Reflection algebras for theories of iterated truth definitions

Lev Beklemishev

Steklov Mathematical Institute, Moscow

October 29, 2020

Lev Beklemishev Reflection algebras for theories of iterated truth definitions

/□ ▶ ▲ 글 ▶ ▲ 글

- Joint work with Fedor Pakhomov.
- Previous work on stronger theories of truth with *Evgeny Dashkov* (unfinished).
- Influenced by:
 - Feferman and Schütte's analysis of predicativity;
 - Ulf Schmerl's fine structure theorems for iterated reflection principles;
 - Kotlarski's et al. study of inductive satisfaction classes.

- Joint work with Fedor Pakhomov.
- Previous work on stronger theories of truth with *Evgeny Dashkov* (unfinished).
- Influenced by:
 - Feferman and Schütte's analysis of predicativity;
 - Ulf Schmerl's fine structure theorems for iterated reflection principles;
 - Kotlarski's et al. study of inductive satisfaction classes.

何 ト イヨ ト イヨ ト

- Truth predicates are tightly related to reflection principles and are convenient in our framework.
- Theories of iterated truth are mutually interpretable with various standard theories of predicative strength (ramified analysis, iterated Π⁰₁-comprehension).
- The framework remains first order and many ingredients are preserved from the treatment of *PA*.

- \mathcal{L} first order language extending that of PA by (finitely many) predicate letters
- L_α := L ∪ {T_β : β < α} new unary predicates
 (An elementary ordering representing ordinals up to α induces a Gödel numbering of L_α.)
- $\mathsf{T}_{\alpha}(\ulcorner \varphi \urcorner)$ means " φ is a true \mathcal{L}_{α} -sentence".

(人間) トイヨト (日) (日)

Uniform Tarski biconditionals

 Axioms UTB_α in L_{α+1}: U1 ∀x (φ(x) ↔ T_α(^Γφ(x)[¬])), for each φ(x) ∈ L_α; U2 ¬T_α(n), if n is not a G.n. of an L_α-sentence.

•
$$\mathsf{UTB}_{ in $\mathcal{L}_{lpha}$$$

Fact. UTB_{< α} conservatively extends UTB_{< β} if $\beta < \alpha$.

(A model of $UTB_{<\beta}$ can be extended to a model of $UTB_{<\alpha}$.)

Uniform Tarski biconditionals

- Axioms UTB_α in L_{α+1}:
 U1 ∀x (φ(x) ↔ T_α(^Γφ(x)[¬])), for each φ(x) ∈ L_α;
 U2 ¬T_α(<u>n</u>), if n is not a G.n. of an L_α-sentence.
- $UTB_{<\alpha} := \bigcup_{\beta < \alpha} UTB_{\beta}$ in \mathcal{L}_{α}

Fact. UTB_{< α} conservatively extends UTB_{< β} if $\beta < \alpha$.

(A model of $UTB_{<\beta}$ can be extended to a model of $UTB_{<\alpha}$.)

伺 ト イ ヨ ト イ ヨ ト

Arithmetical hierarchy:

- $\Delta_0^{\mathcal{L}} = \Pi_0^{\mathcal{L}} = \Sigma_0^{\mathcal{L}}$ closure of atomic \mathcal{L} -formulas under \land , \neg and bounded quantifiers;
- $\Pi_{n+1}^{\mathcal{L}} := \forall \vec{x} \varphi$ where $\varphi \in \Sigma_n^{\mathcal{L}}$;
- $\Sigma_{n+1}^{\mathcal{L}} := \exists \vec{x} \varphi$ where $\varphi \in \Pi_n^{\mathcal{L}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Hyperarithmetical hierarchy:

- $\Pi_{\alpha} := \Pi_{1+n}^{\mathcal{L}}$ if $\alpha = n < \omega$;
- $\Pi_{\alpha} := \Pi_{n+1}^{\mathcal{L}_{\beta+1}}$ if $\alpha = \omega(1+\beta) + n$;
- $\Pi_{<\lambda} := \bigcup_{\alpha < \lambda} \Pi_{\alpha}$ if $\lambda \in \text{Lim}$.

Rem. Π_{α} -formulas define $\Pi_1(0^{(\alpha)})$ -sets in \mathbb{N} .

- $\Pi_{<\omega}$ arithmetical (in \mathcal{L}) sets;
- $\Pi_{\omega} = \Pi_1(0^{(\omega)}) = \Pi_1(\mathsf{T}_0).$

Hyperarithmetical hierarchy:

- $\Pi_{\alpha} := \Pi_{1+n}^{\mathcal{L}}$ if $\alpha = n < \omega$;
- $\Pi_{\alpha} := \Pi_{n+1}^{\mathcal{L}_{\beta+1}}$ if $\alpha = \omega(1+\beta) + n$;
- $\Pi_{<\lambda} := \bigcup_{\alpha < \lambda} \Pi_{\alpha}$ if $\lambda \in \text{Lim}$.

Rem. Π_{α} -formulas define $\Pi_1(0^{(\alpha)})$ -sets in \mathbb{N} .

- $\Pi_{<\omega}$ arithmetical (in \mathcal{L}) sets;
- $\Pi_{\omega} = \Pi_1(0^{(\omega)}) = \Pi_1(T_0).$

伺 ト イ ヨ ト イ ヨ ト

Let S be Gödelian and $S \vdash EA$.

 \Box_{S} is the provability predicate for S.

- $R_{\alpha}(S) := \{ \forall \vec{x} (\Box_{S} \varphi(\vec{x}) \to \varphi(\vec{x})) : \varphi \in \Pi_{\alpha} \};$
- $R_{<\lambda}(S) := \{R_{\alpha}(S) : \alpha < \lambda\}.$

 $R_{lpha}(S) \iff \operatorname{Con}(S + \operatorname{all true} \Sigma_{lpha}\operatorname{-sentences})$

(四) (三) (三) (二)

Let S be Gödelian and $S \vdash EA$.

 \Box_{S} is the provability predicate for S.

- $R_{\alpha}(S) := \{ \forall \vec{x} (\Box_{S} \varphi(\vec{x}) \to \varphi(\vec{x})) : \varphi \in \Pi_{\alpha} \};$
- $R_{<\lambda}(S) := \{R_{\alpha}(S) : \alpha < \lambda\}.$

 $R_{\alpha}(S) \iff \operatorname{Con}(S + \operatorname{all true} \Sigma_{\alpha} \operatorname{-sentences})$

• • = • • = •

We fix an elementary well-ordering $(\Lambda, <)$ and hence:

- language \mathcal{L}_{Λ} ;
- formula classes Π_{α} , for all $\alpha < \omega(1 + \Lambda)$;
- basic theory of iterated Tarski biconditionals $IB := EA^+ + UTB_{<\Lambda}$ where $EA^+ := I\Delta_0 + Supexp$.

 Π_{α} -conservativity: *Def.* $S \equiv_{\alpha} U$ means S and U prove the same Π_{α} -sentences

・ 同 ト ・ ヨ ト ・ 国 ト …

We fix an elementary well-ordering $(\Lambda, <)$ and hence:

- language \mathcal{L}_{Λ} ;
- formula classes Π_{α} , for all $\alpha < \omega(1 + \Lambda)$;
- basic theory of iterated Tarski biconditionals $IB := EA^+ + UTB_{<\Lambda}$ where $EA^+ := I\Delta_0 + Supexp$.

 Π_{α} -conservativity: Def. $S \equiv_{\alpha} U$ means S and U prove the same Π_{α} -sentences. A.M. Turing (1939), G. Kreisel (1950s), S. Feferman (1962)

Let (Ω, \prec) be an elementary well-ordering. Let $R^{\beta}_{\alpha}(S)$ denote β times iterated R_{α} along (Ω, \prec) :

 $R_{\alpha}^{\beta}(S) \equiv \bigcup \{ R_{\alpha}(R_{\alpha}^{\gamma}(S)) : \gamma \prec \beta \}.$

伺 ト イ ヨ ト イ ヨ ト

Given ${\it U}$ and $\alpha,$ we are interested in finding ordinal notations β such that

$$U\equiv_{lpha} R^{eta}_{lpha}(\mathsf{EA}),$$

especially for $\alpha = 0, 1, \omega$.

These notations characterize

- $\alpha = 0$: Π_1^0 -consequences, consistency strength
- $\alpha = 1$: Π_2^0 -consequences, provably total computable functions
- $\alpha = \omega$: (pseudo) Π_1^1 -consequences, provably well-founded orderings

- Π_α-ordinal of S, denoted ord_α(S), is the sup of all β ∈ Ω such that S ⊢ R^β_α(EA);
- Conservativity spectrum of S is the sequence $(ord_{\beta}(S))_{\beta < \Omega}$.

```
Examples of spectra:

I\Sigma_1: (\omega^{\omega}, \omega, 1, 0, 0, ...)

PA : (\varepsilon_0, \varepsilon_0, \varepsilon_0, ...)

PA + PH : (\varepsilon_0^2, \varepsilon_0 \cdot 2, \varepsilon_0, \varepsilon_0, ...)
```

- Π_α-ordinal of S, denoted ord_α(S), is the sup of all β ∈ Ω such that S ⊢ R^β_α(EA);
- Conservativity spectrum of S is the sequence (ord_β(S))_{β<Ω}.

```
Examples of spectra:

I\Sigma_1: (\omega^{\omega}, \omega, 1, 0, 0, ...)

PA: (\varepsilon_0, \varepsilon_0, \varepsilon_0, ...)
```

 $\mathsf{PA} + \mathsf{PH}: \quad (\varepsilon_0^2, \varepsilon_0 \cdot 2, \varepsilon_0, \varepsilon_0, \dots)$

Let U be $\Pi_{\alpha+1}$ -axiomatized extension of IB and $S \vdash U$. Over U, $R_{\alpha+1}(S) \equiv_{\alpha} R_{\alpha}^{\omega}(S)$.

- Essentially known in the context of first-order arithmetic with an almost identical proof using cut-elimination.
- A well-known particular case is the Parsons–Mints–Takeuti theorem on the Π_2^0 -conservativity of $I\Sigma_1$ over PRA.

/□ ▶ ▲ 글 ▶ ▲ 글

Theorem Let U be $\Pi_{\alpha+1}$ -axiomatized extension of IB and $S \vdash U$. Over U, $R_{\alpha+1}(S) \equiv_{\alpha} R_{\alpha}^{\omega}(S)$.

- Essentially known in the context of first-order arithmetic with an almost identical proof using cut-elimination.
- A well-known particular case is the Parsons–Mints–Takeuti theorem on the Π_2^0 -conservativity of $I\Sigma_1$ over PRA.

Let $\lambda \in \text{Lim.}$ Then, over *IB*, $R_{\lambda}(S) \equiv_{<\lambda} R_{<\lambda}(S)$.

We build a local $\Pi_{<\lambda}$ -preserving interpretation of $IB + R_{\lambda}(S)$ into $IB + R_{<\lambda}(S)$.

Cor. $IB + RFN_{\Pi_1(T)}(S)$ is conservative over PA + RFN(S) for arithmetical sentences.

Rem. Both conservation theorems are formalizable in EA⁺.

| 4 同 ト 4 三 ト 4 三 ト

Let $\lambda \in \text{Lim}$. Then, over *IB*, $R_{\lambda}(S) \equiv_{<\lambda} R_{<\lambda}(S)$.

We build a local $\Pi_{<\lambda}$ -preserving interpretation of $IB + R_{\lambda}(S)$ into $IB + R_{<\lambda}(S)$.

Cor. $IB + RFN_{\Pi_1(T)}(S)$ is conservative over PA + RFN(S) for arithmetical sentences.

Rem. Both conservation theorems are formalizable in EA⁺.

Let $\lambda \in \text{Lim}$. Then, over *IB*, $R_{\lambda}(S) \equiv_{<\lambda} R_{<\lambda}(S)$.

We build a local $\Pi_{<\lambda}$ -preserving interpretation of $IB + R_{\lambda}(S)$ into $IB + R_{<\lambda}(S)$.

Cor. $IB + RFN_{\Pi_1(T)}(S)$ is conservative over PA + RFN(S) for arithmetical sentences.

Rem. Both conservation theorems are formalizable in EA⁺.

・ 同 ト ・ ヨ ト ・ 国 ト …

Let $\lambda \in \text{Lim}$. Then, over *IB*, $R_{\lambda}(S) \equiv_{<\lambda} R_{<\lambda}(S)$.

We build a local $\Pi_{<\lambda}$ -preserving interpretation of $IB + R_{\lambda}(S)$ into $IB + R_{<\lambda}(S)$.

Cor. $IB + RFN_{\Pi_1(T)}(S)$ is conservative over PA + RFN(S) for arithmetical sentences.

Rem. Both conservation theorems are formalizable in EA⁺.

・ 同 ト ・ ヨ ト ・ 国 ト …

Compositional truth axioms CT:

- $\forall \varphi (At[\varphi] \rightarrow (T[\varphi] \leftrightarrow T_0[\varphi]));$
- $\forall \varphi, \psi (T[\varphi \land \psi] \leftrightarrow (T[\varphi] \land T[\psi]));$
- $\forall \varphi (T[\neg \varphi] \leftrightarrow \neg T[\varphi]);$
- $\forall \varphi \ (T[\forall x \ \varphi(x)] \leftrightarrow \forall x \ T[\varphi(\underline{x})]).$

Cor. (Kotlarski) $PA + CT + I\Delta_0(T)$ is conservative over $PA + RFN^{\omega}(PA)$.

Proof.

Kotlarski theory is contained in $EA + UTB + R_1(EA + UTB)$. Then apply Theorems 1 and 2.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Def. $\mathfrak{G}_{\mathsf{IB}}$ is the set of all Gödelian extensions of IB mod $=_{\mathsf{IB}}$. $S \leq_{\mathsf{IB}} T \iff \mathsf{IB} \vdash \forall x (\Box_T(x) \to \Box_S(x));$ $S =_{\mathsf{IB}} T \iff (S \leq_{\mathsf{IB}} T \text{ and } T \leq_{\mathsf{IB}} S).$

Then $(\mathfrak{G}_{IB}, \wedge_{IB})$ is a lower semilattice with $S \wedge_{IB} T := S \cup T$ (defined by the disjunction of the numerations of S and T)

• Each R_{α} acts on \mathfrak{G}_{IB} : $S \longmapsto IB + R_{\alpha}(S)$;

(𝔅_{IB}, ∧_{IB}, (R_α)_{α<Λ}) semilattice with a family of monotone operators.

Fact. Over IB the schemata $R_{\alpha}(S)$ are finitely axiomatizable.

Def. $\mathfrak{G}_{\mathsf{IB}}$ is the set of all Gödelian extensions of IB mod $=_{\mathsf{IB}}$. $S \leq_{\mathsf{IB}} T \iff \mathsf{IB} \vdash \forall x (\Box_{\mathcal{T}}(x) \to \Box_{\mathcal{S}}(x));$ $S =_{\mathsf{IB}} T \iff (S \leq_{\mathsf{IB}} T \text{ and } T \leq_{\mathsf{IB}} S).$

Then $(\mathfrak{G}_{IB}, \wedge_{IB})$ is a lower semilattice with $S \wedge_{IB} T := S \cup T$ (defined by the disjunction of the numerations of S and T)

- Each R_{α} acts on \mathfrak{G}_{IB} : $S \mapsto IB + R_{\alpha}(S)$;
- (𝔅_{IB}, ∧_{IB}, (R_α)_{α<Λ}) semilattice with a family of monotone operators.

Fact. Over IB the schemata $R_{\alpha}(S)$ are finitely axiomatizable.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Def. $\mathfrak{G}_{\mathsf{IB}}$ is the set of all Gödelian extensions of IB mod $=_{\mathsf{IB}}$. $S \leq_{\mathsf{IB}} T \iff \mathsf{IB} \vdash \forall x (\Box_T(x) \to \Box_S(x));$ $S =_{\mathsf{IB}} T \iff (S \leq_{\mathsf{IB}} T \text{ and } T \leq_{\mathsf{IB}} S).$

Then $(\mathfrak{G}_{IB}, \wedge_{IB})$ is a lower semilattice with $S \wedge_{IB} T := S \cup T$ (defined by the disjunction of the numerations of S and T)

- Each R_{α} acts on \mathfrak{G}_{IB} : $S \mapsto IB + R_{\alpha}(S)$;
- (𝔅_{IB}, ∧_{IB}, (R_α)_{α<Λ}) semilattice with a family of monotone operators.

Fact. Over IB the schemata $R_{\alpha}(S)$ are finitely axiomatizable.

伺 ト イ ヨ ト イ ヨ ト

Language: $A ::= \top | p | (A \land A) | \alpha A$ for $\alpha < \Lambda$ Sequents: $A \vdash B$

 RC_{Λ} rules:

- if $A \vdash B$ then $\alpha A \vdash \alpha B$; $\alpha \alpha A \vdash \alpha A$;
- $\ \bullet \ \ \alpha A \vdash \beta A \text{ for } \alpha > \beta;$
- $a A \land \beta B \vdash \alpha (A \land \beta B)$ for $\alpha > \beta$.

Ex. $3 \top \land 23p \vdash 3(\top \land 23p) \vdash 323p$.

An arithmetical interpretation is a map from RC_{Λ} -formulas to $\mathfrak{G}_{\mathsf{IB}}$ satisfying: $\top^* = \top$; $(A \wedge B)^* = A^* \wedge_{\mathsf{IB}} B^*$; $(\alpha A)^* = R_{\alpha}(A^*)$.

Th. If $A \vdash_{\mathrm{RC}_{A}} B$ then $A^* \leq_{\mathrm{IB}} B^*$, for any interpretation *.

Define: $A <_{\alpha} B$ iff $B \vdash \alpha A$.

- \mathbb{W} is the set of all variable-free RC_{Λ} formulas.
- \mathbb{W}_{α} is the restriction of \mathbb{W} to the signature $\{\beta : \alpha \leq \beta < \Lambda\}$.

Facts.

- Every $A \in \mathbb{W}$ is equivalent to a word (formula without \wedge);
- **2** $(\mathbb{W}_{\alpha}, <_{\alpha})$ is a well-ordering modulo equivalence in RC_{Λ} ;
- (3) Its order type can be characterized in terms of Veblen φ function.
- *Ex.* The order type of $(\mathbb{W}, <_0)$ in $\mathrm{RC}_{\omega^{\alpha}}$ is $\varphi_{\alpha}(0)$.

Veblen functions

- $\varphi_0(\beta) := \omega^{1+\beta};$
- $\varphi_{\alpha+1}(\beta) := \beta$ -th fixed point of φ_{α} ;
- $\varphi_{\lambda}(\beta) := \beta$ -th simultaneous fixed point of $\{\varphi_{\alpha} : \alpha < \lambda\}$, if $\lambda \in \text{Lim}$.
- $\Gamma_0 :=$ the least ordinal > 0 closed under $\varphi_{\alpha}(\beta)$.

Fact. The order types of elements of $\mathbb{W}_{\alpha} \setminus \{\top\}$ within $(\mathbb{W}_0, <_0)$ are enumerated by φ_{α} .

(4月) (4日) (4日) 日

- $\varphi_0(\beta) := \omega^{1+\beta};$
- $\varphi_{\alpha+1}(\beta) := \beta$ -th fixed point of φ_{α} ;
- $\varphi_{\lambda}(\beta) := \beta$ -th simultaneous fixed point of $\{\varphi_{\alpha} : \alpha < \lambda\}$, if $\lambda \in \text{Lim}$.
- $\Gamma_0 :=$ the least ordinal > 0 closed under $\varphi_{\alpha}(\beta)$.

Fact. The order types of elements of $\mathbb{W}_{\alpha} \setminus \{\top\}$ within $(\mathbb{W}_0, <_0)$ are enumerated by φ_{α} .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Schmerl-type formulas

Recall that \equiv_{α} denotes conservativity w.r.t. Π_{α} . A_{S}^{*} denotes the interpretation of A in \mathfrak{G}_{S} .

Theorem

Let S be a $\Pi_{\alpha+1}$ -axiomatizable extension of IB. In \mathfrak{G}_S , for all $A \in \mathbb{W}_{\alpha}$,

 $A_S^* \equiv_\alpha R_\alpha^{o_\alpha(A)}(S).$

Cor. For any ordinal notations $\alpha, \beta, \gamma < \Gamma_0$, $R^{\gamma}_{\alpha+\omega^{\beta}}(S) \equiv_{\alpha} R^{\varphi_{\beta}(\gamma)}_{\alpha}(S).$

This holds, because $o_{\alpha}(A) = \varphi_{\beta}(o_{\alpha+\omega^{\beta}}(A))$ for $A \in \mathbb{W}_{\alpha+\omega^{\beta}}$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Schmerl-type formulas

Recall that \equiv_{α} denotes conservativity w.r.t. Π_{α} . A_{S}^{*} denotes the interpretation of A in \mathfrak{G}_{S} .

Theorem

Let S be a $\Pi_{\alpha+1}$ -axiomatizable extension of IB. In \mathfrak{G}_S , for all $A \in \mathbb{W}_{\alpha}$,

 $A_S^* \equiv_\alpha R_\alpha^{o_\alpha(A)}(S).$

Cor. For any ordinal notations $\alpha, \beta, \gamma < \Gamma_0$, $R^{\gamma}_{\alpha+\omega^{\beta}}(S) \equiv_{\alpha} R^{\varphi_{\beta}(\gamma)}_{\alpha}(S).$

This holds, because $o_{\alpha}(A) = \varphi_{\beta}(o_{\alpha+\omega^{\beta}}(A))$ for $A \in \mathbb{W}_{\alpha+\omega^{\beta}}$.

• Peano arithmetic: $PA \equiv_{\prod_{n=1}^{0}} R_n^{\varepsilon_0}(EA^+)$.

② ACA := PA + arithmetical comprehension + full induction. Well-known: ACA ≡ PA(T₀) ≡ IB + $R_{<\omega2}$ (IB).

ACA $\equiv_{\omega} IB + R_{\omega}^{\varepsilon_0}(IB) \equiv_{<\omega} IB + R_{<\omega}^{\varepsilon_0}(IB);$

ACA $\equiv_n \operatorname{IB} + R_n^{\varepsilon_{\varepsilon_0}}(\operatorname{IB})$ for $n < \omega$.

(a) $ACA^+ := ACA + \forall X \exists Y Y = X^{(\omega)}$. Then $ACA^+ \equiv PA(T_0, T_1, \dots, T_{\omega}) \equiv IB + R_{<\omega^2+\omega}(IB)$. Hence, $ACA^+ \equiv_{\omega} IB + R_{\omega}^{\varphi_2(\varepsilon_0)}(IB)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Peano arithmetic: $PA \equiv_{\prod_{n=1}^{0}} R_{n}^{\varepsilon_{0}}(EA^{+}).$
- ② ACA := PA + arithmetical comprehension + full induction. Well-known: ACA ≡ PA(T₀) ≡ IB + $R_{<\omega 2}$ (IB).

 $ACA \equiv_{\omega} IB + R_{\omega}^{\varepsilon_0}(IB) \equiv_{<\omega} IB + R_{<\omega}^{\varepsilon_0}(IB);$

ACA $\equiv_n IB + R_n^{\varepsilon_{\varepsilon_0}}(IB)$ for $n < \omega$.

(a) $ACA^+ := ACA + \forall X \exists Y Y = X^{(\omega)}$. Then $ACA^+ \equiv PA(T_0, T_1, \dots, T_{\omega}) \equiv IB + R_{<\omega^2+\omega}(IB)$. Hence, $ACA^+ \equiv_{\omega} IB + R_{\omega}^{\varphi_2(\varepsilon_0)}(IB)$.

• Image: A image:

- Peano arithmetic: $PA \equiv_{\prod_{n=1}^{0}} R_{n}^{\varepsilon_{0}}(EA^{+})$.
- ② ACA := PA + arithmetical comprehension + full induction. Well-known: ACA ≡ PA(T₀) ≡ IB + $R_{<\omega2}$ (IB).

 $ACA \equiv_{\omega} IB + R^{\varepsilon_0}_{\omega}(IB) \equiv_{<\omega} IB + R^{\varepsilon_0}_{<\omega}(IB);$

ACA $\equiv_n \operatorname{IB} + R_n^{\varepsilon_{\varepsilon_0}}(\operatorname{IB})$ for $n < \omega$.

Solution ACA⁺ := ACA + ∀X ∃Y Y = X^(ω). Then ACA⁺ ≡ PA(T₀, T₁,..., T_ω) ≡ IB + R_{<ω²+ω}(IB). Hence, ACA⁺ ≡_ω IB + R_ω^{φ₂(ε₀)}(IB).

<日本

<b

Iterated arithmetical comprehension

Th. (Π_1^0 -CA₀) $_{\omega^{\alpha}} \equiv_{<\omega^{\alpha+1}} IB + R_{<\omega^{\alpha+1}}(IB);$ (Π_1^0 -CA) $_{\omega^{\alpha}} \equiv_{<\omega^{\alpha+1}+\omega} IB + R_{<\omega^{\alpha+1}+\omega}(IB).$

Th.

 $(\Pi_1^0 - CA_0)_{\omega^{\alpha}} \equiv_{<\omega} IB + R^{\varphi_{\alpha+1}(0)}_{<\omega}(IB);$ $(\Pi_1^0 - CA)_{\omega^{\alpha}} \equiv_{<\omega} IB + R^{\varphi_{\alpha+1}(\varepsilon_0)}_{<\omega}(IB).$

伺 ト イ ヨ ト イ ヨ ト

Iterated arithmetical comprehension

Th.

- $(\Pi_1^0 CA_0)_{\omega^{\alpha}} \equiv_{<\omega^{\alpha+1}} \mathsf{IB} + R_{<\omega^{\alpha+1}}(\mathsf{IB});$
- $(\Pi_1^0 CA)_{\omega^{\alpha}} \equiv_{<\omega^{\alpha+1}+\omega} \mathsf{IB} + R_{<\omega^{\alpha+1}+\omega}(\mathsf{IB}).$

Th.

 $(\Pi_1^0 - CA_0)_{\omega^{\alpha}} \equiv_{<\omega} IB + R^{\varphi_{\alpha+1}(0)}_{<\omega}(IB);$ $(\Pi_1^0 - CA)_{\omega^{\alpha}} \equiv_{<\omega} IB + R^{\varphi_{\alpha+1}(\varepsilon_0)}_{<\omega}(IB).$

伺 ト イ ヨ ト イ ヨ ト

- Lev D. Beklemishev, Reflection calculus and conservativity spectra, *Russian Math. Surveys*, 73:4 (2018), 569–613.
- Lev D. Beklemishev, Fedor N. Pakhomov, *Reflection algebras and conservation results for theories of iterated truth*, 2019, 48 pp., arXiv: 1908.10302.

・ 同 ト ・ ヨ ト ・ 国 ト …