Subcompactness

The Preparatory Iteration 00

Proof 00000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

Making the $\alpha\text{-subcompactness}$ of κ indestructible

Bea Adam-Day

University of Leeds

24th of September 2020

Indestructibility	Subcompactness	The Preparatory Iteration	Proof
●000	00	00	00000000
	Indestructil	oility	

We say that an \mathcal{L} -large cardinal κ is *indestructible by a class* \mathcal{A} of *forcings* if, after forcing with any $\mathbb{P} \in \mathcal{A}$, κ will remain \mathcal{L} -large in the extension.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

Indestructibility	Subcompactness	The Preparatory Iteration	Proof
•000	00	00	00000000
	Indestructil	oility	

We say that an \mathcal{L} -large cardinal κ is *indestructible by a class* \mathcal{A} of *forcings* if, after forcing with any $\mathbb{P} \in \mathcal{A}$, κ will remain \mathcal{L} -large in the extension.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

We often need to apply some preparatory forcing beforehand, which makes the indestructibility hold.

Indestructibility	Subcompactness	The Preparatory Iteration	Proof
●000	00		00000000
	Indestructil	oility	

We say that an \mathcal{L} -large cardinal κ is *indestructible by a class* \mathcal{A} of *forcings* if, after forcing with any $\mathbb{P} \in \mathcal{A}$, κ will remain \mathcal{L} -large in the extension.

We often need to apply some preparatory forcing beforehand, which makes the indestructibility hold.

Theorem 1.1 (Laver; '79)

After forcing with the Laver preparation \mathbb{P}_{κ} , a supercompact cardinal κ will be indestructible under $< \kappa$ -directed closed forcing.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Subcompactness 00 The Preparatory Iteration

Proof 00000000

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

Further indestructibility results

Theorem 1.2 (Gitik, Shelah; '89)

One can make the strong compactness of κ indestructible under κ^+ -weakly closed forcing satisfying the Prikry Condition.

Theorem 1.3 (Hamkins; '00)

If some amount of GCH is assumed then, using the Lottery Preparation, one can make the λ -supercompactness of κ indestructible by $< \kappa$ -directed closed forcing of size at most λ .

Subcompactness

The Preparatory Iteration

Proof 00000000

Lottery Sums

Definition 1.4

The lottery sum of a class \mathcal{A} of forcings is the disjoint sum

 $\oplus \mathcal{A} := \{ \langle \mathbb{Q}, p \rangle : \mathbb{Q} \in \mathcal{A} \land p \in \mathbb{Q} \} \cup \{ \mathbb{1} \}$

with a new element 1 above everything and order given by $\langle \mathbb{Q}, p \rangle \leq \langle \mathbb{R}, q \rangle$ when $\mathbb{Q} = \mathbb{R}$ and $p \leq_{\mathbb{Q}} q$.

Since compatible conditions must have the same \mathbb{Q} , the forcing 'holds a lottery' among all forcings in \mathcal{A} . The generic filter selects a 'winning' poset and forces with it.

The Preparatory Iteration

Proof 00000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Minimal counterexamples

A counterexample to the \mathcal{L} largeness of κ is $(\mathbb{Q}, \lambda, \kappa)$ such that:

- 1. \mathbb{Q} is a $< \kappa$ -directed closed forcing;
- 2. κ is $\lambda \mathcal{L}$ large;

3.
$$\Vdash_{\mathbb{Q}} (\kappa \text{ is not } \lambda - \mathcal{L} \text{ large}).$$

A counterexample $(\mathbb{Q}, \lambda, \kappa)$ is *minimal* if (λ, η) is lexicographically least among counterexamples, where $\eta = |\operatorname{TC}(\mathbb{Q})|$.

The Preparatory Iteration 00

Proof 00000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Minimal counterexamples

A counterexample to the \mathcal{L} largeness of κ is $(\mathbb{Q}, \lambda, \kappa)$ such that:

- 1. \mathbb{Q} is a $< \kappa$ -directed closed forcing;
- 2. κ is $\lambda \mathcal{L}$ large;

3.
$$\Vdash_{\mathbb{Q}} (\kappa \text{ is not } \lambda - \mathcal{L} \text{ large}).$$

A counterexample $(\mathbb{Q}, \lambda, \kappa)$ is *minimal* if (λ, η) is lexicographically least among counterexamples, where $\eta = |\operatorname{TC}(\mathbb{Q})|$.

This definition works for large cardinal properties \mathcal{L} where κ being $\lambda - \mathcal{L}$ large implies that κ is $\gamma - \mathcal{L}$ large for all $\gamma < \lambda$.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

Supercompact and subcompact cardinals

Definition 2.1 (Magidor Characterisation)

A cardinal κ is λ -supercompact if and only if there exist ordinals $\bar{\kappa} < \bar{\lambda} < \kappa$ and an elementary embedding $j : V_{\bar{\lambda}} \to V_{\lambda}$ with critical point $\bar{\kappa}$ and $j(\bar{\kappa}) = \kappa$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Supercompact and subcompact cardinals

Definition 2.1 (Magidor Characterisation)

A cardinal κ is λ -supercompact if and only if there exist ordinals $\bar{\kappa} < \bar{\lambda} < \kappa$ and an elementary embedding $j : V_{\bar{\lambda}} \to V_{\lambda}$ with critical point $\bar{\kappa}$ and $j(\bar{\kappa}) = \kappa$.

Definition 2.2 (Subcompact Cardinals)

A cardinal κ is α -subcompact for some $\alpha > \kappa$ if for all $A \subseteq H_{\alpha}$ there exist $\bar{\kappa} < \bar{\alpha} < \kappa$, $\bar{A} \subseteq H_{\bar{\alpha}}$ and an elementary embedding

$$\pi: \left(\mathcal{H}_{\bar{lpha}}, \in, \bar{\mathcal{A}} \right)
ightarrow \left(\mathcal{H}_{lpha}, \in, \mathcal{A}
ight)$$

with critical point $\bar{\kappa}$ such that $\pi(\bar{\kappa}) = \kappa$.

Subcompactness

The Preparatory Iteration 00

Proof 00000000

Subcompact cardinals

If κ is α -subcompact for some $\alpha > \kappa$ then κ is β -subcompact for all $\kappa < \beta < \alpha$. If κ is α -subcompact for all $\alpha > \kappa$ then κ is fully supercompact.

Subcompactness

The Preparatory Iteration •0 Proof 00000000

The preparatory iteration

Definition 3.1

Fix a cardinal κ and an $\alpha > \kappa$. Define inductively an Easton support iteration $\langle \mathbb{P}_{\gamma}^{\kappa}, \dot{\mathbb{Q}}_{\gamma}^{\kappa} \rangle_{\gamma < \kappa}$ and a sequence $(\theta_{\gamma}^{\kappa}, \eta_{\gamma}^{\kappa})_{\gamma < \kappa}$ as follows: suppose that $\mathbb{P}_{\delta}^{\kappa}$ has been defined and that $\theta_{\gamma}^{\kappa}, \eta_{\gamma}^{\kappa}$ have been defined for each $\gamma < \delta$.

- If δ > θ^κ_γ, η^κ_γ for all γ < δ then let Q^κ_δ denote a P^κ_δ-name for the lottery sum of all forcings Q with |TC(Q)| < κ such that (Q, θ, δ) is a minimal counterexample for some θ ≤ κ. Let η^κ_δ = |TC(Q)| and θ^κ_δ = θ for such Q and θ.
- Otherwise let $\dot{\mathbb{Q}}^{\kappa}_{\delta}$ denote a $\mathbb{P}^{\kappa}_{\delta}$ -name for the trivial forcing and let $\theta^{\kappa}_{\delta} = 1 = \eta^{\kappa}_{\delta}$.

Indestructibility	Subcompactness	The Preparatory Iteration	Proof
0000	00	○●	00000000

Some lemmas

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

Lemma 3.2

 $|\mathbb{P}_{\kappa}^{\kappa}| \leq \kappa$. and we may w.l.o.g. assume that $\mathbb{P}_{\kappa}^{\kappa} \subseteq H_{\kappa}$.

We will also need to use the following well-known results.

Indestructibility	Subcompactness	The Preparatory Iteration	Proof
0000	00	00	00000000

Some lemmas

Lemma 3.2

 $|\mathbb{P}_{\kappa}^{\kappa}| \leq \kappa$. and we may w.l.o.g. assume that $\mathbb{P}_{\kappa}^{\kappa} \subseteq H_{\kappa}$.

We will also need to use the following well-known results.

Lemma 3.3

If \mathbb{P} is a forcing notion which doesn't collapse α and $\dot{x} \in H_{\alpha}$ then $\forall p \in \mathbb{P}, p \Vdash (\dot{x} \in H_{\alpha})$ i.e. $\Vdash_{\mathbb{P}} (\dot{x} \in H_{\alpha})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Indestructibility	Subcompactness	The Preparatory Iteration	Proof
0000	00	00	00000000

Some lemmas

Lemma 3.2

 $|\mathbb{P}_{\kappa}^{\kappa}| \leq \kappa$. and we may w.l.o.g. assume that $\mathbb{P}_{\kappa}^{\kappa} \subseteq H_{\kappa}$.

We will also need to use the following well-known results.

Lemma 3.3

If \mathbb{P} is a forcing notion which doesn't collapse α and $\dot{x} \in H_{\alpha}$ then $\forall p \in \mathbb{P}, p \Vdash (\dot{x} \in H_{\alpha})$ i.e. $\Vdash_{\mathbb{P}} (\dot{x} \in H_{\alpha})$.

Lemma 3.4

Let α be a regular cardinal, let $\mathbb{P} \in H_{\alpha}$ be a notion of forcing. Then $\forall p \in \mathbb{P}$, if $p \Vdash (\dot{x} \in H_{\alpha})$, then $\exists \dot{y} \in H_{\alpha}$ such that $p \Vdash (\dot{x} = \dot{y})$. \Box

Subcompactness

The Preparatory Iteration

Proof •0000000

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のの⊙

The theorem

Theorem 4.1

Let κ be α -subcompact for some regular cardinal $\alpha > \kappa$. Then, after preparatory forcing with $\mathbb{P}_{\kappa}^{\kappa}$, the α -subcompactness of κ will be indestructible under any $< \kappa$ -directed closed forcing $\mathbb{Q} \in H_{\alpha}$.

Subcompactness

The Preparatory Iteration

Proof •0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

The theorem

Theorem 4.1

Let κ be α -subcompact for some regular cardinal $\alpha > \kappa$. Then, after preparatory forcing with $\mathbb{P}_{\kappa}^{\kappa}$, the α -subcompactness of κ will be indestructible under any $< \kappa$ -directed closed forcing $\mathbb{Q} \in H_{\alpha}$.

Proof: Suppose not. Then there is a minimal counterexample $(\mathbb{Q}, \Theta, \kappa)$ for some $\Theta \leq \alpha$.

We will show that κ is in fact Θ -subcompact in $V[G_{\kappa} * g]$, where G_{κ} is $\mathbb{P}_{\kappa}^{\kappa}$ -generic over V and g is \mathbb{Q} -generic over $V[G_{\kappa}]$.

Indestructibility	Subcompactness	The Preparatory Iteration	Proof
0000	00		o●oooooo
	Proof ske	tch	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□■ のへ⊙

Indestructibility	Subcompactness	The Preparatory Iteration	Proof
0000	00	00	oo●ooooo

Working in V

So let $A \subseteq H_{\Theta}^{V[G_{\kappa}*g]}$. Since α is regular and $\mathbb{P}_{\kappa}^{\kappa} * \hat{\mathbb{Q}} \in H_{\alpha}$ we have by Lemma 3.4 that $A = \dot{B}_{G_{\kappa}*g}$ for some $\dot{B} \subseteq H_{\alpha}$ in V.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

Indestructibility	Subcompactness	The Preparatory Iteration	Proof
0000	00		oo●ooooo
	M/orling		

Working in V

So let $A \subseteq H_{\Theta}^{V[G_{\kappa}*g]}$. Since α is regular and $\mathbb{P}_{\kappa}^{\kappa} * \dot{\mathbb{Q}} \in H_{\alpha}$ we have by Lemma 3.4 that $A = \dot{B}_{G_{\kappa}*g}$ for some $\dot{B} \subseteq H_{\alpha}$ in V.

Since κ is α -subcompact in V, there exist $\bar{\kappa} < \bar{\alpha} < \kappa$, $\bar{B} \subseteq H_{\bar{\alpha}}$ and an α -subcompactness elementary embedding

$$\pi: (H_{\bar{\alpha}}, \in, \bar{B}) \to (H_{\alpha}, \in, B)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

with critical point $\bar{\kappa}$ and $\pi(\bar{\kappa}) = \kappa$.

0000	00	00	00000000
	Marking:	n 1/	

Working in V

So let $A \subseteq H_{\Theta}^{V[G_{\kappa}*g]}$. Since α is regular and $\mathbb{P}_{\kappa}^{\kappa} * \dot{\mathbb{Q}} \in H_{\alpha}$ we have by Lemma 3.4 that $A = \dot{B}_{G_{\kappa}*g}$ for some $\dot{B} \subseteq H_{\alpha}$ in V.

Since κ is α -subcompact in V, there exist $\bar{\kappa} < \bar{\alpha} < \kappa$, $\bar{B} \subseteq H_{\bar{\alpha}}$ and an α -subcompactness elementary embedding

$$\pi: \left(H_{\bar{\alpha}}, \in, \bar{B}\right) \to \left(H_{\alpha}, \in, B\right)$$

with critical point $\bar{\kappa}$ and $\pi(\bar{\kappa}) = \kappa$.

Add as a predicate a $\mathbb{P}_{\kappa}^{\kappa}$ -name, \mathbb{R} , that \mathbb{Q} interprets, as well as Θ and a $\mathbb{P}_{\kappa}^{\kappa}$ -name f for g, where g is a \mathbb{Q} -generic which chooses \mathbb{Q} in the stage κ lottery. So we have

$$\pi: \left(H_{\bar{\alpha}}, \in, \bar{B}, \bar{\mathbb{R}}, \bar{\Theta}, \bar{f}\right) \to \left(H_{\alpha}, \in, B, \mathbb{R}, \Theta, f\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Subcompactness

The Preparatory Iteration

Proof 00000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

The Lifting Criterion

Theorem 4.2 (The Lifting Criterion)

Let M and N be transitive models of ZFC^- , let $\pi : M \to N$ be an elementary embedding, let $\mathbb{P} \in M$ be a notion of forcing with G generic over \mathbb{P} and let H be $\pi(\mathbb{P})$ -generic over N. Then the following are equivalent:

• there exists an elementary embedding $\pi^+ : M[G] \to N[H]$ with $\pi^+(G) = H$ and $\pi^+ \upharpoonright M = N$

•
$$\pi(p)\in H$$
 for all $p\in G$

Subcompactness

The Preparatory Iteration 00

Proof oooo●ooo

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lifting diagram

Indestru	ictibility
0000	

Subcompactnes

The Preparatory Iteration

Proof 00000●00

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

The first lift

Since $\pi(p) = p^{\frown} \mathbb{1}^{(\kappa)}$ for all $p \in G_{\bar{\kappa}}$ we may lift the α -subcompactness embedding π in V to

$$\pi^{+}:\left(H_{\bar{\alpha}}[G_{\bar{\kappa}}],\in,\bar{B}_{G_{\bar{\kappa}}},\bar{\mathbb{Q}},\bar{\Theta},\bar{g}\right)\to\left(H_{\alpha}[G_{\kappa}],\in,B_{G_{\kappa}},\mathbb{Q},\Theta,g\right)$$

with critical point $\bar{\kappa}$ and $\pi^+(\bar{\kappa}) = \kappa$.

Indestr	uc	tib	il	ity
0000				

Subcompactnes

The Preparatory Iteration

Proof 00000●00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

The first lift

Since $\pi(p) = p^{\frown} \mathbb{1}^{(\kappa)}$ for all $p \in G_{\bar{\kappa}}$ we may lift the α -subcompactness embedding π in V to

$$\pi^{+}:\left(H_{\bar{\alpha}}[G_{\bar{\kappa}}],\in,\bar{B}_{G_{\bar{\kappa}}},\bar{\mathbb{Q}},\bar{\Theta},\bar{g}\right)\to\left(H_{\alpha}[G_{\kappa}],\in,B_{G_{\kappa}},\mathbb{Q},\Theta,g\right)$$

with critical point $\bar{\kappa}$ and $\pi^+(\bar{\kappa}) = \kappa$.

By elementarity $\overline{B} \subseteq H_{\overline{\Theta}}$ and $(\overline{\mathbb{Q}}, \overline{\Theta}, \overline{\kappa})$ is a minimal counterexample in $V[G_{\overline{\kappa}}]$. So we may choose it in the lottery sum at stage $\overline{\kappa}$ and, by elementarity, \overline{g} chooses it.

Indestructibility	Subcompactness	The Preparatory Iteration	Proof	
0000	00		000000●0	
The second lift				

Since $\pi^+(\bar{g}) = g$ the lifting criterion is again satisfied and so we may lift again to get an α -subcompactness embedding for $B_{G_{\kappa}*g}$

$$\pi^{++}: \left(H_{\bar{\alpha}}[G_{\bar{\kappa}} \ast \bar{g}], \in, \bar{B}_{G_{\bar{\kappa}} \ast \bar{g}}, \bar{\Theta}\right) \to \left(H_{\alpha}[G_{\kappa} \ast g], \in, B_{G_{\kappa} \ast g}, \Theta\right)$$

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

Indestructibility	Subcompactness	The Preparatory Iteration	Proof
0000	00		oooooo●o
The second life			

The second lift

Since $\pi^+(\bar{g}) = g$ the lifting criterion is again satisfied and so we may lift again to get an α -subcompactness embedding for $B_{G_{\kappa}*g}$

$$\pi^{++}: \left(H_{\bar{\alpha}}[G_{\bar{\kappa}} \ast \bar{g}], \in, \bar{B}_{G_{\bar{\kappa}} \ast \bar{g}}, \bar{\Theta}\right) \to \left(H_{\alpha}[G_{\kappa} \ast g], \in, B_{G_{\kappa} \ast g}, \Theta\right)$$

Let $\bar{A} = \bar{B}_{G_{\bar{\kappa}} * \bar{g}}$ and recall that $B_{G_{\kappa} * g} = A$ and so π^{++} is in fact an α -subcompactness embedding for A which maps \bar{A} to A, i.e.

$$\pi^{++}: \left(H_{\bar{\alpha}}[G_{\bar{\kappa}}*\bar{g}], \in, \bar{A}, \bar{\Theta}\right) \to \left(H_{\alpha}[G_{\kappa}*g], \in, A, \Theta\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Subcompactness

The Preparatory Iteration 00

Proof ooooooo●

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Restricting the embedding

We have that:

Lemma 4.3

$$H^{V[G_{\kappa}*g]}_{\bar{\Theta}} = H_{\bar{\Theta}}[G_{\bar{\kappa}}*\bar{g}] \quad \text{ and } \quad H^{V[G_{\kappa}*g]}_{\Theta} = H_{\Theta}[G_{\kappa}*g]$$

Subcompactness 00 The Preparatory Iteration

Proof 0000000

Restricting the embedding

We have that:

Lemma 4.3

$$H^{V[G_{\kappa}*g]}_{ar{\Theta}} = H_{ar{\Theta}}[G_{ar{\kappa}}*ar{g}] \qquad ext{and} \qquad H^{V[G_{\kappa}*g]}_{\Theta} = H_{\Theta}[G_{\kappa}*g]$$

Using these equalities we may restrict the α -subcompactness embedding embedding in $V[G_{\kappa} * g]$ to give a Θ -subcompactness embedding

$$\pi^*: \left(H^{V[G_{\kappa}*g]}_{\bar{\Theta}}, \in, \bar{A}, \bar{\Theta}\right) \to \left(H^{V[G_{\kappa}*g]}_{\Theta}, \in, A, \Theta\right)$$

with critical point $\bar{\kappa}$ and $\pi^*(\bar{\kappa}) = \kappa$ and so κ is Θ -subcompact in the extension, so a contradiction is reached.

Thank you for your attention

<□> <</p>
<□> <</p>
□> <</p>
□> <</p>
□> <</p>
□>
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

Two equalities

Now we will show that:

$$H^{V[G_{\kappa}*g]}_{\bar{\Theta}} = H_{\bar{\Theta}}[G_{\bar{\kappa}}*\bar{g}]$$
⁽¹⁾

$$H_{\Theta}^{V[G_{\kappa}*g]} = H_{\Theta}[G_{\kappa}*g]$$
⁽²⁾

Equality 2 follows by Lemma 3.4. For Equality 1 we must also show that H_{Θ} and $H_{\bar{\Theta}}$ have not been altered by the iteration from stage $\bar{\kappa}$ to stage $\kappa + 1$.

Now,
$$\mathbb{P}^{\Theta}_{(\bar{\kappa},\kappa+1)} \cong \mathbb{P}^{\kappa}_{(\bar{\kappa},\kappa)} * \dot{\mathbb{Q}}$$
 is $< \bar{\Theta}$ -strategically closed, since:

Lemma 4.4

If in $\mathbb{P}^{\lambda}_{\lambda}$ there is no nontrivial forcing until beyond stage δ then it is $\leq \delta$ -strategically closed.

Preserving $H_{\bar{\Theta}}$ and H_{Θ}

Now factor $\mathbb{P}_{\kappa}^{\kappa}$ as $\mathbb{P}_{\bar{\kappa}}^{\bar{\kappa}} * \bar{\mathbb{Q}} * \mathbb{P}_{(\bar{\kappa},\kappa)}^{\kappa}$, then note that between stage $\bar{\kappa} + 1$ and stage $\bar{\Theta}$ there can only be trivial forcing by the definition of the iteration.

Thus, by the lemma, the tail of the forcing $\mathbb{P}_{(\bar{\kappa},\kappa)}^{\kappa}$ is $\bar{\Theta}$ -strategically closed. Also \mathbb{Q} is $< \kappa$ -directed closed in $V[G_{\kappa}]$, so the iteration $\mathbb{P}_{(\bar{\kappa},\kappa)}^{\kappa} * \mathbb{Q}$ is $\bar{\Theta}$ -strategically closed.

Fact

A forcing adds no new subsets of H_{λ} if and only if it adds no bounded subsets of λ and a λ -strategically closed forcing will add no new bounded subsets of λ .