1 meets to w1, it must be that u1≤w a1,k×1 for some k ∈ ω by
Lemma 2.11.5 item (i). Thus (a0,j ×1) +(a1,k×1)≥w m, so by distributivity

degw({A0,j ⊕ A1,k})×1 = (a0,j + a1,k)×1 = (a0,j ×1) +(a1,k×1)≥w m.

However, if k 6= j, then {A0,j ⊕ A1,k}�wM by strong independence and
{A0,j ⊕ A1,k}�w DNR2 by Lemma 2.11.2. This implies that degw({A0,j ⊕
A1,k})×1�w m, so it must be that k = j. Thus u1≤w a1,j ×1, which implies
that (a0,i×1) +(a1,j ×1)≥w `. Then

degw({A0,i ⊕ A1,j})×1 = (a0,i + a1,j)×1 = (a0,i×1) +(a1,j ×1)≥w ` .

So if i ≮ j, then {A0,i ⊕ A1,j}�w L by strong independence and {A0,i ⊕
A1,j}�w DNR2 by Lemma 2.11.2, giving the contradiction degw({A0,i ⊕
A1,j})×1�w `. Hence i < j.

Theorem 2.11.7. Σ0
3-Th(Ew) and Σ0

4-Th(Ew;≤w) are undecidable.

Proof. There is a code ~w in Ew such thatM´
~w
∼= N´ by Lemma 2.11.6. The results

then follow from Lemma 2.2.25.

Clearly then Th(Ew;≤w) is undecidable. Unfortunately we do not yet
know how to prove anything like the finite matching property for Ew to ob-
tain Th(N )≤1 Th(Ew;≤w). The proof of the finite matching property for Es

(Lemma 2.8.7) appeals to a lemma of Cole and Kihara that grew out of Cen-
zer and Hinman’s proof that Es is dense. By analogy, perhaps progress must be
made on the density of Ew before further progress is made on the complexity of
Th(Ew;≤w).
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CHAPTER 3
JOIN-IRREDUCIBLES AND PROPOSITIONAL LOGICS IN THE

MEDVEDEV DEGREES

The results of this chapter also appear in [56] by the author.

We present solutions to three problems concerning the Medvedev degrees.
First, Dyment characterized the meet-reducible elements of Ds in the following
theorem. Its corollary helps identify meet-irreducible Medvedev degrees.

Theorem 3.0.8 ([22]). A Medvedev degree a is meet-reducible if and only if a =
degs(A) for a mass problem A for which there are r.e. sets V0, V1 ⊆ ω<ω such that

• (∀f ∈ A)(∃σ ∈ V0 ∪ V1)(σ ⊂ f),
• The following mass problems are ≤s-incomparable:

{f ∈ A | (∃σ ∈ V0)(σ ⊂ f)} and {f ∈ A | (∃σ ∈ V1)(σ ⊂ f)}
Corollary 3.0.9 ([22]). If A is a mass problem such that σaA ⊆ A for all σ ∈ ω<ω,
then degs(A) is meet-irreducible.

In particular, 0′ is meet-irreducible because σaf >T 0 whenever σ ∈ ω<ω and
f >T 0.

The problem of characterizing the join-irreducible elements of Ds was posed
in [74]. We prove that a ∈ Ds is join-irreducible if and only if a = degs(ω

ω \ I)
for some Turing ideal I (Theorem 3.1.3).

Second, providing semantics for propositional logic was one of Medvedev’s
main motivations behind introducing Ds, and he proved PTh(Ds) = JAN in
Medvedev [42]. JAN denotes the logic IPC +¬p∨¬¬p named after Jankov who
studied it in Jankov [30]. In any Brouwer algebra B, the quotient of B by
the principal filter generated by a ∈ B is denoted B /a. The quotient B /a is
isomorphic to the interval [0, a] which is a Brouwer algebra under the opera-
tions inherited from B. Logics of the form PTh(Ds /a) have been studied in
Skvortsova [68]1, Sorbi [73], and Sorbi and Terwijn [75]. Our work is motivated
by the following question which remains open.

Question 3.0.10 ([75]). Is PTh(Ds /a) ⊆ JAN for all a>s 0
′?

Sorbi and Terwijn’s study of Question 3.0.10 in [75] lead them to ask whether
every degree>s 0

′ bounds a join-irreducible degree>s 0
′ because a “yes” answer

to this question implies a “yes” answer to Question 3.0.10. However, Sorbi and
Terwijn conjectured that there is a degree >s 0

′ that bounds no join-irreducible
degree >s 0

′, and we prove that this is correct (Theorem 3.2.5). We also provide
slight extensions to some of the results in [73], thereby widening the class of
degrees a for which PTh(Ds /a) ⊆ JAN is known.

Third, we use techniques similar to those used to characterize the join-
irreducible degrees to prove that the filter generated by the non-minimum de-
grees of closed mass problems is not prime (Theorem 3.4.3). This problem was
posed in Bianchini and Sorbi [9] and in Sorbi [74].

1Skvortsova and Dyment are the same person. Dyment got married and became Skvortsova.
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3.1 Characterizing the join-irreducible Medvedev degrees

A Turing ideal is a set I ⊆ ωω that is closed downward under ≤T (i.e., f ∈
I ∧ g≤T f→ g ∈ I) and closed under ⊕ (i.e., f, g ∈ I→ f ⊕ g ∈ I). We prove
that a ∈ Ds is join-irreducible if and only if a = degs(ω

ω \ I) for some Turing
ideal I.

For a mass problem A, let C(A) denote the Turing upward-closure of A:
C(A) = {f | (∃g ∈ A)(f ≥T g)}. A mass problem A is called Turing upward-
closed if A = C(A). The identity functional witnesses C(A)≤sA for any mass
problem A, and if A and B are mass problems such that A is Turing upward-
closed, then A≤s B if and only if B ⊆ A. Our starting point is the following
observation.

Lemma 3.1.1 ([74]). If A is a mass problem such that degs(A) is join-irreducible, then
ωω \ C(A) is a Turing ideal.

Proof. We prove the contrapositive. If ωω \ C(A) is not a Turing ideal, then
there are f, g /∈ C(A) with f ⊕ g ∈ C(A). This means that {f}, {g}�sA but
{f}+{g}≥sA. Thus degs(A) is join-reducible.

The next lemma is the main step in our characterization.

Lemma 3.1.2. If A is a mass problem such that degs(A) is join-irreducible, then
A≡s C(A)

Proof. We prove the contrapositive. Suppose A 6≡s C(A). Then it must be that
A�s C(A). We find mass problemsX and Y such thatX ,Y �sA butX +Y ≥sA.
Thus degs(A) is join-reducible.

To findX and Y , first find a sequence (hn | n ∈ ω) of functions and a sequence
(en | n ∈ ω) of indices such that

(i) Φen(hn) ∈ A for all n ∈ ω,
(ii) Φn(h2n) /∈ A and Φn(h2n+1) /∈ A for all n ∈ ω, and

(iii) hn(0) = 〈n, e0, e1, . . . , en−1 〉 for all n ∈ ω.

We find the desired sequences by iterating the following claim.

Claim. If A�sC(A), then for every e,m ∈ ω there is an h ∈ C(A) such that h(0) =
m and Φe(h) /∈ A.

Proof of claim. Suppose not. Then there are e,m ∈ ω such that h(0) = m implies
Φe(h) ∈ A for all h ∈ C(A). Thus h 7→ Φe(m

ah) is a reduction witnessing
A≤s C(A), a contradiction.

Suppose we have hi and ei for all i < n. To find hn and en, let e = bn/2c
and let m = 〈n, e0, e1, . . . , en−1 〉. By the claim, there is an hn ∈ C(A) such that
hn(0) = m and Φe(hn) /∈ A. The fact that hn ∈ C(A) means that there is an en
such that Φen(hn) ∈ A.
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Now set X = {h2n | n ∈ ω} and Y = {h2n+1 | n ∈ ω}. Then Φe(X ) * A and
Φe(Y) * A for each e by item (ii). Hence X ,Y �sA. The following reduction
witnesses X +Y ≥sA.

Given h, decompose h as h = f ⊕ g and decode f(0) and g(0) as f(0) =
〈 2n, x0, x1, . . . , x2n−1 〉 and g(0) = 〈 2m + 1, y0, y1, . . . , y2m 〉. If either f(0) or g(0)
is not of the required form, then output the 0 function (as such an h cannot be
in X +Y). Otherwise output Φx2m+1(g) if 2n > 2m + 1 and output Φy2n(f) if
2m+ 1 > 2n.

Suppose this reduction is applied to some h = h2n ⊕ h2m+1 ∈ X +Y . In
this case f = h2n, g = h2m+1, and f(0) and g(0) are of the required form by
item (iii). So if 2n > 2m + 1 we output Φe2m+1(h2m+1) and if 2m + 1 > 2n we
output Φe2n(h2n). Both alternatives are in A by item (i). Thus X +Y ≥sA.

Theorem 3.1.3. A Medvedev degree a is join-irreducible if and only if a = degs(ω
ω\I)

for some Turing ideal I.

Proof. Suppose a is join-irreducible, and let A be a mass problem such that a =
degs(A). Then I = ωω \ C(A) is a Turing ideal by Lemma 3.1.1, A≡sC(A) by
Lemma 3.1.2, and therefore A≡s C(A) = ωω \ I. Hence a = degs(ω

ω \ I) for the
Turing ideal I.

Conversely, suppose I is a Turing ideal and let X and Y be mass problems
such that X ,Y �s ω

ω \ I. We show that X +Y �s ω
ω \ I. Observe X ,Y * ωω \ I

for otherwise the identity functional would witnessX ,Y ≥s ω
ω\I. Let f ∈ X ∩I

and let g ∈ Y ∩ I, thereby making f ⊕ g ∈ (X +Y) ∩ I. The function f ⊕ g is in
X +Y , but it does not compute any member of ωω \I. Therefore X +Y �s ω

ω \I.
Hence degs(ω

ω \ I) is join-irreducible.

Theorem 3.1.3 is also valid with Dw in place of Ds, a fact first noticed by
Terwijn [76]. The proof of Lemma 3.1.1 also works forDw, and it is easy to check
that A≡w C(A) for any mass problem A (i.e., the Dw analogue of Lemma 3.1.2
is trivial). This gives the forward direction of Theorem 3.1.3 for Dw. The proof
of the reverse direction of Theorem 3.1.3 also works for Dw.

3.2 Degrees that bound no join-irreducible degrees >s 0
′

Recall that JAN is the intermediate logic IPC +¬p∨¬¬p. The results of this
section and the next are motivated by Question 3.0.10: is PTh(Ds /a) ⊆ JAN for
every a>s 0

′?

PTh(Ds /0
′) = CPC because Ds /0

′ ∼= [0,0′] = {0,0′}. In fact, 0′ is the only
degree for which PTh(Ds /0

′) = CPC. This is because if a>s 0
′, then 0′→ a = a,

hence 0′×(0′→ a) = 0′. Thus let p = 0′ to see that the formula p∨¬p is not valid
in PTh(Ds /a).

Furthermore, if a>s 0
′, then we cannot have PTh(Ds /a) ) JAN. It is an

easy check that in any Brouwer algebra B with meet-irreducible 0 (such as the
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algebras Ds /a), ¬p∨¬¬p ∈ PTh(B) if and only if 1 is join-irreducible. How-
ever, if a>s 0

′ is join-irreducible, then PTh(Ds /a) = JAN [73]. Thus if a>s 0
′

and PTh(Ds /a) ⊇ JAN, then ¬p∨¬¬p ∈ PTh(Ds /a) which implies that a is
join-irreducible which implies that PTh(Ds /a) = JAN. Thus a “no” answer
to Question 3.0.10 must yield a degree a such that PTh(Ds /a) * JAN and
JAN * PTh(Ds /a).

The following theorem shows that to give a “yes” answer to Question 3.0.10
it suffices to show that every a>s 0

′ bounds a finite meet of join-irreducible de-
grees >s 0

′.

Theorem 3.2.1 ([73]). If a is a degree such that a≥s

∏n
i=0 di for join-irreducible de-

grees di>s 0
′, i ≤ n, then PTh(Ds /a) ⊆ JAN.

(The above theorem is stated more generally in [73]. Each degree di for i ≤ n
is allowed to be either join-irreducible or De-irreducible. See the parenthetical
discussion following Theorem 3.3.1 for the definition of De-irreducible and an
explanation of why we do not consider such degrees here. Theorem 3.3.1 is a
restatement of [73] Theorem 2.11 which is the main tool used to prove Theo-
rem 3.2.1.)

The degrees of the mass problems Bf = {g | g�T f} play an important role in
the study of Question 3.0.10. The following lemma from Sorbi [72] encapsulates
the properties of the degs(Bf )’s that we need in this section and the next.

Lemma 3.2.2 ([72]).

(i) Every degs(Bf ) is join-irreducible.
(ii) Every

∑n
i=0 degs(Bfi) is meet-irreducible.

(iii) Let V and J be finite sets and let Uv and Ij be finite sets for each v ∈ V and j ∈ J .
Let xvu and yji be degrees of the form degs(Bf ) for every v ∈ V , u ∈ Uv, j ∈ J , and
i ∈ Ij . Let a =

∑
v∈V

∏
u∈Uv

xvu and b =
∑

j∈J
∏

i∈Ij y
j
i . Then a≤s b if and only

if (
∀v ∈ V

)(
∃j ∈ J

)(
∀i ∈ Ij

)(
∃u ∈ Uv

)(
xvu≤s y

j
i

)
.

(iv) In the notation of item (iii),

a→b =
∑{∏

i∈Ij

yji

∣∣∣ (∀v ∈ V )(∏
i∈Ij

yji �s

∏
u∈Uv

xvu

)}

(where the empty join is 0).

Proof. Item (i) is by Theorem 3.1.3 and item (ii) is by Corollary 3.0.9. Item (iv)
is proved in [72]. Item (iii) follows from item (iv) because a≤s b if and only if
b→ a = 0.
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In [75] it is asked if every degree a>s 0
′ bounds a join-irreducible de-

gree >s 0
′, and it is conjectured that this is not the case based on the evidence

provided by the following theorem.

Theorem 3.2.3 ([75]). There is a degree a>s 0
′ such that a�s degs(Bf ) for every

f >T 0.

Our characterization of the join-irreducible degrees implies that every join-
irreducible degree >s 0

′ bounds some degree degs(Bf ) with f >T 0. Thus the
conjecture is correct.

Corollary 3.2.4 (to Theorem 3.1.3). If a>s 0
′ is join-irreducible, then a≥s degs(Bf )

for some f >T 0.

Proof. If a is join-irreducible, then, by Theorem 3.1.3, a = degs(ω
ω \ I) for some

Turing ideal I. If degs(ω
ω \ I)>s 0

′, then I contains some function f >T 0. Thus
ωω \ I ⊆ Bf . Hence a = degs(ω

ω \ I)≥s degs(Bf ).

Theorem 3.2.5. There is a degree a>s 0
′ such that every degree x with 0′<s x≤s a is

join-reducible.

Proof. By Theorem 3.2.3, let a>s 0
′ be such that a�s degs(Bf ) for every f >T 0.

This a is the desired degree because, by Corollary 3.2.4, if a≥s x for some join-
irreducible x>s 0

′, then a≥s degs(Bf ) for some f >T 0.

The degree a satisfying Theorem 3.2.3 was constructed by diagonalization
in [75]. We can give somewhat more concrete examples of degrees satisfying
Theorem 3.2.3 and Theorem 3.2.5. Recall the following definitions. Functions
f, g >T 0 are a Turing minimal pair if, for all h, h≤T f, g implies h≤T 0. A function
f has minimal Turing degree if, for all h, h<T f implies h≤T 0. Minimal pairs
and minimal degrees exist. In fact, there are continuum many distinct minimal
Turing degrees. See Lerman [37] Section II.4 and Section V.2.

Theorem 3.2.6. If f and g are a minimal pair, then the degree a = degs(Bf )× degs(Bg)
witnesses Theorem 3.2.5.

Proof. Let f and g be a minimal pair. Then degs(Bf ), degs(Bg)>s 0
′ because

f, g >T 0. Thus degs(Bf )× degs(Bg)>s 0
′ because 0′ is meet-irreducible by Corol-

lary 3.0.9. To show that degs(Bf )× degs(Bg) bounds no join-irreducible de-
gree >s 0

′, it suffices by Corollary 3.2.4 to show that degs(Bf )× degs(Bg) bounds
no degs(Bh) for h>T 0. This is true because f, g is a minimal pair, so for any
h>T 0, either h�T f or h�T g. Thus either h ∈ Bf or h ∈ Bg which means
Bf ×Bg contains a function ≡T h. Bh contains no function ≤T h, therefore
Bf ×Bg�s Bh.

We can extend the idea behind Theorem 3.2.6 to find a degree a>s 0
′ that

does not bound any finite meet of join-irreducible degrees >s 0
′. Several of our

examples in this section and the next are of the form degs

(⋃
i∈ω i

aDi
)

for mass
problems Di, i ∈ ω.
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Lemma 3.2.7. Let d = degs

(⋃
i∈ω i

aDi
)

where degs(Di)>s 0
′ for each i ∈ ω. Then

d>s 0
′.

Proof. Suppose for a contradiction that Φ is a reduction witnessing d≤s 0
′ (i.e.,

Φ(f) ∈
⋃
i∈ω i

aDi for all f >T 0). Let σ ∈ ω<ω be such that Φ(σ)(0)↓ and let
i = Φ(σ)(0). Then f 7→ Φ(σaf) is a reduction witnessing 0′≥s degs(Di), contra-
dicting degs(Di)>s 0

′.

Theorem 3.2.8. There is a degree a>s 0
′ such that no degree x with 0′<s x≤s a is of

the form
∏n

i=0 di for join-irreducible degrees di>s 0
′, i ≤ n.

Proof. By Corollary 3.2.4, it suffices to find a degree a>s 0
′ which is not above

any degree of the form
∏n

i=0 degs(Bfi) where fi>T 0 for each i ≤ n. Let {gi | i ∈
ω} be a countable collection of functions all of distinct minimal Turing degree.
Let A =

⋃
i∈ω i

aBgi and put a = degs(A). Lemma 3.2.7 proves that a>s 0
′.

Now consider any degree
∏n

i=0 degs(Bfi), where fi>T 0 for each i ≤ n. There
is a j ∈ ω such that, for each i ≤ n, gj �T fi. Thus for this j, degs(Bgj)�s degs(Bfi)
for each i ≤ n. Therefore degs(Bgj)�s

∏n
i=0 degs(Bfi) because degs(Bgj) is meet-

irreducible. Clearly degs(Bgj)≥s a, so a�s

∏n
i=0 degs(Bfi) as well.

For mass problems Ai, i ∈ ω, the Medvedev degree degs

(⋃
i∈ω i

aAi
)

is not in
general the greatest lower bound of the degrees degs(Ai), i ∈ ω. Such greatest
lower bounds need not even exist. For example, the degrees degs(Bgi), i ∈ ω
from Theorem 3.2.8 do not have a greatest lower bound. This follows from re-
sults in Dyment [23] (specifically, see Lemma 2.7.1), which studies when count-
able collections of degrees have least upper bounds and greatest lower bounds.

If a is a degree such that a�s d for all join-irreducible d>s 0
′, then a→d = d

for all join-irreducible d>s 0
′. The degree a constructed in Theorem 3.2.8 enjoys

a similar property.

Theorem 3.2.9. There is a degree a>s 0
′ such that a→

∏n
i=0 di =

∏n
i=0 di whenever

di>s 0
′ and is join-irreducible for each i ≤ n.

Proof. As in Theorem 3.2.8, let {gi | i ∈ ω} be a countable collection of functions
all of distinct minimal Turing degree, let A =

⋃
i∈ω i

aBgi , and put a = degs(A).
Suppose di>s 0

′ and is join-irreducible for each i ≤ n. By Theorem 3.1.3, for
each i ≤ n let Ii ⊆ ωω be a Turing ideal such that di = degs(ω

ω \ Ii). Thus∏n
i=0 di = degs

(⋃n
i=0 i

a(ωω \ Ii)
)

and

a→
n∏
i=0

di = degs

({
eag

∣∣∣ (∀f ∈ A)(Φe(f ⊕ g) ∈
n⋃
i=0

ia(ωω \ Ii)
)})

.

We now describe a reduction witnessing a→
∏n

i=0 di≥s

∏n
i=0 di.

Given eag, for each i ≤ n + 1 search for a string iaσi such that Φe((i
aσi) ⊕

g)(0)↓. If there is a k ≤ n such that

Φe((i
aσi)⊕ g)(0) = Φe((j

aσj)⊕ g)(0) = k
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for two distinct i, j ≤ n + 1, choose the least such k and output kag. Otherwise
output 0.

Suppose we apply this reduction to eag ∈ A→
⋃n
i=0 i

a(ωω \ Ii). Φe(f ⊕ g)
must be total for each f ∈ A, and for each i ∈ ω there is an f ∈ A with f(0) = i.
Thus for each i ≤ n+ 1 the search finds a string iaσi such that Φe((i

aσi)⊕ g)(0)↓.
Moreover, each iaσi can be extended to a function in A, so Φe((i

aσi)⊕ g)(0) ≤ n
for each i ≤ n + 1. Therefore there is a least k ≤ n for which there are distinct
i, j ≤ n+1 with Φe((i

aσi)⊕g)(0) = Φe((j
aσj)⊕g)(0) = k. The reduction outputs

kag, so we must show that kag ∈
⋃n
i=0 i

a(ωω \ Ii) which means we must show
that g /∈ Ik. Suppose for a contradiction that g ∈ Ik. The functions gi and gj have
distinct minimal degree, so either g�T gi or g�T gj (g >T 0 because a�s

∏n
i=0 di

by Theorem 3.2.8). For the sake of argument, suppose g�T gi. Then σi
ag�T gi

as well, so σiag ∈ Bgi and iaσi
ag ∈ A. However, Φe((i

aσi
ag)⊕ g) ∈ ka(ωω \ Ik)

by the choice of iaσi. This cannot be because (iaσi
ag)⊕ g ∈ Ik, thus anything it

computes is also in Ik.

By Corollary 3.3.6, the degree a = degs

(⋃
i∈ω i

aBgi
)

used to witness Theo-
rem 3.2.8 and Theorem 3.2.9 satisfies PTh(Ds /a) ⊆ JAN and so does any degree
that bounds it. There are, however, degrees >s 0

′ that do not bound any degree
of the form degs

(⋃
i∈ω i

aDi
)

where degs(Di)>s 0
′ and is join-irreducible for each

i ∈ ω.

Theorem 3.2.10. There is a degree a>s 0
′ such that a�s degs

(⋃
i∈ω i

aDi
)

whenever
degs(Di)>s 0

′ and is join-irreducible for each i ∈ ω.

Proof. Let Di be such that degs(Di)>s 0
′ and is join-irreducible for each i ∈ ω. By

Corollary 3.2.4, for every i ∈ ω there is an fi>T 0 such that Di≥s Bfi . The mass
problem Bfi is Turing upward-closed for each i ∈ ω, so Di ⊆ Bfi for each i ∈ ω.
Thus

⋃
i∈ω i

aDi ⊆
⋃
i∈ω i

aBfi . Hence it suffices to find a degree a>s 0
′ that does

not bound any degree of the form degs

(⋃
i∈ω i

aBfi
)
, where fi>T 0 for each i ∈ ω.

We use the same construction used in [75] to prove Theorem 3.2.3. Build mass
problemsAs ⊆ {g | g >T 0} such that {g | g >T 0}\As is finite for each s ∈ ω. Set
A0 = {g | g >T 0}. At stage s + 1, choose hs>T 0 such that hs does not compute
any of the (finitely many) functions in {g | g >T 0} \ As. If Φs(hs) is total and
>T 0, let gs = Φs(hs) and set As+1 = As \ {gs}. Otherwise set As+1 = As. Put
A =

⋂
s∈ωAs and put a = degs(A).

To see a>s 0
′, observe that by construction Φs(hs) /∈ A for each s ∈ ω. Now

let fi>T 0 for each i ∈ ω. We need to show that Φe(A) *
⋃
i∈ω i

aBfi for every
index e. To do this, we first show that the functions in {g | g >T 0} \ A have
distinct Turing degree. Suppose that gi leaves A at stage i+ 1 and gj leaves A at
stage j+1 for i+1 < j+1 (i.e., at stage i+1 we had Φi(hi) = gi>T 0, and at stage
j + 1 we had Φj(hj) = gj >T 0). Then gi�T gj because otherwise gi≤T gj ≤T hj ,
contradicting that hj was chosen �T gi at stage j + 1. Now suppose Φe(g) is
total for all g ∈ A. Fix any σ ∈ ω<ω such that Φe(σ)(0)↓, and let n be such
that Φe(σ)(0) = n. A is missing at most one function ≡T fn, so let g ∈ A be
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such that σ ⊂ g and g≡T fn. Then Φe(g)(0) = n, but Φe(g) /∈ naBfn . Hence
Φe(A) *

⋃
i∈ω i

aBfi .

Question 3.2.11. Let a be the degree constructed in Theorem 3.2.10. Does
a→ degs

(⋃
i∈ω i

aDi
)

= degs

(⋃
i∈ω i

aDi
)

whenever degs(Di)>s 0
′ and is join-

irreducible for each i ∈ ω? Is PTh(Ds /a) ⊆ JAN?

Finally, we note that the answer to Question 3.0.10 is “no” for Dw in place
of Ds. Let f >T 0 have minimal Turing degree, and let a = degw(Bf ). Then, in
Dw, [0, a] = {0,0′, a} and JAN ( PTh(Dw /a) ( CPC.

3.3 New degrees whose corresponding logic is contained in JAN

We extend Theorem 3.2.1 by proving that PTh(Ds /a) ⊆ JAN for degrees a
such that a≥s degs

(⋃
i∈ω i

aDi
)

for some collection of join-irreducible degrees
degs(Di)>s 0

′, i ∈ ω.
A propositional formula is called positive if the connective ‘¬’ does not appear

in it. For a logic L let L+ denote the positive formulas in L, and for a Brouwer
algebra B let PTh+(B) denote the set of positive formulas valid in B. JAN is
the maximum intermediate logic L for which L+ = IPC+ [30]. This means that
L+ = IPC+ implies L ⊆ JAN for any intermediate logic L. Thus PTh+(B) =
IPC+ implies PTh(B) ⊆ JAN for any Brouwer algebra B.

Let B1 and B2 be Brouwer algebras. An injection f : B1→B2 is called a B-
embedding if it preserves 0, 1, +, ×, and → (and therefore also ¬). An injec-
tion f : B1→B2 is called a B+-embedding if it preserves 0, +, ×, and → (but
not necessarily 1 or ¬). If B1 B-embeds into B2, then PTh(B2) ⊆ PTh(B1),
and if B1 B

+-embeds into B2, then PTh+(B2) ⊆ PTh+(B1). Both of these facts
are easily checked in light of [49] Theorem VI.2.4. If a ≤ b are in a Brouwer
algebra B, then B /a B+-embeds into B /b by the identity. This implies that
PTh+(B /b) ⊆ PTh+(B /a), and it follows that the a for which PTh(B /a) ⊆ JAN
is upward-closed in any Brouwer algebra B.

Our goal is to B+-embed a certain class of Brouwer algebras into Ds /a. For
any set X , let Fr(X) denote the free distributive lattice generated by X and let
0 ⊕ Fr(X) denote Fr(X) with a new bottom element 0. The elements of Fr(X)
are all of the form

∑
v∈V

∏
u∈Uv

xvu where V and the Uv are finite sets of indices
and the xvu are all in X (see for example Balbes and Dwinger [7] Section V.3). For
such representations,

∑
v∈V

∏
u∈Uv

xvu ≤
∑

j∈J
∏

i∈Ij y
j
i if and only if(

∀v ∈ V
)(
∃j ∈ J

)(
∀i ∈ Ij

)(
∃u ∈ Uv

)(
xvu = yji

)
.

If a, b ∈ Fr(X) are such that a � b, then a→ b exists. To see this, let a =∑
v∈V

∏
u∈Uv

xvu and b =
∑

j∈J
∏

i∈Ij y
j
i be representations for a and b. Then check

a→ b =
∑{∏

i∈Ij

yji

∣∣∣ (∀v ∈ V )(∏
i∈Ij

yji �
∏
u∈Uv

xvu

)}
.
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If a ≥ b are in Fr(X) for an infinite X , then a→ b fails to exist because in this
case Fr(X) has no least element. We see then that a→ b exists for every a, b ∈
0⊕ Fr(X).

If X is finite, then so are Fr(X) and 0 ⊕ Fr(X). Hence both are Brouwer
algebras. Let Fr(n) denote the free distributive lattice with n generators. The
logic LM =

⋂
n∈ω PTh(0 ⊕ Fr(n)) is called the Medvedev logic of finite problems.

(LM is usually defined in terms of Brouwer algebras isomorphic to the 0⊕Fr(n).
See [75] for details.) We take advantage of the fact that LM+ = IPC+ [42].

If X is infinite, then 0 ⊕ Fr(X) fails to be a Brouwer algebra only because it
lacks a top element. Therefore the notion of aB+-embedding makes sense when
we allow B1 or B2 to be 0 ⊕ Fr(X). If we let 0 ⊕ Fr(X) ⊕ 1 denote Fr(X) with a
new bottom element 0 and a new top element 1, then 0⊕ Fr(X)⊕ 1 is always a
Brouwer algebra.

For any partial order (P ,≤P), let Fr(P ,≤P) denote the free distributive
lattice generated by (P ,≤P). Fr(P ,≤P) is the quotient Fr(P)/≡ where, for
a =

∑
v∈V

∏
u∈Uv

xvu and b =
∑

j∈J
∏

i∈Ij y
j
i in Fr(P), a ≡ b if and only if

(a � b)∧(b � a), and a � b if and only if(
∀v ∈ V

)(
∃j ∈ J

)(
∀i ∈ Ij

)(
∃u ∈ Uv

)(
xvu ≤P y

j
i

)
.

Fr(P ,≤P) is always a distributive lattice, and 0 ⊕ Fr(P ,≤P) ⊕ 1 is always a
Brouwer algebra; also see [72].

The following lemmas facilitate our embeddings. Lemma 3.3.3 is a slight
generalization of the claim in the proof of [72] Lemma 2.3 and of [68] Lemma 6.
The embedding is done in Theorem 3.3.4 which is nearly identical to [73] The-
orem 2.11. Part of the reason for reproducing the proof here is to (hopefully)
correct the notational inconsistencies in the proof in [73]. We restate [73] Theo-
rem 2.11 for reference.
Theorem 3.3.1 ([73] Theorem 2.11). Let d =

∏n
i=0 di where di>s 0

′ and di is join-
irreducible for each i ≤ n. Then 0 ⊕ Fr(P ,≤P) ⊕ 1 B-embeds into Ds /d for every
countable partial order (P ,≤P).

(The above theorem is stated more generally in [73]. Each degree di for i ≤ n
is allowed to be either join-irreducible or De-irreducible. A degree a is dense if
it is of the form degs(A) where A is dense in ωω, and a degree d is De-irreducible
if a→d = d for all dense degrees a. We do not consider De-irreducible de-
grees in our version of [73] Theorem 2.11, which is Theorem 3.3.4, because in
Theorem 3.3.4 we require that the mass problems Di (which play the role of
the degrees di in [73] Theorem 2.11) are Turing upward-closed. Mass problems
that are Turing upward-closed are dense and hence their degrees are not De-
irreducible.)

Lemma 3.3.2 ([22]). If X �s Y are mass problems, then there is aW ⊆ X with |W| ≤
ω such thatW �s Y .

Proof. X �s Y means that there is no Turing functional Φ such that Φ(X ) ⊆ Y .
Thus for each functional Φe there must be some function fe ∈ X such that
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Φe(fe) /∈ Y . Let W consist of a choice of one such fe ∈ X for each functional
Φe.

Lemma 3.3.3. Let U , V , and Fi for i ∈ ω be mass problems such that⋃
i∈ω i

aFi≤s U +V and σaU ⊆ U for all σ ∈ ω<ω. Then there are mass problems
Vi for i ∈ ω such that

⋃
i∈ω i

aVi≡s V and Fi≤s U +Vi for each i ∈ ω.

Proof. Let U , V , and Fi for i ∈ ω be as in the statement of the lemma. Let Φ
be such that Φ(U +V) ⊆

⋃
i∈ω i

aFi. For each i ∈ ω, define Vi = {g ∈ V |
(∃σ ∈ ω<ω)(Φ(σ ⊕ g)(0) = i)}. V ≤s

⋃
i∈ω i

aVi is clear.
⋃
i∈ω i

aVi≤s V by the
reduction which, given g, searches for a σ ∈ ω<ω such that Φ(σ ⊕ g)(0)↓ and
outputs Φ(σ⊕g)(0)ag. To see iaFi≤s U +Vi, consider the reduction which, given
f ⊕ g, searches for a σ ∈ ω<ω such that Φ(σ⊕ g)(0) = i and outputs Φ((σaf)⊕ g).
If f ⊕ g ∈ U +Vi, then such a σ is found, σaf is in U , and Φ((σaf) ⊕ g) is in
iaFi.

Theorem 3.3.4. Let d = degs

(⋃
i∈ω i

aDi
)

where degs(Di)>s 0
′, degs(Di) is join-

irreducible, andDi is Turing upward-closed for each i ∈ ω. Then 0⊕Fr(2ω)B+-embeds
into Ds /d.

Proof. Let Di for i ∈ ω be as in the statement of the theorem, let D =
⋃
i∈ω i

aDi,
and let d = degs(D). Lemma 3.2.7 proves that d>s 0

′. By Lemma 3.3.2,
let A ⊆ {f | f >T 0} be a countable mass problem such that A�sD. Let
{fx | x ∈ 2ω} be a collection of functions such that fx |T fy for all x, y ∈ 2ω

with x 6= y and such that f �T fx for all f ∈ A and x ∈ 2ω. Such a sequence
can be constructed via standard recursion-theoretic techniques: build a perfect
tree whose paths are Turing incomparable and do not compute any functions in
A. See for example [37] Section II.4. Notice that Bfx ≤sA (because A ⊆ Bfx) for
each x ∈ 2ω.

Define G : 0 ⊕ Fr(2ω)→Ds as follows. Let G(0) = 0 and let G(x) = degs(Bfx)
on the generators x ∈ 2ω of Fr(2ω). Then extend G to all of 0 ⊕ Fr(2ω) so that
G
(∑

v∈V
∏

u∈Uv
xvu
)

=
∑

v∈V
∏

u∈Uv
G
(
xvu
)
. G preserves 0, +, and × by definition,

and G is injective and preserves → by Lemma 3.2.2 items (iii) and (iv). Hence
G is a B+-embedding (this is essentially [72] Corollary 2.5). Now define H : 0⊕
Fr(2ω)→Ds /d by H(a) = G(a)×d for all a ∈ 0 ⊕ Fr(2ω). This H is the desired
B+-embedding. By definition, H preserves 0, +, and ×. We must show that H
is injective and that H preserves→.

Clearly H(a) = 0 if and only if a = 0, so to show that H is injective
we let a, b ∈ Fr(2ω) be such that H(a)≤s H(b) and show that a ≤ b. Let
a =

∑
v∈V

∏
u∈Uv

xvu be a representation for a and let b =
∑

j∈J
∏

i∈Ij y
j
i be a

representation for b. H(a)≤s H(b) means that∑
v∈V

∏
u∈Uv

G
(
xvu
)
×d≤s

∑
j∈J

∏
i∈Ij

G
(
yji
)
×d.
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Therefore∑
v∈V

∏
u∈Uv

G
(
xvu
)
×d≤s

∑
j∈J

∏
i∈Ij

G
(
yji
)

=
∏{∑

j∈J

G
(
yjα(j)

) ∣∣∣ α ∈∏
j∈J

Ij

}
where the equality is by distributivity (

∏
j∈J Ij denotes the Cartesian product of

the Ij’s). Hence∑
v∈V

∏
u∈Uv

G
(
xvu
)
×d≤s

∑
j∈J

G
(
yjα(j)

)
for each α ∈

∏
j∈J

Ij.

Each
∑

j∈J G
(
yjα(j)

)
is meet-irreducible by Lemma 3.2.2 item (ii). Also,

d�s

∑
j∈J G

(
yjα(j)

)
for each α ∈

∏
j∈J Ij because

∑
j∈J G

(
yjα(j)

)
≤s degs(A) but

d�s degs(A). Thus∑
v∈V

∏
u∈Uv

G
(
xvu
)
≤s

∑
j∈J

G
(
yjα(j)

)
for each α ∈

∏
j∈J

Ij,

and this implies that∑
v∈V

∏
u∈Uv

G
(
xvu
)
≤s

∏{∑
j∈J

G
(
yjα(j)

) ∣∣∣ α ∈∏
j∈J

Ij

}
.

The left-hand side of the above inequality isG(a) and the right-hand side isG(b).
G is a B+-embedding, so we conclude a ≤ b.

If either of a, b ∈ 0 ⊕ Fr(2ω) is 0, then clearly H(a→ b) = H(a)→H(b). So
as before, let a =

∑
v∈V

∏
u∈Uv

xvu and let b =
∑

j∈J
∏

i∈Ij y
j
i be in Fr(2ω). We see

H(a→ b)≥s H(a)→H(b) because

H(a→ b) +H(a) = H((a→ b) + a)≥s H(b).

To show that H(a→ b)≤s H(a)→H(b), we show that if z ∈ Ds is such that
H(b)≤s H(a) + z, then H(a→ b)≤s z. Suppose H(b)≤s H(a) + z. That is,∑

j∈J

∏
i∈Ij

G
(
yji
)
×d≤s

(∑
v∈V

∏
u∈Uv

G
(
xvu
)
×d
)

+ z. (3.1)

Since a→ b =
∑{∏

i∈Ij y
j
i |
(
∀v ∈ V

)(∏
i∈Ij y

j
i �

∏
u∈Uv

xvu
)}

, we have

H(a→ b) = G(a→ b)×d

=
∑{∏

i∈Ij

G
(
yji
) ∣∣∣ (∀v ∈ V )(∏

i∈Ij

G
(
yji
)
�s

∏
u∈Uv

G
(
xvu
))}
×d.

It suffices to show that, given j ∈ J , if
∏

i∈Ij G
(
yji
)

satisfies(
∀v ∈ V

)(∏
i∈Ij

G
(
yji
)
�s

∏
u∈Uv

G
(
xvu
))
,
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then
∏

i∈Ij G
(
yji
)
×d≤s z. Suppose

∏
i∈Ij G

(
yji
)

is such a meet. Then we know(
∀v ∈ V

)(
∃u ∈ Uv

)(∏
i∈Ij

G
(
yji
)
�s G

(
xvu
))
.

By choosing such a u ∈ Uv for every v ∈ V and by appealing to Lemma 3.2.2
items (i) and (ii), we see that there is an α ∈

∏
v∈V Uv such that∏

i∈Ij

G
(
yji
)
�s

∑
v∈V

G
(
xvα(v)

)
. (3.2)

Distributing
∑

v∈V
∏

u∈Uv
G
(
xvu
)

in the right-hand side of (3.1) yields∏
i∈Ij

G
(
yji
)
×d≤s

∑
v∈V

G
(
xvα(v)

)
+ z.

The degree
∑

v∈V G
(
xvα(v)

)
is a finite join of degrees of the form degs(Bf ) and thus

has a representative U such that σaU ⊆ U for all σ ∈ ω<ω. So by Lemma 3.3.3
there are mass problems Zi for i ∈ Ij and Ẑi for i ∈ ω such that

z =
(∏
i∈Ij

degs(Zi)
)
× degs

(⋃
i∈ω

iaẐi
)
,

G
(
yji
)
≤s

∑
v∈V

G
(
xvα(v)

)
+ degs(Zi) for each i ∈ Ij, and

degs(Di)≤s

∑
v∈V

G
(
xvα(v)

)
+ degs(Ẑi) for each i ∈ ω.

Each G
(
yji
)

is join-irreducible, and G
(
yji
)
�s

∑
v∈V G

(
xvα(v)

)
by (3.2). Thus

G
(
yji
)
≤s degs(Zi) for each i ∈ ω, so

∏
i∈Ij G

(
yji
)
≤s

∏
i∈Ij degs(Zi). Each degs(Di)

is join-irreducible by assumption, and degs(Di)�s

∑
v∈V G

(
xvα(v)

)
because the

right-hand side is ≤s degs(A) but the left-hand side is not. It follows that
degs(Di)≤s degs(Ẑi) for each i ∈ ω, and so Ẑi ⊆ Di for each i ∈ ω because eachDi
is Turing upward-closed. Thus

⋃
i∈ω i

aẐi ⊆ D, so d≤s degs

(⋃
i∈ω i

aẐi
)
. There-

fore
∏

i∈Ij G
(
yji
)
×d≤s

(∏
i∈Ij degs(Zi)

)
× degs

(⋃
i∈ω i

aẐi
)

= z as desired.

Corollary 3.3.5. If a≥s d are degrees such that d = degs

(⋃
i∈ω i

aDi
)

where
degs(Di)>s 0

′ and is join-irreducible for each i ∈ ω, then 0 ⊕ Fr(2ω) B+-embeds into
Ds /a.

Proof. Let a, d, and Di for i ∈ ω be as in the statement of the corollary. Let
d0 = degs

(⋃
i∈ω i

aC(Di)
)

and notice that d≥s d0. Di≡s C(Di) for each i ∈ ω by
Lemma 3.1.2, so d0 satisfies the hypotheses of Theorem 3.3.4. Thus 0 ⊕ Fr(2ω)
B+-embeds into Ds /d0 which B+-embeds into Ds /a.
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Corollary 3.3.6. If a≥s d are degrees such that d = degs

(⋃
i∈ω i

aDi
)

where
degs(Di)>s 0

′ and is join-irreducible for each i ∈ ω, then PTh(Ds /a) ⊆ JAN.

Proof. The Brouwer algebra 0 ⊕ Fr(n) B+-embeds into 0 ⊕ Fr(2ω) for each n,
and 0 ⊕ Fr(2ω) B+-embeds into Ds /a by Corollary 3.3.5. Thus PTh+(Ds /a) ⊆⋂
n∈ω PTh+(0⊕ Fr(n)) = LM+ = IPC+. So PTh(Ds /a) ⊆ JAN.

Theorem 3.3.4 can be modified toB-embed 0⊕Fr(2ω)⊕1 intoDs /d for degrees
d as in the statement of Theorem 3.3.4. However, if a ≤ b in a Brouwer algebra
B, it is not in general the case that B /a B-embeds into B /b. So the proof of
Corollary 3.3.5 fails for B-embedding 0 ⊕ Fr(2ω) ⊕ 1. Theorem 3.3.4 can also
be modified to prove a more precise analogue of [73] Theorem 2.11 (restated as
Theorem 3.3.1). Let d = degs

(⋃
i∈ω i

aDi
)

where degs(Di)>s 0
′, degs(Di) is join-

irreducible, and Di is Turing upward-closed for each i ∈ ω. Then 0 ⊕ Fr(P ,≤P
)⊕ 1 B-embeds into Ds /d for every countable partial order (P ,≤P).

3.4 Fcl is not prime

Recall that a filter F in a lattice is called prime if a+ b ∈ F→ a ∈ F∨ b ∈ F for
all a and b in the lattice. Theorem 3.1.3 can be phrased as a characterization of
the prime principal filters in Ds: a degree a generates a prime filter if and only
if a = degs(ω

ω \ I) for some Turing ideal I. There is little general theory of the
non-principal filters in Ds, but several specific cases have been studied in Dy-
ment [22], Sorbi [70], Bianchini and Sorbi [9], and Lewis, Shore, and Sorbi [39].
See also [74] for a summary of many of the results appearing in these works. We
consider the filters F and Fcl.

Definition 3.4.1.

• A degree a is called dense (closed) if a = degs(A) for an A that is dense
(closed) in ωω.
• I denotes the ideal generated by {a | a is dense}.
• F denotes Ds \ I.
• Fcl denotes the filter generated by {a | a>s 0 and is closed}.

The join and meet of two dense degrees is dense [22], and the join and meet of
two closed degrees is closed [9]. It follows that I = {b | (∃a≥s b)(a is dense)}
and Fcl = {b | (∃a≤s b)(a>s 0 and is closed)}. The basic properties of I, F,
and Fcl are as follows. I is a prime ideal [70], F is a prime filter [9], I is not
principal [22], F and Fcl are not principal [9], and Fcl ( F [9]. Both [9] and [74]
ask for a proof that Fcl is not prime. We provide a proof of this fact now.

Lemma 3.4.2. For any f ∈ ωω there are A,B ⊆ ωω such that A+B≥s{f} and, for
any closed C ⊆ ωω, if A≥s C or B≥s C, then C contains a recursive function.
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Proof. Fix a recursive bijection ω ↔ ω<ω. For e, n ∈ ω, if

∀m∀σ(∃τ ⊇ σ)(Φe(n
aτ)(m)↓),

then define η(e, n, i) ∈ ω<ω by induction on i ∈ ω as follows. Let η(e, n, 0) = naσ,
where σ is the least string such that Φe(n

aσ)(0)↓. Given η(e, n, i), let η(e, n, i +
1) = η(e, n, i)a0aσ, where σ is the least string such that Φe(η(e, n, i)a0aσ)(i+1)↓.

Let f ∈ ωω. We construct A and B such that the following conditions hold.

• If g ∈ A, then g(0) has the form

g(0) = 〈 `, 〈n0, x0, y0 〉, . . . , 〈n`−1, x`−1, y`−1 〉 〉,

where ` ∈ ω and ni ∈ ω, xi ∈ {0, 1}, and yi ∈ ω for each i < `.

• If g ∈ A and 〈ne, 0, ye 〉 is in the eth position of g(0), then

– ∃m∃σ(∀τ ⊇ σ)(Φe(ne
aτ)(m)↑), and

– any h ∈ B with h(0) = ne is of the form h = ne
aσaf , where |σ| = ye.

• If g ∈ A and 〈ne, 1, ye 〉 is the eth position of g(0), then

– ∀m∀σ(∃τ ⊇ σ)(Φe(ne
aτ)(m)↓), and

– any h ∈ B with h(0) = ne is of the form h = η(e, ne, i)
a1af for some

i ∈ ω.

• The above properties hold with the roles of A and B reversed.

We construct A and B in stages. The construction is similar to the construc-
tion in Lemma 3.1.2 in that if g goes into A before h goes into B, then h(0) codes
how to recover f from g, and similarly with the roles of A and B reversed. Start
at stage 0 with A = ∅, B = ∅, s = 〈 〉, and t = 〈 〉.

Stage e+ 1: Set ne = eat.

Case 1: ∃m∃σ(∀τ ⊇ σ)(Φe(ne
aτ)(m)↑). Choose such a σ and put neaσaf inA.

Update s = sa 〈ne, 0, |σ| 〉.
Case 2: ∀m∀σ(∃τ ⊇ σ)(Φe(ne

aτ)(m)↓). Put the functions η(e, ne, i)
a1af in A

for each i ∈ ω. Update s = sa 〈ne, 1, 0 〉.
Repeat the above procedure with the roles of A and B reversed and the roles

of s and t reversed. This completes stage e + 1. Then go on to stage e + 2. This
completes the construction.

Suppose A≥s C where C is closed. We show that C contains a recursive func-
tion. The proof with B in place of A is the same. Let Φe(A) ⊆ C. Consider stage
e + 1 of the above construction. Case 1 must not have occurred because other-
wiseAwould contain a function neaσaf such that Φe(ne

aσaf) is not total. Thus
case 2 occurred, and so A contains the function η(e, ne, i)

a1af for each i ∈ ω.
Let k be the recursive function k = ne

aσ0
a0aσ1

a0aσ2
a0a · · · , where η(e, ne, i) =
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ne
aσ0

a0a · · ·a 0aσi for each i ∈ ω (think of k as the “limit” of the strings η(e, ne, i)
as i → ∞). Then Φe(η(e, ne, i)

a1af) ∈ C and Φe(η(e, ne, i)
a1af) � i = Φe(k) � i

for each i ∈ ω. Thus C contains the recursive function Φe(k) because C is closed.
We now describe a uniform procedure for producing f from g ⊕ h ∈ A+B.

First decode h(0) as h(0) = 〈 `, 〈n0, x0, y0 〉, . . . , 〈n`−1, x`−1, y`−1 〉 〉 and look for
g(0) among the ne. If 〈 g(0), 0, ye 〉 appears in h(0) at position e, then output g
from position ye + 1 onward as in this case g = σaf for some string σ of length
ye + 1. If 〈 g(0), 1, 0 〉 appears in h(0) at position e, then g = η(e, g(0), i)a1af
for some i ∈ ω. Compute which i by successively computing the η(e, g(0), j),
matching them against g, and checking if the next bit of g is 0 (in which case
compute η(e, g(0), j + 1)) or 1 (in which case j = i). Output f once i is found.

The number g(0) appears among the ne coded into h(0) if g went intoA before
h went into B. Otherwise h went into B before g went into A, so h(0) appears
among the ne coded in g(0). In this case, switch the roles of g and h and apply
the above procedure to compute f .

Theorem 3.4.3. Fcl is not prime. In fact, if G ⊆ Fcl, G 6= {1} is a filter, then G is not
prime.

Proof. Suppose G ⊆ Fcl is a filter such that G 6= {1}. Let f >T 0 be such that
degs({f}) ∈ G. Let A,B ⊆ ωω be as in Lemma 3.4.2 for this f . Let a = degs(A)
and b = degs(B). Then a,b /∈ G because a,b /∈ Fcl, but a + b ∈ G because
a + b≥s degs({f}).

If x and y are degrees such that y is closed and y�s x, then there is no dense
degree z such that y≤s x+ z [39]. Therefore, if G ⊆ Fcl, G 6= {1} is a filter, then
any degrees a and b witnessing that G is not prime must both be in F \G.

The results of the previous section suggest two new filters to study.

Definition 3.4.4.

• G denotes the filter generated by

{d | d>s 0
′ and is join-irreducible}.

• H denotes the filter generated by{
degs

(⋃
i∈ω

iaDi
) ∣∣∣ (∀i ∈ ω)(degs(Di)>s 0

′ and is join-irreducible)

}
.

G is exactly the set of all degrees b for which b≥s

∏n
i=0 di for some join-

irreducible degrees di>s 0
′, i ≤ n, and H is exactly the set of all degrees b for

which b≥s degs

(⋃
i∈ω i

aDi
)

for some join-irreducible degrees degs(Di)>s 0
′, i ∈

ω.

Theorem 3.4.5. Fcl ( G ( H ( {a | a>s 0
′}. G * F (hence also H * F). Neither G

nor H is principal.
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Proof. Every closed degree >s 0 bounds a join-irreducible degree >s 0
′ [75].

Hence Fcl ⊆ G. G ⊆ H is clear. To see G * F, observe that every Bf is dense, so if
f >T 0, then degs(Bf ) ∈ G \F. This also shows G * Fcl. The degree constructed
in Theorem 3.2.8 witnesses H * G. The degree constructed in Theorem 3.2.10
witnesses {a | a>s 0

′} * H. We show that G is not principal. The proof for H is
the same. First, ifA is countable and contains no recursive functions, then there
is a function f >T 0 such that g�T f for all g ∈ A. Thus Bf ≤sA (as A ⊆ Bf ) for
this f . Every degs(Bf ) for f >T 0 is in G, so every degs(A) where A is countable
and contains no recursive function is in G. If G were principal, it would be gen-
erated by a degree x such that x≤s degs(A) for all countable A not containing a
recursive function. By Lemma 3.3.2, the only such x are 0 and 0′. We know 0
and 0′ are not in G, so G cannot be principal.

We end with a question.

Question 3.4.6.

• Is F ⊆ G? Is F ⊆ H?
• Is G prime? Is H prime?
• Is {a | PTh(Ds /a) ⊆ JAN} a filter?

To prove that {a | PTh(Ds /a) ⊆ JAN} is a filter, it suffices to prove that
PTh(Ds /(a×b)) ⊆ JAN whenever both PTh(Ds /a) and PTh(Ds /b) are ⊆ JAN
because {a | PTh(Ds /a) ⊆ JAN} is upward-closed in Ds.
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CHAPTER 4
FORCING NO BIG CHAINS IN THE POWER SET OF THE REALS

Let κ ≤ λ be infinite cardinals. Independence phenomena concerning the
question of whether or not there is a chain (i.e. linearly ordered subset) in (2κ,⊆)
of cardinality λ were studied extensively by Baumgartner [8] and Mitchell [44].
However, the particular case of κ = 2ω and λ = 22ω was not discussed explic-
itly. In the positive direction, the following results appear in Baumgartner [8].
Baumgartner attributes his techniques to Sierpinski.

Theorem 4.0.7 (see [8]). If 2<κ = κ, then there is a chain in (2κ,⊆) of cardinality 2κ.

Corollary 4.0.8 (see [8]). ZFC + CH proves that there is a chain in
(
22ω ,⊆

)
of cardi-

nality 22ω . Thus if ZFC is consistent, then so is ZFC + “there is a chain in
(
22ω ,⊆

)
of

cardinality 22ω .”

Proof. CH implies 2<ω1 = ω1. So apply Theorem 4.0.7 with κ = ω1.

In the negative direction, Comfort and Remus noticed in [20] that the consis-
tency of ZFC + “there is no chain in

(
22ω ,⊆

)
of cardinality 22ω” indeed follows

from Baumgartner’s results in [8]. The main purpose of this chapter is to give
a more explicit proof of the consistency of ZFC + “there is no chain in

(
22ω ,⊆

)
of cardinality 22ω” (Corollary 4.2.6). We thank both Todorcevic and Mitchell for
independently suggesting the proof that we give.

The author was introduced to the foregoing problem via the Medvedev de-
grees. In [77], Terwijn uses Corollary 4.0.8 to prove that if ZFC is consistent,
then so is ZFC + “there is a chain in the Medvedev degrees of cardinality 22ω .”
We prove the following theorem in ZFC. For a cardinal λ,

(
22ω ,⊆

)
has a chain

of cardinality λ if and only if the Medvedev degrees do (Theorem 4.3.1). Thus
the statement “there is a chain in the Medvedev degrees of cardinality 22ω” is
independent of ZFC.

4.1 Forcing prerequisites

This section contains the basic facts about forcing and about chain conditions
that we need in the next section. We follow [35] when possible. The reader
familiar with this material may skip ahead.

First, a partial order may be replaced by an isomorphic partial order without
changing the forcing extension.

Lemma 4.1.1 (see [35] section VII.7). Let P,Q ∈ M and let i : P→Q be an isomor-
phism in M . Let G ⊆ P. Then G is P-generic over M if and only if i′′G is Q-generic
over M . In this case M [G] = M [i′′G].

Forcing with a partial order P×Q is equivalent to forcing with the partial
orders P and Q one-at-a-time in either order.
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Lemma 4.1.2 (see [35] section VIII.1). Let P,Q ∈M and let G0 ⊆ P, G1 ⊆ Q. Then
the following are equivalent:

(i) G0 ×G1 is P×Q-generic over M ,
(ii) G0 is P-generic over M and G1 is Q-generic over M [G0], and

(iii) G1 is Q-generic over M and G0 is P-generic over M [G1].

If (i)–(iii) hold, thenM [G0×G1] = M [G0][G1] = M [G1][G0]. Moreover, ifG is P×Q-
generic over M , then G = H0 ×H1 for some H0 ⊆ P and H1 ⊆ Q which thus satisfy
(i)–(iii).

Let κ be a cardinal. A partial order P is κ-closed if every descending chain
of conditions having order-type < κ has a lower bound. A partial order P has
the κ-chain condition (abbreviated κ-cc) if every X ⊆ P of cardinality κ has two
compatible elements. Notice that P is κ-cc if and only if for every sequence
of conditions (pξ | ξ ∈ κ) there are distinct ξ, ζ ∈ κ such that pξ and pζ are
compatible. A partial order P has property Kκ if every X ⊆ P of cardinality κ has
a pairwise compatible subset of cardinality κ. Notice that if κ is regular, then P
has property Kκ if and only if for every sequence of conditions (pξ | ξ ∈ κ) there
is a set X ⊆ κ of cardinality κ such that if ξ, ζ ∈ X then pξ and pζ are compatible.
Clearly property Kκ implies κ-cc. We consider κ = ω1 and κ = ω2. Traditionally
ω1-cc is called ccc and property Kω1 is called property K.

Partial orders that are κ-closed preserve cardinals ≤ κ, and partial orders
that are κ-cc preserve cardinals ≥ κ. It follows that a partial order that is both
κ-closed and κ+-cc preserves all cardinals.

The following lemmas easily generalize to other cardinals, but we state the
versions that we use which are in terms of ω2.
Lemma 4.1.3. If P and Q have property Kω2 , then so does P×Q.

Proof. Let ((pξ, qξ) | ξ ∈ ω2) be a sequence of conditions from P×Q. Applying
P’s property Kω2 to the sequence (pξ | ξ ∈ ω2) yields a set Y ⊆ ω2 such that |Y | =
ω2 and pξ and pζ are compatible for every ξ, ζ ∈ Y . Applying Q’s property Kω2

to the sequence (qξ | ξ ∈ Y ) yields a set X ⊆ Y such that |X| = ω2 and qξ
and qζ are compatible for every ξ, ζ ∈ X . The conditions (pξ, qξ) and (pζ , qζ) are
compatible for every ξ, ζ in X , so X witnesses property Kω2 for the sequence
((pξ, qξ) | ξ ∈ ω2).

Lemma 4.1.4. If P is ω2-cc and X ⊆ P has cardinality ω2, then there is a p ∈ P such
that p  |Ġ ∩ X̌| = |ω̌2|.

Proof. Fix a bijection f : ω2↔X . If there is no such p, then there is a name α̇ such
that

1P  (α̇ ∈ ω̌2)∧(∀ξ ∈ ω̌2)(f̌(ξ) ∈ Ġ ∩ X̌→ ξ ∈ α̇).

Now let A ⊆ P be a maximal antichain of conditions with the property (∀p ∈
A)(∃β ∈ ω2)(p  α̇ = β̌). We have that |A| < ω2 because P is ω2-cc. Thus we
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are able to choose γ ∈ ω2 such that if p ∈ A and p  α̇ = β̌ then β ∈ γ. Clearly
f(γ)  f̌(γ̌) ∈ Ġ ∩ X̌ ; therefore f(γ)  γ̌ ∈ α̇. Choose p ≤ f(γ) such that
p  α̇ = β̌ for some β ∈ ω2. This β must be ≥ γ. Hence p is incompatible with
everything in A, thereby contradicting A’s maximality.

Lemma 4.1.4 is stated in its most natural way, but we make greater use of the
following reformulation.

Lemma 4.1.5. Let P be ω2-cc, let X ⊆ ω2 have cardinality ω2, and let (pξ | ξ ∈ X)

be a sequence of conditions from P. Let Ż = {〈 ξ̌, pξ 〉 | ξ ∈ X} be a name for the set
{ξ ∈ X | pξ ∈ G}. Then there is a p ∈ P such that p  |Ż| = |ω̌2|.

Proof. If |{pξ | ξ ∈ X}| < ω2, choose p such that |{ξ ∈ X | pξ = p}| = ω2.
Otherwise choose p by applying Lemma 4.1.4 to the set {pξ | ξ ∈ X}.

A partial order with property Kω2 retains property Kω2 in an extension cre-
ated by forcing with an ω2-cc partial order.

Lemma 4.1.6. If P is ω2-cc and Q has property Kω2 , then 1P  Q̌ has property Kω2 .

Proof. Suppose not. Then there is a P-name ḟ and a condition p ∈ P such that

p  (ḟ : ω̌2→ Q̌)∧(∀X ⊆ ω̌2)(|X| = |ω̌2|→(∃ξ, ζ ∈ X)(ḟ(ξ) ⊥ ḟ(ζ))).

That is, p forces that the sequence (f(ξ) | ξ ∈ ω2) of conditions from Q is a
counterexample to Q having property Kω2 (as P preserves ω2). For each ξ ∈ ω2,
choose a condition pξ ∈ P and a condition qξ ∈ Q such that pξ ≤ p and pξ 
ḟ(ξ̌) = q̌ξ. This defines a sequence of conditions (pξ | ξ ∈ ω2) from P and a
sequence of conditions (qξ | ξ ∈ ω2) from Q.

We show that the sequence (qξ | ξ ∈ ω2) is a counterexample to Q having
property Kω2 . To this end, let X ⊆ ω2 have cardinality ω2, let Ż be a P-name
for the set {ξ ∈ X | pξ ∈ G}, and apply Lemma 4.1.5 to the sequence (pξ |
ξ ∈ X) to get a condition p′ ≤ p such that p′  |Ż| = |ω̌2|. We now have
that p′  (Ż ⊆ ω̌2)∧(|Ż| = |ω̌2|). Thus, as p′ ≤ p, we also have that p′  (∃ξ, ζ ∈
Ż)(ḟ(ξ) ⊥ ḟ(ζ)). Let ξ̇ and ζ̇ be P-names such that p′  (ξ̇, ζ̇ ∈ Ż)∧(ḟ(ξ̇) ⊥ ḟ(ζ̇)).
Finally, choose p′′ ≤ p′ and choose ξ, ζ ∈ X such that p′′  (ξ̇ = ξ̌)∧(ζ̇ = ζ̌).
Then p′′  ξ̌, ζ̌ ∈ Ż, and so, by the definition of Ż, p′′  p̌ξ, p̌ζ ∈ Ġ. Hence
p′′  (ḟ(ξ̌) ⊥ ḟ(ζ̌))∧(ḟ(ξ̌) = q̌ξ)∧(ḟ(ζ̌) = q̌ζ). So it must be that qξ ⊥ qζ .

We work with partial orders of the form Fn(I, 2, κ), which is the set of partial
functions p : I→ 2 of cardinality < κ ordered by p ≤ q if and only if p extends q.
If |I| ≥ κ, forcing with Fn(I, 2, κ) adds |I| subsets of κ, thereby making 2κ ≥ |I|
in the extension (see [35] section VII.6).

In order to show that our partial orders have the desired chain conditions,
we recall the notion of a ∆-system and the corresponding ∆-system lemma. A set
A is called a ∆-system if there is a set r such that a ∩ b = r whenever a and b are
distinct members of A.
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Lemma 4.1.7 (∆-system lemma; see [35] section II.1). Let κ be an infinite cardinal.
Let θ > κ be regular and satisfy (∀α < θ)(|α<κ| < θ). Assume |A| ≥ θ and (∀x ∈
A)(|x| < κ). Then there is a ∆-system B ⊆ A with |B| = θ.

Finally, in order to show that the cardinal arithmetic works out as desired in
our extensions, we recall that sets in an extension M [G] have nice names in M . If
P ∈ M is a partial order and σ is a name, then a nice name for a subset of σ is a
name τ of the form

⋃
{{π} × Aπ | π ∈ dom(σ)} where each Aπ is an antichain in

P.

Lemma 4.1.8 (see [35] section VII.5). If P ∈M is a partial order and σ, µ are names,
then there is a nice name τ for a subset of σ such that 1P  (µ ⊆ σ)→(µ = τ).

A nice name for a subset of an existing set x ∈ M is particularly nice. A nice
name τ for a subset of the canonical name x̌ = {(y̌, 1P) | y ∈ x} can be taken to
be of the form

⋃
{{y̌} × Ay | y ∈ x}.

4.2 Forcing no chains in
(
22ω ,⊆

)
of cardinality 22ω

Recall that a (set-theoretic) tree is a partial order (T,≤T ) such that, for each t ∈ T ,
the set of predecessors {s ∈ T | s <T t} is well-ordered by <T . We usually write
T for (T,≤T ). The level `(t) of a t ∈ T is the order-type of {s ∈ T | s <T t}, the ξth

level of T is Levξ = {t ∈ T | `(t) = ξ}, and the height of T is the least ξ such that
Levξ = ∅. A branch through T is a maximal linearly ordered subset of T . The
length of a branch is its order-type. We rephrase our question about chains as a
question about trees via the following theorem.

Theorem 4.2.1 (Baumgartner, Mitchell; see [8]). Let κ ≤ λ be infinite cardinals.
The following are equivalent:

• There is a tree of height ≤ κ and cardinality ≤ κ with ≥ λ branches.
• There is a chain in (2κ,⊆) of cardinality λ.

In light of Theorem 4.2.1 (with κ = 2ω and λ = 22ω ), we force there to be no
chain in

(
22ω ,⊆

)
of cardinality 22ω by forcing there to be no tree of height ≤ 2ω

and cardinality ≤ 2ω with ≥ 22ω branches. Our proof is similar to Silver’s proof
that one can force there to be no Kurepa trees given that there is an inaccessible
cardinal (see [35] section VIII.3).

Our strategy is as follows.

(i) Let M |= GCH, and, in M , let P = Fn(ω2, 2, ω) and Q = Fn(ωω2 , 2, ω1). Force
with P×Q.

(ii) P×Q preserves cardinals. If G is P×Q-generic over M , then, in M [G],
2ω = ω2, 2ω1 = ωω2 , and 2ω2 = ω+

ω2
.
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(iii) Suppose T ⊆ ω2×ω2 is a tree inM [G] of height≤ ω2 and of cardinality≤ ω2.
T has≤ |ω<ω2

2 | = ωω2 branches of cardinality< ω2. Thus we need only show
that T has < ω+

ω2
branches of cardinality ω2. To do this, factor P×Q into an

isomorphic partial order R0×R1 with the following properties.

– M [G] = M [G0][G1] where G0 is R0-generic over M and G1 is R1-generic
over M [G0],

– T ∈M [G0], and, in M [G0], T has ≤ ω3 branches, and
– any branch of T in M [G0][G1] of cardinality ω2 is already in M [G0].

Thus T has ≤ ω3 < ω+
ω2

branches of cardinality ω2 in M [G].

Let M , P, and Q be as in step (i) of the strategy.

Lemma 4.2.2. In M , the partial order P has property K, and the partial orders P, Q,
and P×Q all have property Kω2 .

Proof. To see that P has property K, let X ⊆ P have cardinality ω1 and let A be
the set of domains of the functions in X . Then |A| = ω1 and (∀x ∈ A)(|x| < ω).
As (∀α < ω1)(|α<ω| < ω1), Lemma 4.1.7 gives us a ∆-systemB ⊆ A of cardinality
ω1 with finite root r. There are only a finite number of functions f : r → 2, so
there must be one such f for which the set {g ∈ X | (dom g ∈ B)∧(g ⊇ f)} has
cardinality ω1. This is the desired pairwise compatible subset of X . The proof
that P has property Kω2 is the same as the above, but with ω2 in place of ω1.

For Q, let X ⊆ Q have cardinality ω2, and let A be the set of domains of the
functions in X . |A| = ω2 because for a fixed countable x ⊆ ωω2 there are only
2ω = ω1 possible functions x → 2. We have (∀x ∈ A)(|x| < ω1) and, as |ω<ω1

1 | =
ω1, we have (∀α < ω2)(|α<ω1| < ω2). Thus Lemma 4.1.7 gives us a ∆-system B ⊆
A of cardinality ω2 with countable root r. There are only ω1 functions f : r → 2,
so there must be one such f for which the set {g ∈ X | (dom g ∈ B) ∧ (g ⊇ f)}
has cardinality ω2. This is the desired pairwise compatible subset of X .

Finally, P×Q has property Kω2 by Lemma 4.1.3.

The next lemma completes step (ii).

Lemma 4.2.3. P×Q preserves cardinals. IfG is P×Q-generic overM , then, inM [G],
2ω = ω2, 2ω1 = ωω2 , and 2ω2 = ω+

ω2
.

Proof. We use Lemma 4.1.2 to equate forcing with P×Q to forcing with Q then
with P. Let G be P×Q-generic over M . Factor G as G = G0 ×G1 where G0 ⊆ P
and G1 ⊆ Q so that M [G] = M [G1][G0]. Forcing with Q adds ωω2 subsets of
ω1, and Q is both ω1-closed and ω2-cc. Thus, in M [G1], 2ω1 ≥ ωω2 and M [G1]
has the same cardinals as M . Forcing cannot add any new finite functions, so
M [G1]’s version of Fn(ω2, 2, ω) is exactly P because forcing with Q preserves ω2.
Below we need that (ω2)ω = ω2 in M [G1]. This equality is true in M by GCH and
remains true in M [G1] because of the fact thatQ is ω1-closed implies that forcing
with Q adds no new functions ω → ω2.
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P is ccc, and forcing with P adds ω2 subsets of ω. Thus M [G1][G0] has the
same cardinals as M [G1], and, in M [G1][G0], 2ω ≥ ω2. So we have that M [G] =
M [G1][G0] has the same cardinals as M (i.e. P×Q preserves cardinals) and that,
in M [G], 2ω ≥ ω2 and 2ω1 ≥ ωω2 . Furthermore, in M [G], 2ω2 ≥ ω+

ω2
because

2ω2 ≥ 2ω1 ≥ ωω2 and 2ω2 cannot have cofinality ω2. We show the desired reverse
inequalities by counting nice names.

To see 2ω ≤ ω2, count the nice P-names for subsets of ω in M [G1]. Such a
name has the form

⋃
{{ň} × An | n ∈ ω} where each An is an antichain in P. P

is ccc and has cardinality ω2, hence P has (ω2)ω = ω2 antichains. Therefore there
are ≤ (ω2)ω = ω2 nice names for subsets of ω in M [G1]. Forcing with P preserves
cardinals, so there are ≤ ω2 subsets of ω in M [G].

To see 2ω1 ≤ ωω2 , count the nice P×Q-names for subsets of ω1 in M . Such
a name has the form

⋃
{{α̌} × Aα | α ∈ ω1} where each Aα is an antichain in

P×Q. P×Q has propertyKω2 by Lemma 4.2.2, so its antichains have cardinality
≤ ω1. The fact that GCH holds in M implies that P×Q has cardinality ωω2 and
consequently that P×Q has ≤ (ωω2)

ω1 = ωω2 antichains. Therefore there are
≤ (ωω2)

ω1 = ωω2 nice names for subsets of ω1 in M . Forcing with P×Q preserves
cardinals, so there are ≤ ωω2 subsets of ω1 in M [G].

Finally, to see 2ω2 ≤ ω+
ω2

, count the nice P×Q-names for subsets of ω2 in M .
Such a name has the form

⋃
{{α̌} × Aα | α ∈ ω2} where each Aα is an antichain

in P×Q. There are ≤ (ωω2)
ω2 = ω+

ω2
nice names for subsets of ω1 in M . Forcing

with P×Q preserves cardinals, so there are ≤ ω+
ω2

subsets of ω2 in M [G].

The next lemma is the crux of step (iii).

Lemma 4.2.4. Suppose, in some model N , that T ⊆ ω2 × ω2 is a tree of height ω2 and
that R is a partial order with property Kω2 . If G is R-generic over N , then there are no
new branches of T in N [G] of cardinality ω2.

Proof. In N, let B ⊆ 2ω2 be the set of branches through T and let ḃ be a name for
a branch through T . Suppose for a contradiction that there is a condition p ∈ R
forcing that ḃ is a new branch of cardinality ω2. That is, p  (ḃ is a branch)∧(|ḃ| =
|ω̌2|)∧(ḃ /∈ B̌) (note R preserves ω2). For each ξ < ω2, we can find an xξ ∈ Levξ
and a pξ ≤ p such that pξ  x̌ξ ∈ ḃ. Apply R’s property Kω2 to the sequence
(pξ | ξ ∈ ω2) to get a set X ⊆ ω2 such that |X| = ω2 and such that pξ and
pζ are compatible for every ξ, ζ ∈ X . Notice that if ξ < ζ are in X , then the
compatibility of pξ and pζ implies that xξ <T xζ . Therefore the set c = {x ∈ ω2 |
(∃ξ ∈ X)(x ≤T xξ)} is a branch in B. Let Ż be a name for the set {ξ ∈ X | pξ ∈
G}, and, by Lemma 4.1.5, choose p′ ≤ p such that p′  |Ż| = |ω̌2|. We now show
that p′  ḃ = č, which contradicts that p  ḃ /∈ B̌. To this end, suppose that H
is R-generic with p′ ∈ H , and now work in N [H]. Suppose that x ∈ b ∩ Levξ.
There is some ζ > ξ with pζ ∈ H because |Z| = |ω2|. Therefore xζ ∈ b because
pζ  x̌ζ ∈ ḃ. Hence x <T xζ and so x ∈ c. This proves b ⊆ c, and equality follows
from the fact that both b and c are branches of cardinality ω2 in a tree of height
ω2.
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We can now carry out step (iii).

Theorem 4.2.5. If ZFC is consistent, then so is ZFC + “there is no tree of height ≤ 2ω

and cardinality ≤ 2ω with ≥ 22ω branches.”

Proof. Let M |= GCH. In M , let P = Fn(ω2, 2, ω) and let Q = Fn(ωω2 , 2, ω1). Let
G be P×Q-generic over M . By Lemma 4.2.3,

M [G] |= (2ω = ω2)∧(2ω1 = ωω2)∧(2ω2 = ω+
ω2

).

We show that in M [G] there is no tree of height ≤ ω2 and cardinality ≤ ω2 with
≥ ω+

ω2
branches. A tree of cardinality ω2 is isomorphic to a tree ⊆ ω2 × ω2, so it

suffices to show that inM [G] there is no tree⊆ ω2×ω2 of height≤ ω2 with≥ ω+
ω2

branches.
Suppose T ⊆ ω2 × ω2 is a tree of height ≤ ω2 in the extension M [G]. Then, in

M , T has a nice name of the form Ṫ =
⋃
{{š} × As | s ∈ ω2 × ω2} where each

As is an antichain in P×Q, a partial order with property Kω2 by Lemma 4.2.2.
Thus each As has cardinality ≤ ω1, and hence the set X = {α ∈ ωω2 | (∃(p, q) ∈⋃
s∈ω2×ω2

As)(α ∈ dom q)} has cardinality≤ ω2. Add elements of ωω2 to X so that
it has cardinality exactly ω2. Let QX = Fn(X, 2, ω1) and let Qωω2\X = Fn(ωω2 \
X, 2, ω1). It is easy to check that QX ×Qωω2\X

∼= Q, so factor P×Q as (P×QX)×
Qωω2\X . In terms of step (iii) as described above, P×QX is R0 and Qωω2\X is R1.
By Lemma 4.1.1, there is a (P×QX) × Qωω2\X-generic set H such that M [H] =

M [G], and, by Lemma 4.1.2, H = H0 × H1 where H0 is P×QX-generic over M
and H1 is Qωω2\X-generic over M [H0]. By our choice of X , the P×Q-name Ṫ is
also a P×QX-name. So our tree T is in the intermediate extension M [H0]. The
models M , M [H0], and M [H0][H1] = M [H] = M [G] all have the same cardinals
because M and M [G] do by Lemma 4.2.3. Also, M [H0] |= (2ω = ω2)∧(2ω1 =
ω2)∧(2ω2 = ω3) by a proof similar to that of Lemma 4.2.3. Furthermore, Qωω2\X
has property Kω2 in M [H0] by Lemma 4.1.6 because Qωω2\X and P×QX have
property Kω2 in M by a proof similar to that of Lemma 4.2.2. Now, T has ≤
2ω2 = ω3 branches in M [H0]. Lemma 4.2.4 tells us that T does not have any more
branches of cardinality ω2 in M [H0][H1] than it does in M [H0]. So, in M [G], T
has ≤ ω3 branches of cardinality ω2 and ≤ |ω<ω2

2 | = ωω2 branches of cardinality
< ω2 for a grand total of ≤ ωω2 branches.

In light of Theorem 4.2.1, our main goal is a corollary of Theorem 4.2.5.

Corollary 4.2.6. If ZFC is consistent, then so is ZFC + “there is no chain in
(
22ω ,⊆

)
of cardinality 22ω .”

Corollary 4.2.7. The statement “there is a chain in
(
22ω ,⊆

)
of cardinality 22ω” is

independent of ZFC.

Proof. Corollary 4.0.8 gives the consistency of the statement, and Corollary 4.2.6
gives the consistency of its negation.
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4.3 Big chains in the Medvedev degrees

We show, in ZFC, that the cardinalities of chains in
(
22ω ,⊆

)
are the same as the

cardinalities of chains in Ds. The forward direction of Theorem 4.3.1 is due to
Terwijn [77].

Theorem 4.3.1. For any cardinal κ, there is a chain in
(
22ω ,⊆

)
of cardinality κ if and

only if there is a chain in Ds of cardinality κ.

Proof. Let C ⊆ 22ω be a chain of cardinality κ. Let (fξ | ξ ∈ 2ω) be a ≤T-antichain
(in the pairwise incomparable sense) of functions in ωω. For each C ∈ C, let
XC = {fξ | ξ ∈ C}. Then, for C,D ∈ C, C ( D implies XC >sXD. The inequality
XC ≥sXD holds because XC ⊆ XD. To see that the inequality is strict, let ζ ∈
D \ C so that fζ ∈ XD \ XC . The function fζ does not compute any function in
XC because the fξ’s were chosen to be a ≤T-antichain. Thus there is no Turing
functional Φ for which Φ(XD) ⊆ XC . The set {degs(XC) | C ∈ C} is therefore a
chain in Ds of cardinality κ.

Conversely, let X ⊆ Ds be a chain of cardinality κ. We produce a chain in(
2([ωω ]≤ω),⊆

)
of cardinality κ, where [ωω]≤ω = {X ⊆ ωω | |X | ≤ ω}. This suffices

because |[ωω]≤ω| = 2ω. Let X̂ ⊆ 2ω
ω consist of a choice of one representative X ⊆

ωω from each degree in X so that X̂ is a chain of cardinality κ under ≤s. For each
X ∈ X̂, let DX = {W ⊆ X | |W| ≤ ω} and let CX =

⋃
{DY | (Y ∈ X̂)∧(Y ≥sX )}.

Then, for X ,Y ∈ X̂, X <s Y implies CX ) CY . The inequality CX ⊇ CY is clear. To
see that the inequality is strict, apply Lemma 3.3.2 (as X �s Y) to get aW ⊆ X
such that |W| ≤ ω andW �s Y . W is in DX and hence in CX , butW cannot be in
CY as this would implyW≥s Y . Thus {CX | X ∈ X̂} is the desired chain.

Theorem 4.3.1 is also valid for Dw in place of Ds. In the forward direction of
Theorem 4.3.1, we actually proved that, for C,D ∈ C, C ( D implies XC >w XD.
The proof given for the reverse direction is also valid for Dw, but a simpler one
is possible. Notice that a mass problem X ⊆ ωω is Muchnik-equivalent to its
Turing upward-closure {f ∈ ωω | (∃g ∈ X )(f ≥T g)}. Furthermore, if X and Y
are Turing upward-closed then X ≤w Y if and only if X ⊇ Y . So if X ⊆ Dw is
a chain of cardinality κ, choose a set of representatives X̂ ⊆ 2ω

ω that are Turing
upward-closed. Then X̂ is a chain in

(
2ω

ω
,⊆
)

of cardinality κ.

Corollary 4.3.2. The following statements are both independent of ZFC. “There is a
chain in the Medvedev degrees of cardinality 22ω” and “there is a chain in the Muchnik
degrees of cardinality 22ω .”

Proof. By Theorem 4.3.1, both statements are equivalent under ZFC to the state-
ment “there is a chain in

(
22ω ,⊆

)
of cardinality 22ω .” The result then follows

from Corollary 4.2.7.

In contrast, it is a ZFC theorem that
(
22ω ,⊆

)
, Ds, and Dw all have antichains

(in the pairwise incomparable sense) of cardinality 22ω [47].
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CHAPTER 5
MENGER’S THEOREM IN Π1

1-CA0

The results of this chapter also appear in [55] by the author.

König’s duality theorem for finite bipartite graphs is a classic theorem in
graph theory and one of the pillars of matching theory. It expresses a duality
between matchings and covers in bipartite graphs. Let (X, Y,E) be a bipartite
graph. A matching is a set of edges M ⊆ E such that no two edges in M share a
vertex. A cover is a set of vertices C ⊆ X∪Y such that every edge in E has a ver-
tex in C. Finite König’s duality theorem says that the cardinalities of matchings
and the cardinalities of covers meet in the middle.
Finite König’s Duality Theorem. In every finite bipartite graph, the maximum car-
dinality of a matching equals the minimum cardinality of a cover.

Finite Menger’s theorem generalizes finite König’s duality theorem from bi-
partite graphs to arbitrary graphs. Let G be a graph with vertices V (G) and
edges E(G). A web is a triple (G,A,B) where G is a graph and A and B are dis-
tinguished sets of vertices A,B ⊆ V (G). The notion of a matching in a bipartite
graph is generalized by the notion of a set of disjoint A-B paths1 in a web. An
A-B path in a web (G,A,B) is a path that starts in A and ends in B. Two paths
are disjoint if they have no vertices in common. The notion of a cover in a bi-
partite graph is generalized by the notion of an A-B separator in a web. An A-B
separator in a web (G,A,B) is a set of vertices C ⊆ V (G) such that every A-B
path in G contains a vertex of C (so that removing C from the graph separates
A from B).

Finite Menger’s Theorem. In every finite web (G,A,B), the maximum cardinality
of a set of disjoint A-B paths equals the minimum cardinality of an A-B separator.

Finite Menger’s theorem is itself a special case of the famous max-flow min-
cut theorem for network flows. See [21] Section 2.1 for a full treatment of fi-
nite König’s duality theorem, [21] Section 3.3 for finite Menger’s theorem, and
[21] Section 6.2 for the max-flow min-cut theorem.

The conclusions of finite König’s duality theorem and finite Menger’s theo-
rem remain true for infinite bipartite graphs and infinite webs, but they are more
an exercise in cardinal arithmetic than they are in combinatorics. To deepen
the combinatorial content of these theorems, Erdős conjectured that there al-
ways exist a matching and a cover that simultaneously witness each other’s
optimality. His reformulations are what we now call König’s duality theorem
and Menger’s theorem.

König’s Duality Theorem. In every bipartite graph (X, Y,E), there is a matching
M and a cover C such that C consists of exactly one vertex from each edge in M .

Menger’s Theorem. In every web (G,A,B), there is a set of disjoint A-B paths M
and an A-B separator C such that C consists of exactly one vertex from each path in
M .

1For us, “path” always means “simple path,” that is, no repeated vertices.
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The most general case, Menger’s theorem for webs of arbitrary cardinality, is
now known to be true. The proof took more than forty years to discover. The
first progress was by Podewski and Steffens, who proved König’s duality the-
orem for countable bipartite graphs [48]. Aharoni next proved König’s duality
theorem for arbitrary bipartite graphs [1]. He then proved Menger’s theorem
for countable webs [2]. Finally, Aharoni and Berger proved Menger’s theorem
for arbitrary webs [3].

The question motivating our work is the following.

Question 5.0.3. What is the axiomatic strength of Menger’s theorem for count-
able webs in the context of second-order arithmetic?

Aharoni, Magidor, and Shore [4] and Simpson [63] answered Question 5.0.3
for König’s duality theorem for countable bipartite graphs. Aharoni, Magidor,
and Shore noticed that Aharoni’s proof of König’s duality theorem in [1] actu-
ally proves a stronger statement, which they call extended König’s duality theorem.
They proved that extended König’s duality theorem is equivalent to Π1

1-CA0

over RCA0, and they proved that König’s duality theorem implies ATR0 over
RCA0 [4]. Simpson produced a new proof of König’s duality theorem in ATR0

by exploiting the fact that ATR0 proves the existence of models of Σ1
1-AC0 [63].

Therefore König’s duality theorem for countable bipartite graphs is equivalent
to ATR0 over RCA0.

A priori, Menger’s theorem for countable webs implies ATR0 over RCA0 be-
cause it implies König’s duality theorem for countable bipartite graphs over
RCA0. Here we provide a proof of Menger’s theorem for countable webs in
Π1

1-CA0 (Theorem 5.2.4). The general plan for our proof is inspired by Aharoni’s
proof in [2] and Diestel’s presentation of it in [21] Section 8.4. As with König’s
duality theorem, we notice that this proof in fact proves a stronger statement,
which we call extended Menger’s theorem, that is equivalent to Π1

1-CA0 over RCA0.
By general considerations, Menger’s theorem cannot imply Π1

1-CA0 over RCA0.
Menger’s theorem can be written as a Π1

2 sentence in the language of second-
order arithmetic, and no true Π1

2 sentence implies Π1
1-CA0, even over ATR0 (see

[4] Proposition 4.17). Question 5.0.3 now becomes more specific.

Question 5.0.4. Is Menger’s theorem for countable webs provable in ATR0?

5.1 Warps, waves, and alternating walks

In this section we use ACA0 to develop the basic tools we need to prove Menger’s
theorem in Π1

1-CA0. Our notation and terminology mostly follows [2] with some
ideas borrowed from [21] Section 8.4.

All the graphs that we consider are countable because we are working in
second-order arithmetic. All the graphs that we consider are directed. Menger’s
theorem for undirected graphs follows from Menger’s theorem for directed
graphs by the usual trick of replacing an undirected edge by two directed
edges. Henceforth a “graph” is a countable directed graph. If G is a graph and
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x ∈ V (G), then in-degG(x) denotes the in-degree of x, and out-degG(x) denotes
the out-degree of x.

As defined above, a web is a triple (G,A,B) where G is a graph and A and
B are distinguished sets of vertices A,B ⊆ V (G). We often abuse this notation
by writing G for (G,A,B). For convenience, we always assume that there are
no edges directed into A, that there are no edges directed out of B, and that
A ∩B = ∅.

If H and H ′ are subgraphs of a graph G, then H ∪ H ′ is the subgraph of G
induced by V (H) ∪ V (H ′), and G \H is the subgraph induced by V (G) \ V (H).

Let G be a graph. If P is a path in G, we write in(P ) for the first vertex of P
(if it exists) and ter(P ) for the last vertex of P (if it exists). If P is a path with
in(P ) ∈ A and ter(P ) ∈ B for some A,B ⊆ V (G), then we call P an A-B path. If
P is a path and x ∈ V (P ), then Px denotes the subpath of P consisting of all the
vertices up to and including x, and Px denotes the subpath of P consisting of
all the vertices up to and not including x. Similarly, xP denotes the subpath of
P consisting of all the vertices following x and including x, and xP denotes the
subpath of P consisting of all the all the vertices following x and not including
x. If P and Q are paths with V (P ) ∩ V (Q) = {x}, then PxQ is the path obtained
by concatenating the paths Px and xQ. If V (P ) ∩ V (Q) = {ter(P )} = {in(Q)},
then PQ denotes P ter(P )Q, the concatenation of the paths P and Q.

For the purposes of this chapter, a (graph-theoretic) tree is a directed acyclic
graph T that has a distinguished root r ∈ V (T ) such that for any x ∈ V (T )
there is a unique path in T from r to x. The path in a tree T from its root to an
x ∈ V (T ) is denoted Tx. If P is a finite path, a tree with trunk P is a tree T of
the form P ∪ T ′ where T ′ is a tree rooted at ter(P ). A tree with trunk P has root
in(P ). If G = (G,A,B) is a web, an A-B tree in G is a subgraph of G that is a tree
with root in A and exactly one vertex in B.

Definition 5.1.1. A warp in a web G = (G,A,B) is a subgraph W of G such that

• A ⊆ V (W ),
• every x ∈ V (W ) has in-degW (x) ≤ 1 and out-degW (x) ≤ 1, and
• every x ∈ V (W ) is reachable from some a ∈ A by a path in W .

A warp is thus a collection of disjoint paths in G with each path starting at
a distinct vertex in A and such that for every a ∈ A there is a path in the warp
starting at a. Such paths may be one-way infinite. It is often convenient to think
of a warp W as the collection of its component paths {Pa | a ∈ A∧ in(Pa) = a}
with the understanding that this collection is coded by the set {〈 a, 〈n, x 〉 〉 |
x is the nth vertex of Pa}. “P is a path in W” always means that P is one of these
component paths.

If W is a warp, then let ter(W ) = {x ∈ V (W ) | out-degW (x) = 0}. That is,
ter(W ) is the set of terminal vertices of the paths in W . The statement “if W is a
warp then ter(W ) exists” is equivalent to ACA0 over RCA0, hence our assumption
of ACA0 throughout this section.
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Definition 5.1.2. A wave in a web G = (G,A,B) is a warp W such that ter(W ) is
an A-B separator.

The warp {Pa | a ∈ A} in which each path Pa is the trivial path (a) is always
a wave, and we call it the trivial wave.

Definition 5.1.3. For warps W and Y in a web G = (G,A,B), Y is an extension
of W (written W ≤ Y ) if and only if W is a subgraph of Y .

Definition 5.1.4. If (Wi | i ∈ N) is a sequence of warps such that Wi ≤ Wi+1

for each i ∈ N, then
⋃
i∈NWi denotes the limit warp defined by V

(⋃
i∈NWi

)
=⋃

i∈N V (Wi) and E
(⋃

i∈NWi

)
=
⋃
i∈NE(Wi).

It is easy to check in RCA0 that a limit warp, if it exists, is indeed a warp.
However, the statement “if (Wi | i ∈ N) is a sequence of warps such that Wi ≤
Wi+1 for each i ∈ N, then

⋃
i∈NWi exists” is equivalent to ACA0 over RCA0.

Definition 5.1.5. Let W = {Pa | a ∈ A} be a wave in a web G = (G,A,B). Then

• Pa is W -essential in G if and only if Pa is finite and there is a ter(Pa)-B path
in G disjoint from V (W ) \ {ter(Pa)},
• a ∈ A is W -essential in G if and only if Pa is W -essential in G, and
• essG(W ) = {a ∈ A | a is W -essential in G}.

The motivation behind the definition of W -essential in G is that if P is a path
in a wave W that is W -essential in G, then ter(W ) needs ter(P ) to separate A
from B. If Q is a ter(P )-B path disjoint from V (W ) \ {ter(P )}, then PQ is an
A-B path disjoint from ter(W ) \ {ter(P )}. One readily checks that {ter(P ) |
P is a W -essential path in G} is an A-B separator.

Definition 5.1.6. If W and Y are waves in a web G = (G,A,B) with W ≤ Y ,
then Y is a good extension of W if and only if essG(W ) = essG(Y ), and Y is a bad
extension of W if and only if essG(W ) 6= essG(Y ).

If W and Y are waves in a web G = (G,A,B) with W ≤ Y , then it is always
the case that essG(Y ) ⊆ essG(W ). Thus Y is a good extension of W if and only if
essG(W ) ⊆ essG(Y ).

Lemma 5.1.7 (in ACA0; see [2] Lemma 2.5). If (Wi | i ∈ N) is a sequence of waves in
a web G = (G,A,B) such that Wi ≤ Wi+1 for each i ∈ N, then

⋃
i∈NWi is a wave in

G.

Proof. Let W =
⋃
i∈NWi. It is easy to check that W is a warp. We need to show

that ter(W ) is an A-B separator. Let P be an A-B path, and let X = {〈x, i 〉 |
x ∈ V (P ) ∩ ter(Wi)}, which exists by arithmetical comprehension. Each Wi is
a wave, hence X is infinite. As V (P ) is finite, there must be an x ∈ V (P ) such
that {i | x ∈ ter(Wi)} is infinite. Then x = ter(Q) for the path Q in W containing
x. If not, then there is a vertex following x on Q, the corresponding edge must
appear in Wn for some n, and so x /∈ ter(Wi) for all i ≥ n.
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Definition 5.1.8. Let W and Y be warps in a web G = (G,A,B) with W ≤ Y .
Let Q be a finite path in both Y and W (i.e., the path Q is in W and is not
properly extended in Y ). A (Y \W )-alternating walk from ter(Q) is a walk R =
x0e0x1e1 · · · en−1xn such that

(i) x0 = ter(Q),
(ii) for all i ≤ n, xi ∈ (V (G) \ V (W )) ∪ ter(W ),

(iii) for all i < n, if ei /∈ E(Y ), then ei = (xi, xi+1),
(iv) for all i < n, if ei ∈ E(Y ), then ei = (xi+1, xi) (i.e.,R traverses ei backwards),
(v) for all i, j ≤ n with i 6= j, if xi = xj , then xi ∈ V (Y ), and

(vi) for all i, j ≤ n with i 6= j, ei 6= ej .
(vii) for all 0 < i ≤ n, if xi ∈ V (Y ), then either ei−1 or ei is in E(Y ).

Note that if xn is the last vertex on a (Y \W )-alternating walk from ter(Q)
and xn ∈ V (Y ), then item (vii) implies that en−1 ∈ E(Y ). A (Y \W )-alternating
walk from ter(Q) is similar to a Y -walk as defined in [2] and to a walk which
alternates with respect to Y as defined in [21] Section 3.3. The difference is that
a (Y \ W )-alternating walk from ter(Q) is not allowed to use the vertices in
V (W ) \ ter(W ), hence the notation “Y \W .”

Definition 5.1.9. Let W = {Pa | a ∈ A} and Y = {Qa | a ∈ A} be warps in a
web G = (G,A,B) with W ≤ Y . Let Qa0 be a finite path in both Y and W . Then
altG(Y \ W, ter(Qa0)) denotes the warp {Q′a | a ∈ A} where Q′a = Qax if x is
the last vertex on Q which lies on a (Y \W )-alternating walk from ter(Qa0) and
Q′a = Pa if no such x exists.

Our definition of altG(Y \ W, ter(Qa0)) is analogous to the definition of
M(a0,W ) in [2]. Also, note that W ≤ altG(Y \ W, ter(Qa0)) ≤ Y . The first
inequality is by Definition 5.1.8 item (ii) and the second inequality is clear.

The crucial lemma from this section is Lemma 5.1.12. Lemma 5.1.10 and
Lemma 5.1.11 are used to prove Lemma 5.1.12.

Lemma 5.1.10 (in ACA0). Let W and Y be warps in a web G = (G,A,B) with W ≤
Y . Let Q be a finite path in both Y and W . Let R be a (Y \ W )-alternating walk
from ter(Q). Then there is a warp Z ≥ W in G with ter(Z) = (ter(Y ) \ {ter(Q)}) ∪
{ter(R)}.

Proof. Let R = x0e0x1e1 · · · en−1xn where x0 = ter(Q) and xn = ter(R). Assume
n > 0, for otherwise we may take Z = Y . Let Z ′ be the subgraph of G with
E(Z ′) = E(Y )4E(R) and V (Z ′) = A ∪ {x | (∃e ∈ E(Z ′))(x is a vertex of e)}.
One readily checks the following equalities.

• If x ∈ V (Y ) \ V (R), then in-degZ′(x) = in-degY (x) and out-degZ′(x) =
out-degY (x),
• for 0 < i < n, if xi ∈ V (R) \ V (Y ), then in-degZ′(xi) = 1 and out-degZ′(xi) =

1,
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• for 0 < i < n, if xi ∈ V (R)∩V (Y ) is in V (Z ′), then in-degZ′(xi) = in-degY (xi)
and out-degZ′(xi) = out-degY (xi),
• in-degZ′(x0) = in-degY (x0) and out-degZ′(x0) = 1, and
• in-degZ′(xn) = 1 and out-deg(xn) = 0.

It follows that in-degZ′(x) ≤ 1 and out-degZ′(x) ≤ 1 for all x ∈ V (Z ′), which
means that every component of Z ′ is either a path or a cycle. Let Z be the
subgraph of Z ′ consisting of the component paths of Z ′ (i.e., Z is the subgraph
of Z ′ induced by {x ∈ V (Z ′) | x is not on a cycle in Z ′}). Z contains every vertex
x ∈ V (Z ′) with in-degZ′(x) = 0 or out-degZ′(x) = 0. In particular, A ⊆ V (Z)
and ter(Z) = (ter(Y ) \ {ter(Q)}) ∪ {ter(R)}. To show that Z is a warp, we
need only show that in(P ) exists and is in A for every path P in Z. The above
equations imply that if x ∈ V (P ) \ A, then in-degZ(x) 6= 0 and hence that x has
an immediate predecessor on P . This fact together with the fact that R is finite
implies that there is an x ∈ V (P ) such that (V (Px) ∩ V (R)) \ A = ∅. Thus the
edges of Px must all be edges of Y , which means that Px must be an initial
segment of some path in Y . Hence in(P ) exists and is in A. Finally, Z ≥ W by
Definition 5.1.8 item (ii).

Lemma 5.1.11 (in ACA0; see [2] Lemma 2.7). Let W and Y be waves in a web G =
(G,A,B) with W ≤ Y . Let Q be a finite path in both Y and W . Then altG(Y \
W, ter(Q)) is a wave.

Proof. Let U = altG(Y \W, ter(Q)). Suppose for a contradiction that P is an A-B
path disjoint from ter(U). W is a wave, so the last vertex on P that is in V (W )
must be in ter(W ). Let w be this vertex, and let S the path in W with ter(S) = w.
The path SwP is an A-B path disjoint from ter(U). Y is a wave, so wP intersects
ter(Y ), which must happen at a vertex in V (Y ) \ V (U). Let y be the first vertex
on wP in V (Y ) \ V (U). Let z be the last vertex on wPy in V (U), which exists
because w ∈ V (U).
Claim. There is a (Y \W )-alternating walk from ter(Q) ending at z.

Proof of claim. Let Q′ be the path in Y containing z. We show that there is a
(Y \W )-alternating walk R from ter(Q) that meets Q′ at a vertex r which is past
z on Q′. If r is the first such vertex on R, then RrQ′z (following the edges of Q′
backwards) is the desired walk. If z = w, then Q′ extends S, so if there is no
such walk R then by Definition 5.1.9 S is a path in Z which contradicts that P
is disjoint from ter(U). On the other hand, if z 6= w, then z /∈ V (W ) by choice of
w. As z ∈ V (U) \ V (W ) and z /∈ ter(U), again by Definition 5.1.9 it must be the
case that some (Y \W )-alternating walk R from ter(Q) meets Q′ at a vertex past
z.

Now letR be the walk provided by the claim, let r be the last vertex of zPy on
R, and let y′ be the vertex immediately preceding y on the path in Y containing
y. Then RrPy(y′, y)y′ is a (Y \W )-alternating walk from ter(Q) on which y lies
which contradicts y /∈ V (U).
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Lemma 5.1.12 (in ACA0; see [2] Lemma 2.8). Let W be a wave in a web G =
(G,A,B) that has no bad extensions in G. Let x ∈ V (G)\V (W ) be such that there is a
wave Y ≥ W in G \ {x} = (G \ {x}, A \ {x}, B \ {x}) with essG\{x}(Y ) ( essG(W ).
Then there is a wave Z ≥ W in G with x ∈ ter(Z).

Proof. Let G = (G,A,B), W = {Pa | a ∈ A}, x, and Y = {Qa | a ∈ A} be as in
the statement of the lemma. Let a0 ∈ essG(W ) \ essG\{x}(Y ). If we replace Qa0

with Pa0 in Y , then we retain that this path is not Y -essential inG\{x}. Thus we
may assume Qa0 = Pa0 . In particular, Qa0 is a finite path that is not Y -essential
in G \ {x}.
Claim. In G, there is an alternating (Y \W )-walk from ter(Qa0) ending at x.

Proof of claim. If there is a ter(Qa0)-x path disjoint from V (Y ) \ {ter(Qa0)}, then
this path is the desired walk. So suppose instead there is no such path. Let U =
altG\{x}(Y \W, ter(Qa0)). U is a wave in G \ {x} by Lemma 5.1.11. Furthermore,
a0 /∈ essG\{x}(Y ) implies that a0 /∈ essG\{x}(U) because if P is a ter(Qa0)-B path in
G \ {x}, then the first vertex on P in V (Y ) \ {ter(Qa0)} is also in V (U). We prove
that U is not a wave in G. To do this, it suffices to show that every ter(Qa0)-B
path in G intersects V (U)\{ter(Qa0)}. Therefore if U were a wave in G, it would
be a bad extension of W in G because a0 would be in essG(W ) \ essG(U). This
is a contradiction. Consider a ter(Qa0)-B path P . If x /∈ V (P ), then P is a path
in G \ {x} and hence P intersects V (U) \ {ter(Qa0)} because a0 /∈ essG\{x}(U). If
x ∈ V (P ), then by assumption Px intersects V (Y ) \ {ter(Qa0)}. Again, the first
vertex on P in V (Y ) \ {ter(Qa0)} is also in V (U).

We now know that U is a wave in G \ {x} but not in G. Thus there is an
A-B path S in G avoiding ter(U), and x must lie on S. Let z be the last vertex
of Sx that is in V (U). It must be that z ∈ ((V (U) \ V (W )) ∪ ter(W )) \ ter(U).
Hence there must be an alternating (Y \ W )-walk R from ter(Qa0) to z. Let y
be the last vertex of zSx which lies on R. Then RyPx is the desired alternating
(Y \W )-walk from ter(Qa0) to x.

By the claim, let R be an alternating (Y \ W )-walk from ter(Qa0) ending at
x. Apply Lemma 5.1.10 to get a warp Z ≥ W in G with ter(Z) = (ter(Y ) \
{ter(Qa0)})∪{x}. Z is a wave because ter(Y )\{ter(Qa0)} is an (A\{x})-(B\{x})
separator inG\{x}, thus (ter(Y )\{ter(Qa0)})∪{x} is anA-B separator inG.

5.2 Menger’s theorem in Π1
1-CA0

We plan to prove Menger’s theorem as follows. Given a webG = (G,A,B), start
withW a≤-maximal wave inG. Let C be the terminal vertices of the paths inW
that are W -essential. Then extend these W -essential paths to be the collection
of disjoint A-B paths M . Lemma 5.2.1 provides the ≤-maximal wave W , and
Lemma 5.2.2 is the tool we use to extend the W -essential paths to a collection of
disjoint A-B paths. The proof of Lemma 5.2.1 is the only argument in which we
employ the full strength of Π1

1-CA0.

84



Lemma 5.2.1 (in Π1
1-CA0; see [2] Corollary 2.5a). In every web there is a≤-maximal

wave.

Proof. Let G = (G,A,B) be a web, let (gn | n ∈ N) be an enumeration of V (G),
and by Theorem 1.6.3 letM be a countable coded β-model with (G,A,B) ∈M.
Using ACA0 outside M, we construct a sequence of integers (in | n ∈ N) such
that (M)in is a wave for each n ∈ N and (M)in ≤ (M)in+1 for each n ∈ N. Let
i0 be an index such that (M)i0 is the trivial wave {(a) | a ∈ A}. Suppose we
have i0, . . . , in. If there is an i ∈ N such that (M)i is a wave with (M)i ≥ (M)in
and gn ∈ V ((M)i), then let in+1 be such an i. Otherwise let in+1 = in. With the
desired sequence (in | n ∈ N) in hand, letW be the limitW =

⋃
n∈N(M)in , which

is a wave by Lemma 5.1.7. This W is ≤-maximal in (G,A,B). If not, there is a
wave Y ≥ W with some gn ∈ V (Y ) \ V (W ). As (M)in ≤ W ≤ Y , at stage n + 1
in the construction the Σ1

1 formula (∃Y )(Y is a wave∧Y ≥ (M)in ∧ gn ∈ V (Y ))
is true and hence is true inM becauseM is a β-model. Therefore we chose in+1

so that gn ∈ V ((M)in+1), contradicting gn /∈ V (W ).

In [2] and [21], Lemma 5.2.1 is obtained by a simple application of Zorn’s
lemma. Our proof above is the most effective proof possible, in the sense that
Lemma 5.2.1 is equivalent to Π1

1-CA0 over RCA0 (see Corollary 5.3.3).

The following Lemma 5.2.2 is the key tool used to complete the proof of
Menger’s theorem. We first give a proof of Lemma 5.2.2 in the style of ordi-
nary mathematics for the sake of clarity. We then explain how to formalize
Lemma 5.2.2 in a way that will allow us to complete the proof of Menger’s the-
orem in Π1

1-CA0.

Lemma 5.2.2 (see [2] Theorem 3.4). Let W be a wave in G = (G,A,B) that has no
bad extensions inG, let a ∈ essG(W ), and let Pa be the component path ofW starting at
a. Then there is a finite a-B tree T with trunk Pa such that V (T )∩(V (W )\V (Pa)) = ∅,
and there is a wave Y in G \ T such that Y ≥ W \ Pa, essG\T (Y ) = essG(W ) \ {a},
and Y has no bad extensions in G \ T .

Proof. We assume that the conclusion of the lemma is false and construct a bad
extension of W in G, which is a contradiction.

Let (Qn | n ∈ N) list all the ter(Pa)-B paths with each path occurring on the
list infinitely often. We construct sequences (Tn | n ∈ N) and (Yn | n ∈ N) such
that for each n ∈ N

(i) Tn is a finite tree in G with trunk Pa,
(ii) Yn is a wave in G \ Tn,

(iii) Tn−1 ⊆ Tn (if n > 0),
(iv) Yn−1 ≤ Yn (if n > 0),
(v) essG\Tn(Yn) = essG(W ) \ {a}, and

(vi) Yn has no bad extensions in G \ Tn.
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Start with T0 = Pa and Y0 = W \ Pa. Items (i), (ii), and (v) are easily checked
for n = 0. Furthermore, if Y were a bad extension of Y0 in G \ T0, then Y ∪ {Pa}
would be a bad extension of W in G. Hence we have item (vi) for n = 0 as well.

Suppose we have constructed Tn and Yn. If V (Qn)∩V (Yn) 6= ∅ or T = Tn∪Qn

is not a tree with trunk Pa, set Tn+1 = Tn and Yn+1 = Yn. Otherwise V (Qn) ∩
V (Yn) = ∅ and T = Tn ∪Qn is a tree with trunk Pa. The situation now is that

• T is a finite a-B tree with trunk Pa such that V (T ) ∩ (V (W ) \ V (Pa)) = ∅
and
• Yn is a wave in G \ T such that Yn ≥ W \ Pa.

We are assuming that the lemma is false, so either essG\T (Yn) ( essG(W ) \ {a} or
Yn has a bad extension inG\T . Both cases imply the existence of a wave Y ≥ Yn
in G \ T with essG\T (Y ) ( essG(W ) \ {a} = essG\Tn(Yn) (where the equality is by
item (v)). Let x be the first vertex on Qn such that there exists a wave Y ≥ Yn in
G\(Tn∪Qnx) with essG\(Tn∪Qnx)(Y ) ( essG\Tn(Yn) (note x 6= ter(Pa) by item (vi)).
Let Tn+1 = Tn ∪ Qnx. By the choice of x, Yn has no bad extensions in G \ Tn+1,
but there is an extension Y ≥ Yn in (G \ Tn+1) \ {x} with ess(G\Tn+1)\{x}(Y ) (
essG\Tn+1(Yn). Thus by Lemma 5.1.12 there is a wave Yn+1 ≥ Yn in G \ Tn+1 with
x ∈ ter(Yn+1). With this Tn+1 and Yn+1, items (i)–(iv) are clear for n+1. Item (v) is
by the choice of x, which implies that essG\Tn+1(Yn+1) = essG\Tn(Yn) = essG(W ) \
{a}. Item (vi) is again by the choice of x because a bad extension Y ≥ Yn+1 in
G \ Tn+1 would be a Y ≥ Yn in G \ Tn+1 with essG\Tn+1(Y ) ( essG\Tn(Yn).

Let T =
⋃
n∈N Tn, and let Y =

⋃
n∈N Yn. By construction, V (Yn) ∩ V (Tm) = ∅

for all n,m ∈ N, which means that each Yn is a wave in G \ T . Therefore Y
is a wave in G \ T by Lemma 5.1.7. It remains to show that ter(Y ) is an A-B
separator in G. Our desired contradiction follows because then Y ∪ {Pa}would
be a bad extension of W in G because a ∈ essG(W ) \ essG(Y ∪ {Pa}).

Let P be an A-B path in G. It suffices to show that there is a final segment S
of P that lies in G \ T and intersects V (Y ). This is because if x is the last vertex
of S in V (Y ) and Q is the component path of Y containing x, then QxS is an
A-B path in G \ T which means that xS (and hence P ) must intersect ter(Y ).
Thus let x be the last vertex of P on T (if there is no such x, then P is a path
in G \ T and thus intersects ter(Y )), let n be such that x ∈ Tn, and let m > n
be such that Qm = ter(Pa)TnxP . Consider stage m + 1 of the construction. If
V (Qm)∩V (Ym) 6= ∅, then it must be that xP intersects Ym and hence intersects Y
as desired. Otherwise V (Qm) ∩ V (Ym) = ∅ and Tm ∪Qm is a tree with trunk Pa.
Thus we choose Ym+1 to contain a vertex of xP , so Y intersects xP as desired.

Lemma 5.2.3 (in ACA0). If M is a countable coded ω-model of Σ1
1-DC0, then

Lemma 5.2.2 holds inM.

Proof. Consider the formula ϕ(G, Y, P, x) which says there exists a number z
such that

(i) z codes a finite subset of V (P ),
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(ii)

∀y(∀Y ′(Y ′ is a wave ≥ Y in G \ Py→ essG\Py(Y
′) = essG(Y ))→ y ∈ z),

(iii)

∀s(s codes a finite set
∧∀y(∃Y ′(Y ′ is a wave ≥ Y in G \ Py ∧ essG\Py(Y

′) ( essG(Y ))→ y ∈ s)
→V (P ) \ z ⊆ s), and

(iv) x is the first vertex on P not in z.

Claim. InM, suppose that G = (G,A,B) is a web, Y is a wave in G, and P is a finite
path in G disjoint from V (Y ) such that Y has no bad extensions in G but there exists a
wave Y ′ ≥ Y in G \ P with essG\P (Y ′) ( essG(Y ). ThenM |= ϕ(G, Y, P, x) if and
only if, inM, x is the first vertex on P such that there exists a wave Y ′ ≥ Y in G \Px
with essG\Px(Y

′) ( essG(Y ).

Proof of claim. For the forward direction, using ACA0 outsideM, let

Z = {y ∈ V (P ) | essG\Py(Y
′) = essG(Y )

for all waves Y ′ ≥ Y in G \ Py that are inM}.

Let z be a number coding Z and let s be a number coding V (P ) \Z. InM, z and
s code the same sets that they do outside ofM, andM interprets that

z codes {y ∈ V (P ) | essG\Py(Y
′) = essG(Y ) for all waves Y ′ ≥ Y in G \ Py} and

s codes {y ∈ V (P ) | essG\Py(Y
′) ( essG(Y ) for some wave Y ′ ≥ Y in G \ Py}.

Hence inM, this z is the only z which satisfies items (i)–(iii). Thus if ϕ(G, Y, P, x)
holds inM, x must be the first vertex on P not in z for this z. Thus x must be
the first vertex on P such that, inM, there exists a wave Y ′ ≥ Y in G \ Px with
essG\Px(Y

′) ( essG(Y ).

For the converse, by using ACA0 outside ofM, let x be the first vertex on P
such that, inM, there exists a wave Y ′ ≥ Y inG\Pxwith essG\Px(Y

′) ( essG(Y ).
Let z be a number coding V (Px). InM, z also codes V (Px), and this z witnesses
M |= ϕ(G, Y, P, x).

The reason for the somewhat convoluted definition of ϕ is that prenexing this
ϕ yields a Σ1

1 formula.

Suppose for a contradiction that Lemma 5.2.2 is false in M and, in M, let
W , G = (G,A,B), and Pa be a counterexample to Lemma 5.2.2. We use Σ1

1-DC0

in M to run the construction from Lemma 5.2.2. This produces in M a bad
extension of W in G, which is a contradiction.

We apply Σ1
1-DC0 to the formula η(n,X, Y ) below. Our η has fixed parameters

G, W , Pa, and (Qn | n ∈ N) (a list of all ter(Pa)-B paths with each occurring
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infinitely often). We think of a set Y ⊆ N as coding a pair Y = (tY, wY ) where
wY is a wave in G \ tY . Formally, tY = (Y )0 and wY = (Y )1. Our formula
η(n,X, Y ) says that if t(X)n−1 is the tree and w(X)n−1 is the wave constructed at
stage n − 1 in Lemma 5.2.2, then tY is the tree and wY is the wave constructed
at stage n in Lemma 5.2.2. Formally, η(n,X, Y ) says the following.

• If n = 0, then tY = Pa and wY = W \ Pa.
• If n > 0, if t(X)n−1 is a finite tree with trunk Pa such that V (t(X)n−1) ∩

(V (W ) \ V (Pa)) = ∅, if w(X)n−1 ≥ W \ Pa is a wave in G \ t(X)n−1, if
essG\t(X)n−1(w(X)n−1) = essG(W ) \ {a}, and if w(X)n−1 has no bad exten-
sions in G \ t(X)n−1, then

– if V (Qn−1) ∩ V (w(X)n−1) 6= ∅ or if t(X)n−1 ∪ Qn−1 is not a tree, then
tY = t(X)n−1 and wY = w(X)n−1, and

– if V (Qn−1) ∩ V (w(X)n−1) = ∅ and if t(X)n−1 ∪Qn−1 is a tree, then there
is an x such that tY = t(X)n−1 ∪ Qn−1x, wY is a wave in G \ tY , x ∈
ter(wY ), wY ≥ w(X)n−1, and ϕ(G \ t(X)n−1, w(X)n−1, Qn−1, x).

Prenexing η yields a Σ1
1 formula. To see this, observe that all the subformulas

of η are arithmetic, with the exception of “w(X)n−1 has no bad extensions in
G \ t(X)n−1,” which is Π1

1 and appears in the antecedent of η, and ϕ, which is Σ1
1

and appears in the consequent of η.

We show thatM |= ∀n∀X∃Y η(n,X, Y ). The interesting case is when n > 0
and X ∈M is such that, inM,

• t(X)n−1 is a finite tree in G with trunk Pa such that V (t(X)n−1) ∩ (V (W ) \
V (Pa)) = ∅,
• w(X)n−1 ≥ W \ Pa is a wave in G \ t(X)n−1,
• essG\t(X)n−1(w(X)n−1) = essG(W ) \ {a},
• w(X)n−1 has no bad extensions in G \ t(X)n−1,
• V (Qn−1) ∩ V (w(X)n−1) = ∅, and
• t(X)n−1 ∪Qn−1 is a tree in G with trunk Pa.

By applying ACA0 outside M, let x be the first vertex on Qn−1 such that,
in M, there is a wave Z ≥ w(X)n−1 in G \ (t(X)n−1 ∪ Qn−1x) with
essG\(t(X)n−1∪Qn−1x)(Z) ( essG\t(X)n−1(w(X)n−1). Such an x exists by the assump-
tion that G, W , and Pa are a counterexample to Lemma 5.2.2 in M. By the
claim, ϕ(G \ t(X)n−1, w(X)n−1, Qn−1, x) holds in M. As M |= ACA0, apply
Lemma 5.1.12 insideM to get a wave Z ≥ w(X)n−1 inG\(t(X)n−1∪Qn−1x) with
x ∈ ter(Z). Set tY = t(X)n−1 ∪ Qn−1x and wY = Z to get a Y ∈ M witnessing
∃Y η(n,X, Y ).

Now apply Σ1
1-DC0 inside M to conclude that M |= ∃Z∀nη(n, (Z)n, (Z)n),

and let Z ∈M be such a Z. By induction (on an arithmetic formula) outsideM,
verify that, for all n ∈ N,
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• t(Z)n is a finite tree inGwith trunk Pa such that V (t(Z)n)∩(V (W )\V (Pa)) =
∅,
• w(Z)n ≥ W \ Pa is a wave in G \ t(Z)n,
• t(Z)n−1 ⊆ t(Z)n (if n > 0),
• w(Z)n−1 ≤ w(Z)n (if n > 0),
• essG\t(Z)n(w(Z)n) = essG(W ) \ {a0},
• w(Z)n has no bad extensions in G \ t(Z)n,

and additionally that if V (Qn) ∩ V (w(Z)n) = ∅ and t(Z)n ∪ Qn is a finite tree
in G with trunk Pa, then ter(w(Z)n+1) contains a vertex of Qn. Inside M, let
T =

⋃
n∈N t(Z)n and Y =

⋃
n∈Nw(Z)n. Just as in the proof of Lemma 5.2.2, Y is a

wave in G \ T and ter(Y ) is an A-B separator in G. Thus Y ∪ {Pa} ∈ M is the
desired bad extension of W in G, which gives the contradiction.

Theorem 5.2.4. Menger’s theorem for countable webs is provable in Π1
1-CA0.

Proof. Let G = (G,A,B) be a countable web. By Lemma 5.2.1, let W = {Pa | a ∈
A} be a ≤-maximal wave in G. Let C = {ter(Pa) | a ∈ essG(W )}. We extend the
paths in {Pa | a ∈ essG(W )} to be a collection of disjoint A-B paths M . M and C
then witness Menger’s theorem for G.

By Theorem 1.6.4, let M be a countable coded ω-model of Σ1
1-DC0 con-

taining G and W . By Lemma 5.2.3, Lemma 5.2.2 holds in M. Also, M |=
“W is a ≤-maximal wave”, thereforeM |= “W has no bad extensions in G” be-
cause W has no proper extensions in G whatsoever. Let (an | n ∈ N) enumerate
essG(W ). OutsideM, we construct sequences (Xn | n ∈ N), (Yn | n ∈ N), and
(Qn | n ∈ N) such that, for all n ∈ N,

• Xn ∈M, Yn ∈M, and Qn ∈M,
• Xn ⊆ V (G) is a finite set, Xn ∩ A = {ai | i ≤ n}, and Xn ⊆ Xn+1,
• Yn is a wave inG\Xn such that Yn ≥ W \

⋃
i≤n Pai , Yn has no bad extensions

in G \Xn, and essG\Xn(Yn) = {ai | i > n}, and
• Qn is an A-B path extending Pan .

To get started, by Lemma 5.2.3 let T ∈ M be a finite a0-B tree in G with trunk
Pa0 such that V (T ) ∩ (V (W ) \ V (Pa0)) = ∅, and let Y0 ∈ M be a wave in G \ T
such that Y0 ≥ W \ Pa0 , essG\T (Y0) = {ai | i > 0}, and Y0 has no bad extensions
in G \ T . Let X0 = T , and let Q0 be the a0-B path in T . Suppose we have Xn, Yn
and Qn. Let P ′an+1

be the path in Yn starting at an+1, and note that P ′an+1
extends

Pan+1 . By Lemma 5.2.3, let T ∈ M be a finite an+1-B tree in G \ Xn with trunk
P ′an+1

such that V (T ) ∩ (V (Yn) \ V (P ′an+1
)) = ∅, and let Yn+1 ∈ M be a wave in

G \ (Xn ∪ T ) such that Yn+1 ≥ Yn \ P ′an+1
, essG\(Xn∪T )(Yn+1) = {ai | i > n + 1},

and Yn+1 has no bad extensions in G \ (Xn ∪ T ). Let Xn+1 = Xn ∪ T and let Qn+1

be the an+1-B path in T . In the end, the collection M = {Qn | n ∈ N} consists of
disjoint A-B paths in G, and C = {ter(Pa) | a ∈ essG(W )} is an A-B separator
containing exactly one vertex from each path in M .
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5.3 Extended Menger’s theorem

Although Menger’s theorem for countable webs cannot be equivalent to Π1
1-CA0

over RCA0 as discussed in the introduction, the proof given in Theorem 5.2.4 is
equivalent to Π1

1-CA0 in the sense that it proves a stronger statement, called
extended Menger’s theorem, that is equivalent to Π1

1-CA0 over RCA0. This addi-
tional strength comes from our application of Lemma 5.2.1.

Extended Menger’s Theorem. Let (G,A,B) be a countable web. Then there is a
set of disjoint A-B paths M and an A-B separator C such that C consists of exactly
one vertex from each path in M . Furthermore, C is the set of terminal vertices of the
essential paths in a ≤-maximal wave.

Let G be a graph. For x ∈ V (G), N(x) = {y ∈ V (G) | (x, y) ∈ E(G)} denotes
the set of neighbors of x. ForX ⊆ V (G),D(X) = {y ∈ V (G) | N(y) ⊆ X} denotes
the demand of X . In the proof of König’s duality theorem for countable bipartite
graphs in [4], the following lemma plays the role that Lemma 5.2.1 plays in the
proof of Menger’s theorem for countable webs given in Theorem 5.2.4.

Lemma 5.3.1 ([4] Lemma 3.2). Let (X, Y,E) be a countable bipartite graph. Then
there is a ⊆-maximum Y0 ⊆ Y for which there is a matching of Y0 into D(Y0).

The application of Lemma 5.3.1 yields a stronger form of König’s duality
theorem, called extended König’s duality theorem.

Extended König’s Duality Theorem. Let (X, Y,E) be a countable bipartite graph.
Then there is a matching M and a cover C such that C consists of exactly one vertex
from each edge in E. Furthermore, for every y ∈ Y , y ∈ C if and only if there is a
Y0 ⊆ Y containing y and a matching of Y0 into D(Y0).

Extended König’s duality theorem is equivalent to Π1
1-CA0 over RCA0 by

[4] Theorem 4.18. In fact, Lemma 5.3.1 itself is equivalent to Π1
1-CA0 over RCA0

by [4] Corollary 4.20. In contrast, recall from the introduction that König’s du-
ality theorem is equivalent to ATR0 over RCA0. We show that the existence of a
≤-maximal wave, that is, Lemma 5.2.1, implies Lemma 5.3.1 over RCA0. It fol-
lows that both Lemma 5.2.1 and extended Menger’s theorem are equivalent to
Π1

1-CA0 over RCA0.

Lemma 5.3.2. Lemma 5.2.1 implies Lemma 5.3.1 over RCA0.

Proof. We prove the lemma in two steps. First, we prove that Lemma 5.2.1 im-
plies ACA0 over RCA0. Second, we prove that Lemma 5.2.1 implies Lemma 5.3.1
over ACA0.

First work in RCA0. We use the fact that ACA0 is equivalent to the statement
“for every injection f : N→N there is a Z ⊆ N such that ∀n(n ∈ Z↔∃m(f(m) =
n))” (see [67] Lemma III.1.3). So let f : N→N be an injection. Let (X, Y,E) be
the bipartite graph with sides X = {xn | n ∈ N} and Y = {yn | n ∈ N} and
edges E = {(xm, yn) | f(m) = n}. Let G be the web G = ((X, Y,E), X, Y ), and
by Lemma 5.2.1 let W be a ≤-maximal wave in G. Let Z = {n | yn ∈ V (W )}.
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We show that ∀n(n ∈ Z↔∃m(f(m) = n)). If f(m) = n, then (xm, yn) is the
only edge incident to either xn or yn because f is an injection. Thus the path in
W starting at xm is either the trivial path (xm) or the path (xm, yn). If the path
is (xm), then the path could be extended to (xm, yn), giving a proper extension
of the wave W and contradicting maximality. Thus the path is (xm, yn), hence
yn ∈ V (W ) and n ∈ Z. Conversely, if n ∈ Z, then yn ∈ V (W ) so (xm, yn) must be
an edge for some m ∈ N. This can only happen if f(m) = n.

Now work in ACA0. Let (X, Y,E) be a countable bipartite graph. By
Lemma 5.2.1, let W be a ≤-maximal wave in the web G = ((X, Y,E), X, Y ).
Let Y0 = Y ∩ ter(W ). We show that Y0 witnesses Lemma 5.3.1 for (X, Y,E). Let
M be the matching consisting of the paths in W of length 1. If y ∈ Y0, then by
choice of Y0 and M there is an x ∈ X such that (x, y) in M . If x /∈ D(Y0), then
there is a y′ ∈ Y \ Y0 such that (x, y′) ∈ E. Clearly y′ /∈ ter(W ), and x /∈ ter(W )
as well because (x, y) is a path in W . Thus (x, y′) is an X-Y path in G avoiding
ter(W ), contradicting that W is a wave. Therefore M is a matching of Y0 into
D(Y0).

To see that Y0 is ⊆-maximum, suppose for a contradiction that there is a Y ′ ⊆
Y and a matchingM ′ of Y ′ intoD(Y ′) such that Y ′ * Y0. LetW ′ be the subgraph
of (X, Y,E) with vertices V (W )∪Y ′ and edges E(W )∪{(x, y) ∈M ′ | y /∈ Y0}. W
is a proper subgraph of W ′, so if we can show that W ′ is a wave, then we have
that W < W ′, contradicting the maximality of W . Consider an edge (x, y) ∈ M ′

with y /∈ Y0. It must be that x ∈ ter(W ) because otherwise (x, y) would be
an X-Y path in G avoiding ter(W ). It follows that W ′ is a warp. To see that
ter(W ′) is an X-Y separator, consider an edge (x, y) ∈ E. We know ter(W )
is an X-Y separator, so either x ∈ ter(W ) or y ∈ ter(W ). If y ∈ ter(W ) then
y ∈ ter(W ′), so assume x ∈ ter(W ). If x /∈ ter(W ′), then there must have been
an edge (x, y′) ∈ M ′ for some y′ ∈ Y ′ \ Y0. By assumption, M ′ is a matching
from Y ′ into D(Y ′), so x ∈ D(Y ′) because M ′ matches y′ and x. Therefore y ∈ Y ′
because x ∈ D(Y ′) and (x, y) is an edge. Clearly Y ′ ⊆ ter(W ′), so y ∈ ter(W ′) as
desired.

Corollary 5.3.3. Lemma 5.2.1 is equivalent to Π1
1-CA0 over RCA0.

Proof. The given proof of Lemma 5.2.1 is in Π1
1-CA0. By Lemma 5.3.2,

Lemma 5.2.1 implies Lemma 5.3.1 over RCA0. By [4] Corollary 4.20, Lemma 5.3.1
is equivalent to Π1

1-CA0 over RCA0.

Corollary 5.3.4. Extended Menger’s theorem is equivalent to Π1
1-CA0 over RCA0.

Proof. Theorem 5.2.4 proves extended Menger’s theorem in Π1
1-CA0. Extended

Menger’s theorem asserts the existence of a ≤-maximal wave, which is equiva-
lent to Π1

1-CA0 over RCA0 by Corollary 5.3.3.
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CHAPTER 6
PARTIAL ANALYSES OF BIRKHOFF’S THEOREM AND OF

UNFRIENDLY PARTITIONS

In this chapter, we present a few partial results concerning the reverse math-
ematics of Birkhoff’s theorem and of unfriendly partitions.

6.1 Countable Birkhoff’s theorem in WKL0

Three classic theorems in finite matching theory are Hall’s theorem, König’s du-
ality theorem, and Birkhoff’s theorem. The reverse mathematics of König’s du-
ality theorem was begun in [4] and was completed in [63]. The theorem is that
König’s duality theorem (for countable graphs) is equivalent to ATR0 over RCA0.
The reverse mathematics of Menger’s theorem, a generalization of König’s du-
ality theorem, was analyzed in the previous chapter.

If G is a graph and S ⊆ V (G), let N(S) = {y ∈ V (G) | (∃s ∈ S)((x, y) ∈ E)}
denote the neighbors of S. A bipartite graph (X, Y,E) satisfies Hall’s condition
if and only if, for all finite S ⊆ X , |S| ≤ |N(S)|. A bipartite graph (X, Y,E)
satisfies symmetric Hall’s condition if and only if, for all finite S ⊆ X and all finite
S ⊆ Y , |S| ≤ |N(S)|. The classical versions of Hall’s theorem are the following.

Finite Hall’s Theorem. In every finite bipartite graph (X, Y,E), there is a complete
matching of X into Y (i.e., a matching in which every vertex of X is matched) if and
only if (X, Y,E) satisfies Hall’s condition.

Finite Symmetric Hall’s Theorem. In every finite bipartite graph (X, Y,E), there is
a perfect matching if and only if (X, Y,E) satisfies symmetric Hall’s condition.

Call a graph locally finite if every vertex is has finitely many neighbors. By
easy compactness arguments, a locally finite bipartite graph (X, Y,E) has a com-
plete matching ofX into Y if and only if it satisfies Hall’s condition, and a locally
finite bipartite graph has a perfect matching if and only if it satisfies symmetric
Hall’s condition.

Hirst analyzed the reverse mathematics of Hall’s theorem for countable lo-
cally finite graphs in [27]. For reference, we summarize Hirst’s results in the
following theorems.

Theorem 6.1.1 ([27] Theorem 2.2 and [27] Theorem 3.1). The following are equiv-
alent over RCA0.

(i) ACA0.
(ii) Every countable locally finite bipartite graph (X, Y,E) satisfying Hall’s condition

has a complete matching of X into Y .
(iii) Every countable locally finite bipartite graph satisfying symmetric Hall’s condition

has a perfect matching.

Call a countable graph (with V (G) = N) bounded if there is a function
f : N→N such that ∀x∀y((x, y) ∈ E(G)→ y ≤ f(x)). That is, f(x) is a bound
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on the neighbors of x. Of course a countable graph is locally finite if and only if
it is bounded, but it takes ACA0 to prove this. In WKL0, Hall’s theorem is provable
for bounded graphs, but locally finite graphs are not in general bounded. For
k ∈ N, call a graph k-regular if and only if every vertex has exactly k neighbors.
Under RCA0, a countable k-regular graph is bounded.

Theorem 6.1.2 ([27] Theorem 2.3 and [27] Theorem 3.3). The following are equiv-
alent over RCA0.

(i) WKL0.
(ii) Every countable bounded bipartite graph (X, Y,E) satisfying Hall’s condition has

a complete matching of X into Y .
(iii) Every countable bounded bipartite graph satisfying symmetric Hall’s condition

has a perfect matching.
(iv) For every k ≥ 1, every countable k-regular bipartite graph has a perfect matching.
(v) Every countable 2-regular bipartite graph has a perfect matching.

We make use of the implication (v)⇒ (i), and we now provide a proof that is
simpler than the original proof in [27].

Proof of Theorem 6.1.2 (v)⇒ (i). By [67] Lemma IV.4.4, it suffices to show that if
f, g : N→N are injections such that ∀m∀n(f(m) 6= g(n)) then ∃Z∀m(f(m) ∈
Z ∧ g(m) /∈ Z). Thus let f and g be injections such that ∀m∀n(f(m) 6= g(n)).
We build a 2-regular bipartite graph G = (X, Y,E) such that any matching in G
determines a set Z such that ∀m(f(m) ∈ Z ∧ g(m) /∈ Z). Let

X = {xn | n ∈ N} ∪ {xjn,i | n, i ∈ N∧ j < 4}
Y = {yn | n ∈ N} ∪ {y0

n,0, y
1
n,0 | n ∈ N} ∪ {y

j
n,i | n ∈ N∧ i ≥ 1∧ j < 4}

E = {(xn, y0
n,0) | n ∈ N} ∪ {(xn, y1

n,0) | n ∈ N}
∪ {(x2

n,0, yn) | n ∈ N} ∪ {(x3
n,0, yn) | n ∈ N}

∪ {(x0
n,i, y

0
n,i+1) | n, i ∈ N} ∪ {(x1

n,i, y
1
n,i+1) | n, i ∈ N}

∪ {(x0
n,i, y

0
n,i) | f(i) 6= n∧ g(i) 6= n} ∪ {(x1

n,i, y
1
n,i) | f(i) 6= n∧ g(i) 6= n}

∪ {(x2
n,i, y

2
n,i) | n ∈ N∧ i ≥ 1} ∪ {(x3

n,i, y
3
n,i) | n ∈ N∧ i ≥ 1}

∪ {(x2
n,i, y

2
n,i+1) | f(i) 6= n∧ g(i) 6= n} ∪ {(x3

n,i, y
3
n,i+1) | f(i) 6= n∧ g(i) 6= n}

∪ {(x2
n,i, y

0
n,i) | f(i) = n} ∪ {(x3

n,i, y
1
n,i) | f(i) = n}

∪ {(x2
n,i, y

1
n,i) | g(i) = n} ∪ {(x3

n,i, y
0
n,i) | g(i) = n}

∪ {(x0
n,i, y

2
n,i+1) | f(i) = n∨ g(i) = n} ∪ {(x1

n,i, y
3
n,i+1) | f(i) = n∨ g(i) = n}

Clearly G is bipartite. To see that G is 2-regular, we check that every vertex has
exactly two neighbors.

• xn is adjacent to y0
n,0 and y1

n,0, and yn is adjacent to x2
n,0 and x3

n,0.
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• x0
n,i is adjacent to y0

n,i+1, and it is adjacent to y0
n,i (if f(i) 6= n∧ g(i) 6= n) or to

y2
n,i+1 (otherwise).

• x1
n,i is adjacent to y1

n,i+1, and it is adjacent to y1
n,i (if f(i) 6= n∧ g(i) 6= n) or to

y3
n,i+1 (otherwise).

• x2
n,i is adjacent to yn (if i = 0) or y2

n,i (if i ≥ 1), and it is adjacent to y2
n,i+1 (if

f(i) 6= n∧ g(i) 6= n) or y0
n,i (if f(i) = n) or y1

n,i (if g(i) = n).

• x3
n,i is adjacent to yn (if i = 0) or y3

n,i (if i ≥ 1), and it is adjacent to y3
n,i+1 (if

f(i) 6= n∧ g(i) 6= n) or y1
n,i (if f(i) = n) or y0

n,i (if g(i) = n).

• y0
n,i is adjacent to xn (if i = 0) or x0

n,i−1 (if i ≥ 1), and it is adjacent to x0
n,i (if

f(i) 6= n∧ g(i) 6= n) or x2
n,i (if f(i) = n) or x3

n,i (if g(i) = n).

• y1
n,i is adjacent to xn (if i = 0) or x1

n,i−1 (if i ≥ 1), and it is adjacent to x1
n,i (if

f(i) 6= n∧ g(i) 6= n) or x3
n,i (if f(i) = n) or x2

n,i (if g(i) = n).

• y2
n,i is adjacent to x2

n,i, and it is adjacent to x2
n,i−1 (if f(i) 6= n∧ g(i) 6= n) or

x0
n,i−1 (otherwise).

• y3
n,i is adjacent to x3

n,i, and it is adjacent to x3
n,i−1 (if f(i) 6= n∧ g(i) 6= n) or

x1
n,i−1 (otherwise).

Thus G is a 2-regular bipartite graph. Let M be a perfect matching, and by
∆0

1 comprehension, let

Z = {n | ((xn, y0
n,0) ∈M ∧(x2

n,0, yn) ∈M)∨((xn, y
1
n,0) ∈M ∧(x3

n,0, yn) ∈M)}.

Suppose f(m) = n. Exactly one of (xn, y
0
n,0) and (xn, y

1
n,0) is in M . If (xn, y

0
n,0)

is in M , then so are (x0
n,i, y

0
n,i+1) for 0 ≤ i < m, (x2

n,i, y
2
n,i) for 0 < i ≤ m, and

(x2
n,0, yn). If (xn, y

1
n,0) is in M , then so are (x1

n,i, y
1
n,i+1) for 0 ≤ i < m, (x3

n,i, y
3
n,i) for

0 < i ≤ m, and (x3
n,0, yn). Hence ((xn, y

0
n,0) ∈ M ∧(x2

n,0, yn) ∈ M)∨((xn, y
1
n,0) ∈

M ∧(x3
n,0, yn) ∈M), thus n ∈ Z.

Conversely, suppose g(m) = n. Exactly one of (xn, y
0
n,0) and (xn, y

1
n,0) is in M .

If (xn, y
0
n,0) is inM , then so are (x0

n,i, y
0
n,i+1) for 0 ≤ i < m, (x3

n,i, y
3
n,i) for 0 < i ≤ m,

and (x3
n,0, yn). If (xn, y

1
n,0) is inM , then so are (x1

n,i, y
1
n,i+1) for 0 ≤ i < m, (x2

n,i, y
2
n,i)

for 0 < i ≤ m, and (x2
n,0, yn). Hence ((xn, y

0
n,0) ∈M ∧(x3

n,0, yn) ∈M)∨((xn, y
1
n,0) ∈

M ∧(x2
n,0, yn) ∈M), thus n /∈ Z.

Thus ∀m(f(m) ∈ Z ∧ g(m) /∈ Z) as desired.

We are now ready to discuss Birkhoff’s theorem. For n ∈ N, an n×nmatrix of
non-negative reals is called doubly stochastic if every row sums to one and every
column sums to one. A permutation matrix is a matrix whose entries are either 0
or 1 and such that every row and every column contains exactly one 1. A linear
combination λ0P0 + λ1P1 + · · · + λnPn of permutation matrices P0, P1, . . . , Pn is
convex if and only if λi ≥ 0 for each 0 ≤ i ≤ n and λ0 + λ1 + · · ·+ λn = 1.
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Finite Birkhoff’s Theorem. Every n× n doubly stochastic matrix is a convex linear
combination of n× n permutation matrices.

Birkhoff asked in problem 111 of [12] for an N×N version of this theorem.
The solution we consider was provided by Isbell in [29]. Isbell makes the fol-
lowing definitions.

Definition 6.1.3. For an N×Nmatrix A, let

‖A‖ = max

(
sup
i∈N

∑
j∈N

|A(i, j)|, sup
j∈N

∑
i∈N

|A(i, j)|
)
.

Definition 6.1.4. A doubly stochastic N×N matrix A satisfies (∗) if and only if
for every ε > 0 there is an n such that, in any row or column, the sum of the n
largest entries is ≥ 1− ε.

Isbell’s solution to Birkhoff’s problem 111, what we call countable Birkhoff’s
theorem, is the following.

Countable Birkhoff’s Theorem ([29] Theorem 3). If A is an N×N doubly stochas-
tic matrix satisfying (∗), then for every ε > 0 there is a convex linear combination of
N×N permutation matrices B such that ‖A−B‖ ≤ ε.

Countable Birkhoff’s theorem may be rephrased as follows. In the Banach
space of N×N matrices A with ‖A‖ finite and norm ‖·‖, the convex closure of
the set of permutation matrices is the set of doubly stochastic matrices satisfying
(∗).

The main result of this section is a proof of countable Birkhoff’s theorem in
WKL0. In order to give this proof, we first need a version of Theorem 6.1.2 for
bipartite multigraphs. The key to approximating a doubly stochastic matrix
by a convex combination of permutation matrices is the following fact. Any
doubly stochastic matrix consisting of rational entries with a fixed denominator
m is a convex linear combination of permutation matrices. In the language of
matchings, this says that every m-regular bipartite multigraph is the union of
m edge-disjoint perfect matchings. We use multigraphs because p/m at entry
(i, j) in the matrix corresponds to p edges (i, j) in the graph. Classically, the fact
is proved by applying Hall’s theorem for regular graphs m times. However,
iterating Hall’s theorem this way is not formalizable in WKL0. Instead, we use a
compactness argument that produces the m matchings simultaneously. To get
started, we need the following finite cases. The arguments are standard and are
formalizable in RCA0.

Lemma 6.1.5 (in RCA0). Let G = (A,B,E) be a finite bipartite multigraph graph
with A0 ⊆ A and B0 ⊆ B such that (∀S ⊆ A0)(|S| ≤ |N(S)|) and (∀S ⊆ B0)(|S| ≤
|N(S)|). Then there is a matching (not necessarily perfect) covering A0 ∪B0.

Proof. Induct on 〈 |A0|, |B0| 〉. If there are no edges between A0 and B0, then we
can apply finite Hall’s theorem to A0 and B0 independently to get a matching of
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A0 intoB\B0 and a matching ofB0 intoA\A0. The union of these two matchings
is a matching coveringA0∪B0. This handles the cases where |A0| = 0 or |B0| = 0.

Suppose that |N(S)| ≥ |S| + 1 for all non-empty S ⊆ A0 and all non-empty
S ⊆ B0. We may assume that there are a ∈ A0 and b ∈ B0 such that (a, b) is an
edge. Let A′ = A \ {a}, A′0 = A0 \ {a}, B′ = B \ {b}, and B′0 = B0 \ {b}. Then
(∀S ⊆ A′0)(|S| ≤ |N(S)|) and (∀S ⊆ B′0)(|S| ≤ |N(S)|). By induction, there is a
matching covering A′0 ∪ B′0. Adding the edge (a, b) gives a matching covering
A0 ∪B0.

Suppose instead that |N(S)| = |S| for some non-empty S ⊆ A0 (the case
where S ⊆ B0 is symmetric). Finite Hall’s theorem gives a matching M1 of S
into N(S), and this matching is perfect because |N(S)| = |S|. Put A′ = A \ S,
A′0 = A0 \S, B′ = B \N(S), and B′0 = B0 \N(S). Let H = (A′, B′, E ∩ (A′×B′)).
We need to show that |T | ≤ |NH(T )| for all T ⊆ A′0 and all T ⊆ B′0. Let T ⊆ A′0.
If |NH(T )| < |T | then |NG(T ∪ S)| = |NH(T )| + |NG(S)| < |T | + |S| = |T ∪ S|,
which is a contradiction because T ∪ S ⊆ A0. Let T ⊆ B′0. NH(T ) = NG(T )
because if b ∈ T had a neighbor in S, then b would be in N(S) and hence not in
T . Since B′0 ⊆ B0, it follows that |T | ≤ |NG(T )| = |NH(T )|. Thus by induction
there is a matching M2 in H covering A′0 ∪ B′0. The matching M1 ∪M2 covers
A0 ∪B0.

The formula ϕ(〈n,m 〉) on which we induct says “for every finite bipartite
multigraph (A,B,E) and for every A0 ⊆ A and B0 ⊆ B with |A0| = n and
|B0| = m such that (∀S ⊆ A0)(|S| ≤ |N(S)|) and (∀S ⊆ B0)(|S| ≤ |N(S)|), there
is a matching covering A0 ∪ B0.” Given a sensible coding of finite multigraphs
G = (A,B,E) over N, bounds on the possible codes for subsets of A, B, and E
can be calculated from the code for G. Thus the only unbounded quantifier in ϕ
is “for every bipartite multigraph,” hence ϕ can be written as a Π0

1 formula. RCA0

proves the Π0
1 induction scheme (see [67] Corollary II.3.10), so the foregoing

argument is formalizable in RCA0.

Lemma 6.1.6 (in RCA0). Let G = (A,B,E) be a finite bipartite multigraph with A0 ⊆
A andB0 ⊆ B such that every vertex ofA∪B has multidegree≤ m and every vertex of
A0∪B0 has multidegree = m. Then there arem edge-disjoint matchings (not necessarily
perfect), each covering A0 ∪B0.

Proof. Induct on m. Suppose m = 1. Let S ⊆ A0. The number of edges incident
to S is |S|, so the number of edges incident to N(S) is ≥ |S|. Hence the average
multidegree of a vertex in N(S) is ≥ |S|/|N(S)|. If |N(S)| < |S|, then this aver-
age is > 1, which means some vertex of B has multidegree > 1, a contradiction.
Hence |S| ≤ |N(S)| for all S ⊆ A0, and similarly this holds for all S ⊆ B0. By
Lemma 6.1.5, there is a matching covering A0 ∪B0.

Now consider the case m + 1. Remove all edges without an endpoint in
A0 ∪B0. If a ∈ A \A0 has m+ 1 edges incident to B0, then put a in A0. Similarly,
if b ∈ B \ B0 has m + 1 edges incident to A0, then put b in B0. In the resulting
multigraph, all vertices of A0 ∪ B0 have multidegree = m + 1, and all vertices
of (A \ A0) ∪ (B \ B0) have multidegree ≤ m. Let S ⊆ A0. The number of
edges incident to S is (m + 1)|S|, so the number of edges incident to N(S) is
≥ (m + 1)|S|. Hence the average multidegree of a vertex in N(S) is ≥ (m +
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1)|S|/|N(S)|. If |N(S)| < |S|, then this average is > m + 1, which means that
some vertex of B has multidegree > m + 1. Hence |S| ≤ |N(S)| for all S ⊆ A0,
and similarly this holds for all S ⊆ B0. By Lemma 6.1.5, there is a matching M
covering A0 ∪ B0. Remove the edges of this matching from the multigraph. In
the resulting multigraph, all vertices of A0 ∪ B0 have multidegree = m, and all
vertices ofA∪B have multidegree≤ m. By induction there existm edge-disjoint
matchings, each covering A0 ∪ B0. Add M to this list and we have m + 1 such
matchings.

As in Lemma 6.1.5, the property on which we induct can be written as a Π0
1

formula, and hence the foregoing argument is formalizable in RCA0.

We can now decompose a countable m-regular bipartite multigraph into m
edge-disjoint perfect matchings in WKL0.

Lemma 6.1.7 (in WKL0). Let (X, Y,E) be a countable m-regular bipartite multigraph.
Then (X, Y,E) is the union of m edge-disjoint perfect matchings.

Proof. Assume X and Y are copies of N. We will define a tree T ⊆ ((N2)m)<N

ordered by extension. An element of T looks like

〈 〈 〈 y0
0, x

0
0 〉, . . . , 〈 ym−1

0 , xm−1
0 〉 〉, . . . , 〈 〈 y0

n, x
0
n 〉, . . . , 〈 ym−1

n , xm−1
n 〉 〉 〉 .

The idea is that 〈 yi0, xi0 〉, . . . , 〈 yin, xin 〉 codes the ith partial matching: for k ≤ n,
k ∈ X is matched to yik ∈ Y and k ∈ Y is matched to xik ∈ X . Thus we define T
to be the set of all such sequences with the following properties.

(i) If k ≤ n and i < m then (k, yik) and (xik, k) are edges.

(ii) If k, l ≤ n and i < m then yik = l if and only if xil = k (this guarantees that
the ith partial matching is a matching).

(iii) For each k ≤ n, the number of times each y ∈ Y occurs as some yik for i < m
is ≤ the multiplicity of the edge (k, y), and the number of times each x ∈ X
occurs as some xik for i < m is ≤ the multiplicity of the edge (x, k) (this
guarantees that the matchings are disjoint).

One readily proves that T is bounded using the fact that (X, Y,E) is m-
regular (hence bounded). Thus to apply weak König’s lemma, we need only
to show that for each n ∈ N there is a sequence in T of length n. Let A0 =
{0, . . . , n − 1} ⊆ X be the first n elements of X and B0 = {0, . . . , n − 1} ⊆ Y be
the first n elements of Y . Let N1 be the largest neighbor of a vertex in B0 and let
N2 be the largest neighbor of a vertex in A0. Let A = {0, . . . , N1} ⊆ X , and let
B = {0, . . . , N2} ⊆ Y . By Lemma 6.1.6, there are m edge-disjoint matchings in
the finite bipartite multigraph (A,B,E∩ (A×B)), each covering A0∪B0. Such a
sequence of matchings corresponds to an element of the tree of length n. Apply
weak König’s lemma to T . Any infinite path through T gives a decomposition
of (X, Y,E) into m edge-disjoint perfect matchings.

Lemma 6.1.7 is in fact equivalent to WKL0 over RCA0.
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Theorem 6.1.8. The following are equivalent over RCA0.

(i) WKL0.
(ii) Every countable m-regular bipartite multigraph is the union of m edge-disjoint

perfect matchings.

Proof. Lemma 6.1.7 proves (i)⇒ (ii). For (ii)⇒ (i), observe that (ii) implies that
every 2-regular bipartite graph has a perfect matching which implies (i) by The-
orem 6.1.2.

Theorem 6.1.9. Countable Birkhoff’s theorem is provable in WKL0.

Proof. Let A be an N×N doubly stochastic matrix of reals satisfying (∗). Let
ε > 0 be rational. By (∗), let n be such that, in any row or column, the sum of the
n largest entries is ≥ 1− ε/4. We first do some pre-processing of A in RCA0. Let
m = d n

ε/4
e. Define an N×Nmatrix of rationals C by letting C(i, j) be the largest

p/m < A(i, j). Then ‖A − C‖ ≤ ε/2 as follows. Fix a row i, and let S be a set of
n indices such that

∑
j∈S A(i, j) ≥ 1− ε/4. Then∑

j∈N

(|A(i, j)− C(i, j)|) =
∑
j∈S

(|A(i, j)− C(i, j)|) +
∑
j /∈S

(|A(i, j)− C(i, j)|).

By choice ofC, C(i, j) < A(i, j) and |A(i, j)−C(i, j)| ≤ 1/m for all i and j. There-
fore

∑
j∈S(|A(i, j) − C(i, j)|) ≤ n(1/m) ≤ ε/4 and

∑
j /∈S(|A(i, j) − C(i, j)|) ≤∑

j /∈S A(i, j) ≤ ε/4 (because
∑

j∈S A(i, j) ≥ 1 − ε/4). Thus
∑

j∈N(|A(i, j) −
C(i, j)|) ≤ ε/2. Similarly, each of the absolute column sums of A−C is≤ ε/2, so
‖A− C‖ ≤ ε/2.

Since each entry of C is of the form p/m, and since C(i, j) < A(i, j) for all i
and j, it follows that each row and column of C sums to a rational of the form
p/m < 1. Therefore we can recursively define an N×N doubly stochastic matrix
B by alternating adding entries of the form 1/m in each row and column of C.
It must be that every row and column of C sums to at least 1 − ε/2 because
‖A− C‖ ≤ ε/2. Therefore at most ε/2 is added to each row and column of C to
get B, hence ‖C − B‖ ≤ ε/2. Thus ‖A− B‖ ≤ ε. We use WKL0 to show that B is
a convex linear combination of permutation matrices.

The matrix B is an N×N doubly stochastic matrix in which every entry is of
the form p/m. View B as a bipartite multigraph (X, Y,E) where X = {xi | i ∈
N}, Y = {yi | i ∈ N}, and E contains p copies of the edge (xi, yj) if B(i, j) = p/m.
(X, Y,E) is m-regular because B is doubly stochastic. By Lemma 6.1.7, let M0,
M1, . . . , Mm−1 bem edge-disjoint perfect matchings such thatE =

⋃
k<mMk. For

each k < m, let Pk be the permutation matrix corresponding toMk (i.e., Pk(i, j) =
1 if and only if (xi, yj) ∈ Mk). Then B = (1/m)P0 + (1/m)P1 + · · · + (1/m)Pm−1

as desired.

Unfortunately we do not have a reversal of Theorem 6.1.9.

Isbell’s solution to Birkhoff’s problem 111 is not the only one. Solutions by
Kendall [34] and Révész [50], for example, also deserve reverse mathematical
attention.
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6.2 Variations on countable Birkhoff’s theorem

In the phrasing of countable Birkhoff’s theorem above, we are given a doubly
stochastic N×N matrix A satisfying (∗) and an ε > 0, and we ask for a N×N
matrix B that is a convex linear combination of permutation matrices such that
‖A−B‖ ≤ ε. Instead, we could ask for a sequence of convex linear combinations
of permutation matrices converging to A. That is, we could ask for a sequence
〈λn0P n

0 + · · · + λnmn
P n
mn
| n ∈ N 〉 such that ‖A − (λn0P

n
0 + · · · + λnmn

P n
mn

)‖ ≤ 1/n
for each n.

Another variation on countable Birkhoff’s theorem is to strengthen (∗).

Definition 6.2.1. If A is an N×N doubly stochastic matrix, a function f : N→N
witnesses (∗) for A if and only if, for every n ∈ N, in any row or column the sum
of the h(n) largest entries is ≥ 1− 1/n.

Theorem 6.2.2. The following statement is provable in WKL0. If A is an N×N doubly
stochastic matrix and h witnesses (∗) for A, then there is a sequence 〈λn0P n

0 + · · · +
λnmn

P n
mn
| n ∈ N 〉 such that ‖A− (λn0P

n
0 + · · ·+ λnmn

P n
mn

)‖ ≤ 1/n for each n.

Proof. In the proof of Theorem 6.1.9, given ε > 0, we found a N×N doubly
stochastic matrix B such that ‖A − B‖ ≤ ε and every entry of B is a rational
of the form p/m for fixed m. Then, using Lemma 6.1.7, we define from B an
infinite bounded tree T such that any infinite path of T codes a decomposition
of B into a convex linear combination of permutation matrices.

Now, the function h witnessing (∗) for A lets us make the argument from
Theorem 6.1.9 uniformly in 1/n. In RCA0 we can find a sequence 〈Bn | n ∈ N 〉
of N×N doubly stochastic matrices such that every entry of Bn is a rational of
the form p/mn and ‖A−Bn‖ ≤ 1/n for each n. From the sequence 〈Bn | n ∈ N 〉,
produce a sequence of infinite bounded trees 〈Tn | n ∈ N 〉 such that every
infinite path of Tn codes a decomposition ofBn into a convex linear combination
of permutation matrices. Then code the sequence of trees 〈Tn | n ∈ N 〉 into a
single infinite bounded tree T :

(∀σ ∈ N<N)(σ ∈ T ↔(∀ 〈 i, j 〉 < |σ|)(σ(〈 i, 0 〉)σ(〈 i, 1 〉) · · ·σ(〈 i, j 〉) ∈ Ti)).

Any infinite path through T codes infinite paths through every Tn and hence
codes a sequence 〈λn0P n

0 + · · · + λnmn
P n
mn
| n ∈ N 〉 such that ‖A − (λn0P

n
0 + · · · +

λnmn
P n
mn

)‖ ≤ 1/n for each n.

Unfortunately we do not have a reversal of Theorem 6.2.2.

If A is an N×N doubly stochastic matrix satisfying (∗), then finding an h
witnessing (∗) for A requires ACA0.

Lemma 6.2.3. The following are equivalent over RCA0.

(i) ACA0.
(ii) If A is an N×N doubly stochastic matrix satisfying (∗), then there is an h wit-

nessing (∗) for A.
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Proof. (i) ⇒ (ii): Let A be an N×N doubly stochastic matrix satisfying (∗). In
ACA0, we may define a function f by

f(〈n, i 〉) = the least m such that, for all j ≤ i,
there are m entries in row j that sum to ≥ 1− 1/n, and
there are m entries in column j that sum to ≥ 1− 1/n.

For each n, limi f(〈n, i 〉) exists because A satisfies (∗). Again in ACA0, define
h(n) = limi f(〈n, i 〉).

(ii) ⇒ (i): By [67] Lemma III.1.3, it suffices to show that if f : N→N is an
injection, then there is a Z ⊆ N such that ∀n(n ∈ Z↔∃m(f(m) = n)). Let
f : N→N be an injection. Define a N×N block diagonal matrix

A =


C0

C1

C2

. . .


as follows. Each Cm will be a finite doubly stochastic matrix, which means that
A will be doubly stochastic. If f(m) = n, then Cm will witness h(n) ≥ m. Define
the matrix Cm as follows. Suppose f(m) = n. Let N = max(m,n). Then let

Cm =



a1 · · · an−1 b1 · · · b`m c1 · · · c`′m
... . . .

an−1 1− an−1

b1 1− b1
... . . .
b`m 1− b`m
c1 1− c1
... . . .
c`′m 1− c`′m


where

• a1 = a2 = 1/4,
• 1− (a1 + · · ·+ ak) = 1/k for 2 ≤ k ≤ n− 1,
• b1 = · · · = b`m = 1/`m(n2−n), where `m is least≥ N such that 1/`m(n2−n) <
an−1 (this makes 1− (a1 + · · ·+ an−1 + b1 + · · ·+ b`m) = 1/n), and
• c1 = · · · = c`′m = 1/`′mn, where `′m is least such that 1/`′mn < 1/`m(n2 − n).

We show that A satisfies (∗). Let ε > 0, and let 1/n < ε. The function f
is an injection, so there must be a greatest k for which f(k) ≤ n. Let N be the
maximum of 2, n, and the maximum size (i.e., number of rows) ofC0, C1, . . . , Ck.
Then in any row or column of A, the largest N entries sum to at least 1 − 1/n.
This is true for any row or column which goes through a block Ci for i ≤ k
because such rows and columns have at most N non-zero entries. Consider
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a row or column going through a block Ci with i > k. If the row or column
contains two non-zero entries which sum to one, then the N largest entries sum
to 1. Otherwise, the row or column contains a1, . . . , af(i)−1, f(i) > n by choice of
k, and a1 + · · ·+ an = 1− 1/n by construction.

By (ii), let h be a function witnessing (∗) for A. By ∆0
1 comprehension, let

Z = {n | (∃m ≤ h(n))(f(m) = n)}. Clearly if n ∈ Z, then ∃m(f(m) = n).
Conversely, suppose that ∃m(f(m) = n). In the first row through block Cm,
the m largest entries are among a1, . . . , an−1, b1, . . . , b`m , and a1 + · · · + an−1 +
b1 + · · · + b`m = 1 − 1/n. Hence h(n) ≥ m, so (∃m ≤ h(n))(f(m) = n). Thus
∀n(n ∈ Z↔∃m(f(m) = n)).

The strongest version of countable Birkhoff’s theorem we consider is equiv-
alent to ACA0 over RCA0.

Theorem 6.2.4. The following are equivalent over RCA0.

(i) ACA0.
(ii) If A is an N×N doubly stochastic matrix satisfying (∗), then there is a sequence
〈λn0P n

0 + · · ·+λnmn
P n
mn
| n ∈ N 〉 such that ‖A− (λn0P

n
0 + · · ·+λnmn

P n
mn

)‖ ≤ 1/n
for each n.

Proof. (i) ⇒ (ii): By Lemma 6.2.3, let h witness (∗) for A. Then apply Theo-
rem 6.2.2.

(ii)⇒ (i): Let A be a N×N doubly stochastic matrix satisfying (∗). By (ii), let
〈λn0P n

0 + · · ·+ λnmn
P n
mn
| n ∈ N 〉 be such that ‖A− (λn0P

n
0 + · · ·+ λnmn

P n
mn

)‖ ≤ 1/n
for each n. Let h(n) = mn. Then h witnesses (∗) for A, so (i) follows from
Lemma 6.2.3.

6.3 Reverse mathematics and unfriendly partitions

A partition V (G) = X0∪X1 of the vertices of a graphG is unfriendly if and only if
(∀i < 2)(∀v ∈ Xi)(|N(v)∩Xi| ≤ |N(v)∩X1−i|). That is, every vertex in the graph
has at least as many neighbors outside its side of the partition as inside its side of
the partition. Every finite graph has an unfriendly partition: simply choose any
partition that maximizes the number of edges that have an endpoint in each side
of the partition. It follows by compactness that every locally finite graph has an
unfriendly partition. Shelah and Milner give an example of a graph that has no
unfriendly partition [58]. The cardinality of their example is the ωth successor
of the continuum. Amazingly, it is not known whether every countable graph
has an unfriendly partition. The assertion that every countable graph has an
unfriendly partition is now known as the unfriendly partition conjecture.

Aharoni, Milner, and Prikry show that a graph with only finitely many
vertices of infinite degree has an unfriendly partition [5]. They also show
that if G is a graph for which there exist a finite number of infinite cardinals
κ0 < κ1 < · · · < κk with κi regular for 1 ≤ i ≤ k such that < κ0 vertices

101



have finite degree and every vertex with infinite degree has degree κi for some
0 ≤ i ≤ k, then G has an unfriendly partition. More recently, Bruhn, Diestel,
Georgakopoulos, and Sprüssel show that every graph with no infinite path has
an unfriendly partition [13]. Although an infinite graph may not have an un-
friendly partition, Shelah and Milner also show that every graph, regardless of
cardinality, has an unfriendly 3-partition, that is, a partition V (G) = X0∪X1∪X2

such that (∀i < 3)(∀v ∈ Xi)(|{u ∈ N(v) | u ∈ Xi}| ≤ |{u ∈ N(v) | u /∈ Xi}|) [58].
The unfriendly partition conjecture motivates our study of the reverse math-

ematics of unfriendly partitions. We present some initial results.

Theorem 6.3.1. The following are equivalent over RCA0.

(i) ACA0.
(ii) Every locally finite graph has an unfriendly partition.

Proof. (i)⇒ (ii): Let G = (V,E) be a locally finite graph and enumerate V as {vi |
i ∈ N}. By arithmetical comprehension, let f : N→N be such that (∀i)((vi, vj) ∈
E→ j < f(i)). Define a tree T ⊆ 2<N by

σ ∈ T ⇔(∀i < |σ|)(|σ| ≤ f(i)→
|{j < |σ| | vj ∈ N(vi)∧σ(j) = σ(i)}| ≤ |{j < |σ| | vj ∈ N(vi)∧σ(j) 6= σ(i)}|).

The fact that every finite graph has an unfriendly partition implies that T is
infinite. Apply König’s lemma to T . Any infinite path through T codes an
unfriendly partition of G.

(ii) ⇒ (i): By [67] Lemma III.1.3, it suffices to show that if f : N→N is an
injection, then there is a Z ⊆ N such that ∀n(n ∈ Z↔∃m(f(m) = n)). Let
f : N→N be an injection. By ∆0

1 comprehension, let G = (V,E) be the graph
where

V = {an, bn, cn, dn, en | n ∈ N}
E = {(an, bn), (cn, dn), (dn, en) | n ∈ N}
∪ {(an, cm), (an, em), (bn, cm), (bn, em) | f(m) = n}.

By (ii), let X0 ∪ X1 be an unfriendly partition of V . By ∆0
1 comprehension, let

Z = {n ∈ N | (an ∈ X0 ∧ bn ∈ X0)∨(an ∈ X1 ∧ bn ∈ X1)}. If ¬∃m(f(m) = n),
then an and bn are only adjacent to each other and so must be in opposite sides
of the partition. Hence n /∈ Z. Conversely, suppose f(m) = n, and suppose for
a contradiction that an and bn are in opposite sides of the partition. Say an ∈ X0

and bn ∈ X1. The set {an, bn, cm, dm, em} is a connected component because f
is an injection. Vertices cm and em cannot both be in X0 because otherwise an
has two neighbors in X0 and only one neighbor in X1. Similarly, cm and em
cannot both be in X1. Thus one of cm and em is in X0 and the other is in X1.
Say cm ∈ X0 and em ∈ X1. Then dm cannot be in X0 because this would give cm
two neighbors (an and dm) in X0 and only one neighbor (bn) in X1. Similarly, dm
cannot be in X1. This contradicts the fact that X0 ∪X1 is an unfriendly partition
of V . Thus an and bn are either both in X0 or both in X1. Hence n ∈ Z.
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We see from the proof of Theorem 6.3.1 (i) ⇒ (ii) that WKL0 proves that ev-
ery bounded graph has an unfriendly partition. In that proof, ACA0 is used
to produce the bounding function f , and the rest of the proof goes through in
WKL0. Unfortunately we do not have a reversal for the bounded version of The-
orem 6.3.1.

Shelah and Milner’s method of producing unfriendly 3-partitions in [58] goes
through in ACA0 in the countable case. It is convenient to make the following
definition.

Definition 6.3.2. Let G = (V,E) be a graph. A function f : V →N is unfriendly
at v ∈ V if and only if |{u ∈ N(v) | f(u) = f(v)}| ≤ |{u ∈ N(v) | f(u) 6= f(v)}|.
A function f : V →{0, 1, 2} is an unfriendly 3-partition of G if and only if f is
unfriendly at every v ∈ V .

Lemma 6.3.3 (in ACA0). Let G = (V,E) be a graph. Let A,B ⊆ V be such that
A∩B = ∅ and (∀v ∈ A)(N(v)∩ (A∪B) is finite). Then any function g : B→{0, 1, 2}
can be extended to a function h : A ∪ B→{0, 1, 2} such that h(A) ⊆ {0, 1} and h is
unfriendly at every v ∈ A in the subgraph induced by A ∪B.

Proof. First assume that A is finite. Choose g′ : A→{0, 1} so that h = g ∪ g′
maximizes the number n = |{(v, u) ∈ E | v ∈ A∧u ∈ A ∪ B ∧h(v) 6= h(u)}|.
Then h is unfriendly at each v ∈ A in the subgraph induced by A ∪ B. If not,
then there is a v ∈ A such that

|{u ∈ N(v) ∩ (A ∪B) | h(u) = h(v)}| > |{u ∈ N(v) ∩ (A ∪B) | h(u) 6= h(v)}|.

Thus we could increase n by replacing g′(v) with 1 − g′(v), contradicting that h
maximizes n.

If A is infinite, let A = {ai | i ∈ N}, and let An = {ai | i < n}. For σ ∈ 2<N

with |σ| = n, define g′σ : An→{0, 1} by (∀i < n)(g′σ(ai) = σ(i)). Let hσ = g ∪ g′σ.
By arithmetical comprehension, define a tree T ⊆ 2<N by

σ ∈ T ⇔(∀i < |σ|)(N(ai) ∩ A ⊆ A|σ|→
hσ is unfriendly at ai in the subgraph induced by A|σ| ∪B).

The finite case implies that T is infinite, so by König’s lemma let p : N→{0, 1} be
a path through T . Define f : A→{0, 1} by f(an) = p(n) for each n. We show that
h = g∪f is unfriendly at every an ∈ A in the subgraph induced byA∪B. Let an ∈
A, and let m be large enough so that N(an) ∩ A ⊆ Am. Let σ = 〈 p(0), . . . , p(m) 〉.
Then hσ is unfriendly at an in the subgraph induced by Am ∪ B because σ ∈ T .
However, N(an)∩ (A∪B) ⊆ N(an)∩ (Am ∪B), and h agrees with hσ on Am ∪B.
Thus h is unfriendly at an in the subgraph induced by A ∪B.

Theorem 6.3.4. The following statement is provable in ACA0. Every graph has an
unfriendly 3-partition.

Proof. Let G = (V,E) be a graph. By arithmetical comprehension, let X = {v ∈
V | N(v) is finite}, and let Y = {v ∈ V | N(v) ∩X is infinite}. Let Z = V \ (X ∪
Y ). Define g : Y ∪Z→{0, 1, 2} by setting g(Y ) = 2 and by defining g(Z) ⊆ {0, 1}
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by the following recursive procedure. Let Z = {zi | i ∈ N}. Initialize an empty
priority queue. For n = 0, 1, 2, . . . do the following. If zn is not a neighbor
any z in the queue, then set g(zn) = 0. Otherwise, let z be the highest priority
neighbor of zn. Set g(zn) = 1 − g(z). If z is at the front of the queue (i.e., has
highest priority), then move z to the back of the queue. If N(zn) ∩ Y is finite,
then add zn to the back of the queue. This completes the definition of g.

By Lemma 6.3.3, let h be a function extending g such that h(X) ⊆ {0, 1} and
that h is unfriendly at every v ∈ X . We show that h is an unfriendly 3-partition
of G. We already know that h is unfriendly at every v ∈ X . The function h
is also unfriendly at every v ∈ Y because h(v) = 2 for every v ∈ Y and h(u)
is either 0 or 1 for every u ∈ X . Let z ∈ Z. If N(z) ∩ Y is infinite, then h is
unfriendly at z because h(z) ∈ {0, 1} and h(Y ) = 2. Suppose N(z) ∩ Y is finite.
Then N(z) ∩ Z must be infinite. Every time z reaches the front of the queue, we
eventually define g(z′) 6= g(z) for some neighbor of z′ of z. Thus it suffices to
show that z reaches the front of the queue infinitely many times. If not, then z
never reaches the front of the queue after some step n. Since the priority of z
either increases or stays the same at each step after n, there is some step m after
which the priority of z never changes. This contradicts the fact that the vertex
with priority one at step m has infinitely many neighbors in Z. Thus h is our
desired unfriendly partition.

We do not have a reversal for Theorem 6.3.4, but we can prove that RCA0 is
not strong enough to produce unfriendly 3-partitions.

Theorem 6.3.5. There is a recursive locally finite graph with no recursive unfriendly
3-partition. It follows that the statement “every graph has an unfriendly 3-partition” is
not provable in RCA0.

Proof. Our graph G = (V,E) has V = N, and we construct E in stages 〈 e, s 〉.
For fixed e, in stages 〈 e, s 〉 we diagonalize against Φe in the eth column of N.
This diagonalization occurs in three phases. Together phases I and II force Φe

to take on the values 0, 1, and 2 four times each. Phase III consists of several
subphases which finish the diagonalization. Call column e good at stage 〈 e, s 〉
if the diagonalization succeeds at this stage. Once column e is good at stage
〈 e, s 〉, the construction is finished in the eth column and we skip all subsequent
stages 〈 e, t 〉.

Initially,E has edge (〈 e, i, 0, 0 〉, 〈 e, i, 1, 0 〉) for each e and for each i = 0, 1, 2, 3.
Each column begins in phase I. At stage 〈 e, s 〉 do the following.

• If column e is in phase I, then do the following.

– If Φe,s(〈 e, i, j, 0 〉)↑ for some i = 0, 1, 2, 3 and some j = 0, 1, then go to
the next stage.

– Otherwise, column e is good at 〈 e, s 〉 if either of the following condi-
tions are met:
(i) Φe,s(〈 e, i, j, 0 〉) > 2 for some i = 0, 1, 2, 3 and some j = 0, 1, or

(ii) Φe,s(〈 e, i, 0, 0 〉) = Φe,s(〈 e, i, 1, 0 〉) for some i = 0, 1, 2, 3.
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If column e is not good, then add edges (〈 e, i, j, s 〉, 〈 e, i, k, 0 〉) for i =
0, 1, 2, 3, j = 2, 3, and k = 0, 1, and add edges (〈 e, i, 4, s 〉, 〈 e, i, j, s 〉) for
i = 0, 1, 2, 3 and j = 2, 3. Enter phase II.

• If column e is in phase II, then let 〈 e, t 〉 be the stage at which column e
entered phase II and do the following.

– If Φe,s(〈 e, i, j, t 〉)↑ for some i = 0, 1, 2, 3 and some j = 2, 3, 4, then go to
the next stage.

– Otherwise, column e is good at 〈 e, s 〉 if either of the following condi-
tions are met:
(i) Φe,s(〈 e, i, j, t 〉) > 2 for some i = 0, 1, 2, 3 and some j = 2, 3, 4, or

(ii) for some i = 0, 1, 2, 3, Φe,s takes on only two values on the five
vertices 〈 e, i, 0, 0 〉, 〈 e, i, 1, 0 〉, 〈 e, i, 2, t 〉, 〈 e, i, 3, t 〉, and 〈 e, i, 4, t 〉.

If column e is not good, then add edge (〈 e, 4, 0, s 〉, 〈 e, 4, 1, s 〉). Enter
phase III.

• Phase III consists of sixteen subphases and begins in subphase 1. Let 〈 e, r 〉
be the stage at which column e entered phase III, and do the following.

– If column e is in phase III, subphase 1, do the following.
∗ If Φe,s(〈 e, 4, j, r 〉)↑ for some j = 0, 1, then go to the next stage.
∗ Otherwise, column e is good at 〈 e, s 〉 if either of the following con-

ditions are met:
(i) Φe,s(〈 e, 4, j, r 〉) > 2 for some j = 0, 1, or

(ii) Φe,s(〈 e, 4, 0, r 〉) = Φe,s(〈 e, 4, 1, r 〉).
If column e is not good, then Φe,s(〈 e, 4, 0, r 〉) = x ≤ 2 and
Φe,s(〈 e, 4, 1, r 〉) = y ≤ 2, where x 6= y. Let z ≤ 2 be the number
not equal to x or y. For each i ≤ 3, let bi be the least of 〈 e, i, 0, 0 〉,
〈 e, i, 1, 0 〉, 〈 e, i, 2, t 〉, 〈 e, i, 3, t 〉, and 〈 e, i, 4, t 〉 such that Φe,s(bi) = z,
where t is such that column e entered phase II at stage 〈 e, t 〉 (the
bi exist by the fact that column e was not good in phase II). Add
edges (〈 e, 4, j, s 〉, 〈 e, 4, k, r 〉) for j = 2, 3 and k = 0, 1, and add
edges (〈 e, 4, j, s 〉, bi) for j = 2, 3 and i = 0, 1, 2. Enter subphase
2.

– If column e is in phase III, subphase 2, do the following. Let 〈 e, t 〉 be
the stage at which column e entered subphase 2.
∗ If Φe,s(〈 e, 4, j, t 〉)↑ for some j = 2, 3, then go to the next stage.
∗ Otherwise, column e is good at 〈 e, s 〉 if any of the following condi-

tions are met:
(i) Φe,s(〈 e, 4, j, t 〉) > 2 for some j = 2, 3,

(ii) Φe,s(〈 e, 4, j, t 〉) = z for some j = 2, 3 (where z is as in subphase
1), or

(iii) Φe,s(〈 e, 4, 2, t 〉) = Φe,s(〈 e, 4, 3, t 〉).
If column e is not good, then Φe,s is x on one of the two vertices
〈 e, 4, 2, t 〉 and 〈 e, 4, 3, t 〉, and Φe,s is y on the other vertex. Let vx
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be the vertex on which Φe,s is x, and let vy be the vertex on which
Φe,s is y. Add edges (〈 e, 4, 4, s 〉, 〈 e, 4, k, r 〉) for k = 0, 1 and edges
(〈 e, 4, 4, s 〉, bi) for i = 0, 1, 2. Enter subphase 3.

– If column e is in phase III, subphase 2n + 1 for 1 ≤ n ≤ 7, then do the
following. Let 〈 e, t 〉 be the stage at which column e entered subphase
2n+ 1.
∗ If Φe,s(〈 e, 4, 2n+ 2, t 〉)↑ then go to the next stage.
∗ Otherwise, column e is good at 〈 e, s 〉 if either of the following con-

ditions are met:
(i) Φe,s(〈 e, 4, 2n+ 2, t 〉) > 2, or

(ii) Φe,s(〈 e, 4, 2n+ 2, t 〉) = z.
If column e is not good, then add edges (〈 e, 4, 2n+ 3, s 〉, 〈 e, 4, k, r 〉)
for k = 0, 1 and edges (〈 e, 4, 2n+3, s 〉, bi) for i = 0, 1, 2, 3. Addition-
ally, if Φe,s(〈 e, 4, 2n+ 2, t 〉) = x, then add edge (〈 e, 4, 2n+ 3, s 〉, vy),
and if Φe,s(〈 e, 4, 2n+ 2, t 〉) = y, then add edge (〈 e, 4, 2n+ 3, s 〉, vx).
Enter subphase 2n+ 2.

– If column e is in phase III, subphase 2n + 2 for 1 ≤ n ≤ 7, then do the
following. Let 〈 e, t 〉 be the stage at which column e entered subphase
2n + 2, and let 〈 e, p 〉 be the stage at which column e entered subphase
2n+ 1.
∗ If Φe,s(〈 e, 4, 2n+ 3, t 〉)↑, then go to the next stage.
∗ Otherwise, column e is good at 〈 e, s 〉 if any of the following condi-

tions are met:
(i) Φe,s(〈 e, 4, 2n+ 3, t 〉) > 2,

(ii) Φe,s(〈 e, 4, 2n+ 3, t 〉) = z,
(iii) Φe,s(〈 e, 4, 2n+ 3, t 〉) = Φe,s(〈 e, 4, 2n+ 2, p 〉), or
(iv) this is subphase 16.

If column e is not good, then add edges (〈 e, 4, 2n+ 4, s 〉, 〈 e, 4, k, r 〉)
for k = 0, 1, and add edges (〈 e, 4, 2n + 4, s 〉, bi) for i = 0, 1, 2. Enter
subphase 2n+ 3.

This completes the construction of G. Suppose Φe is a recursive function
N→ {0, 1, 2}. We show that Φe is not an unfriendly 3-partition of G.

Φe is total, so the construction in column e will progress through the phases
until column e becomes good. Suppose column e becomes good at stage
〈 e, s 〉. If this stage is in phase I, then Φe(〈 e, i, 0, 0 〉) = Φe(〈 e, i, 1, 0 〉) for some
i = 0, 1, 2, 3. These two vertices only have each other as neighbors, so Φe is not
an unfriendly partition.

If column e is good at stage 〈 e, s 〉 in phase II, then, for some i = 0, 1, 2, 3,
Φe uses only two values on the five vertices 〈 e, i, 0, 0 〉, 〈 e, i, 1, 0 〉, 〈 e, i, 2, t 〉,
〈 e, i, 3, t 〉, 〈 e, i, 4, t 〉 (where t is such that column e entered phase II at stage
〈 e, t 〉), and Φe(〈 e, i, 0, 0 〉) 6= Φe(〈 e, i, 1, 0 〉). In this case these five vertices have
no other neighbors, and one checks that Φe cannot be an unfriendly partition of
the subgraph induced by these vertices.
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If column e is good at stage 〈 e, s 〉 in phase III, subphase 1, then
Φe(〈 e, 4, 0, r 〉) = Φe(〈 e, 4, 1, r 〉) (where r is such that column e entered phase III,
subphase 1 at stage 〈 e, r 〉). These two vertices only have each other as neigh-
bors, so Φe is not an unfriendly partition.

If column e is good at stage 〈 e, s 〉 in phase III, subphase 2, then either
Φe(〈 e, 4, j, t 〉) = z for some j = 2, 3, or Φe(〈 e, 4, 2, t 〉) = Φe, (〈 e, 4, 3, t 〉)
(where t is such that column e entered phase III, subphase 2 at stage 〈 e, t 〉).
If Φe(〈 e, 4, j, t 〉) = z then 〈 e, 4, j, t 〉 has five neighbors, and Φe is z on three of
these neighbors. Hence Φe is not an unfriendly partition. If Φe(〈 e, 4, 2, t 〉) =
Φe(〈 e, 4, 3, t 〉) 6= z, then the value of Φe on these two vertices is the same as the
value of Φe on 〈 e, 4, j, r 〉 for either j = 0 or j = 1 (where r is such that column
e entered phase III, subphase 1 at stage 〈 e, r 〉). For the witnessing j, 〈 e, 4, j, r 〉
has three neighbors, and Φe agrees with Φe(〈 e, 4, j, r 〉) on two of these neigh-
bors. Hence Φe is not an unfriendly partition.

If column e is good at stage 〈 e, s 〉 in phase III, subphase 2n + 1, then
Φe(〈 e, 4, 2n + 2, t 〉) = z (where t is such that column e entered phase III, sub-
phase 2n+ 1 at stage 〈 e, t 〉). In this case 〈 e, 4, 2n+ 2, t 〉 has five neighbors, and
Φe is z on three of these neighbors. Thus Φe is not an unfriendly partition.

If column e is good at stage 〈 e, s 〉 in phase III, subphase 2n + 2, then either
Φe(〈 e, 4, 2n + 3, t 〉) = z, Φe(〈 e, 4, 2n + 3, t 〉) = Φe(〈 e, 4, 2n + 2, p 〉), or this is
subphase 16 (where t and p are such that column e entered phase III, subphase
2n + 2 at stage 〈 e, t 〉 and entered phase III, subphase 2n + 1 at stage 〈 e, p 〉).
If Φe(〈 e, 4, 2n + 3, t 〉) = z, then 〈 e, 4, 2n + 3, t 〉 has seven neighbors, and Φe

is z on four of these neighbors. Hence Φe is not an unfriendly partition. If
Φe(〈 e, 4, 2n+3, t 〉) = Φe(〈 e, 4, 2n+2, p 〉), then for either j = 0 or j = 1 the vertex
〈 e, 4, j, r 〉 has 2n + 3 neighbors, and Φe agrees with Φe(〈 e, 4, j, r 〉) on n + 2 of
these neighbors (where r is such that column e entered phase III, subphase 1 at
stage 〈 e, r 〉). Hence Φe is not an unfriendly partition. If this is subphase 16, and
Φe(〈 e, 4, 2n + 3, t 〉) is neither z nor Φe(〈 e, 4, 2n + 2, p 〉), then either Φe is x on
over half of the neighbors of vx, or Φe is y on over half of the neighbors of vy. In
either case Φe is not an unfriendly partition.
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