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I and II are playing a guessing game

I: I’m thinking of a set A ⊆ N.
I: 3, 5, 7, . . .

II: It’s {2n + 1 : n ≥ 1}!
I: . . . 11, 13, 17, . . .
II: It’s the prime numbers!
I: . . . 9, 15, 19, 21, . . .
II: It’s {2n + 1 : n ≥ 1} after all!
I: . . . 8 . . .

I: I’m thinking of a set that equals either the odd numbers, or the
prime numbers.
I: 3, 5, 7, . . .
I: 17, 23, 11, 101, . . .
I: 107, 31, 97, 79, . . .
I: 199, 139, 29, 2—
II: It’s the primes!
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The problem of learnability (Gold 1967)

Definition
A class C ⊆ P(N) of r.e. sets is R-learnable if in the game:
I: I’m thinking of a set A ∈ C,
I: F1 ⊆ F2 ⊆ · · · with

⋃
n Fn = A,

then Player II can produce a description of A while following the
ruleset R.

This description is an index e = M(Fn) for the r.e. set We = A.

Example rulesets

Finite: Only one guess is allowed.
Explanatory: Infinitely many guesses are allowed, but must reach
a limit e.
Behaviourally correct: Infinitely many guesses are allowed, but
cofinitely many must be correct.
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Some specific examples

Finite: Only one guess is allowed.
Confident: Infinitely many guesses are allowed, and you must
reach a limit e for every B ⊆ N.
Explanatory: Infinitely many guesses are allowed, but must reach
a limit e.
Vacillatory: Infinitely many guesses are allowed, but cofinitely
many must be correct, and only finitely many distinct guesses.
Behaviourally correct: Infinitely many guesses are allowed, but
cofinitely many must be correct.

C = odds ∪ primes C = {F ⊆ N : |F | ≤ 2} C = {F
fin

⊆ N}
Fin learnable Not fin learnable Not fin learnable

Conf learnable Conf learnable Not conf learnable
Expl learnable Expl learnable Expl learnable
Vac learnable Vac learnable Vac learnable
BC learnable BC learnable BC learnable
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Our setting

A positive equivalence relation is an r.e. equivalence relation.

Motivating question

Let 〈a, b, c : r1, r2, r3〉 be a group presentation. Then the word
problem E (w1,w2) ⇐⇒ w1 = w2 is a positive equivalence
relation.

We want to ‘learn’ in this setting, while respecting equivalence
classes. We restrict our attention to learning E-families, which are
uniformly one-one enumerable families of sets closed under E .

Do the same theorems hold? For example, is it always true that:

Fin ( Conf ( Ex ( Vac ( BC?



Some results: B., Gao, Jain, Li, Stephan

We always have:

Fin ⊆ Conf ⊆ Ex ⊆ Vac ⊆ BC?

Which notions of learnability are distinct in N/E?

Theorem 1
In every E we have expl 6= BC.

Theorem 2
There is an E in which expl = vac.



Some lemmas, part 1

Given an equivalence relation E , let [a] = {b : aEb}. Recursively
define

ak = min{b : ∀i < k , b 6∈ [ai ]},

and let
An = [a0] ∪ · · · ∪ [An−1].

Lemma 1
Every uniformly r.e. superclass of {An : n ∈ N} which respects E is
an E -family.

In particular, the class {
⋃

k∈F [ak ] : F
fin

⊆ N} of ‘E -finite’ sets is an
E -family.



Some lemmas, part 2
Explanatory: Infinitely many guesses are allowed, but must reach
a limit e.

Lemma 2 (Blum-Blum 1975)

If a set A ∈ C is explanatory-learned by M, then ∃F
fin

⊆ A such that

F ⊆ G
fin

⊆ A implies M(F ) = M(G ) = A.

This also holds with positive equivalence relations.

Lemma 3
If the E -finite sets are expl-learnable then each [a] is r.e.

Proof
Choose an F ⊆ [a] as in Lemma 2. Then

[a] = {b : eventually M([a]s ∪ [b]s) 6= M(F )},

where [a]s and [b]s are approximations to [a], [b].



Proof of Theorem 1: expl 6= BC.

If the E -finite sets are not expl-learnable, we are done. Otherwise,
let C consist of:

1. An = [a0] ∪ · · · ∪ [an−1];

2. Fn = [an] =
⋃

k 6=n[ak ];

3. If |Wn| = m is finite, then for all k : Bn,k = Fn ∩ Ak .

This is an E -family by Lemmas 1 and 3.

By Lemma 2, every Fn has an F
fin

⊆ Fn such that F ⊆ G
fin

⊆ Fn
implies M(F ) = M(G ) = e, and this limit e can be found using 0′.

Bn also has such a subset. So if |Wn| is finite, F must contain
some [am] with m ≥ |Wn|. Using 0′ to check whether |Wn| is
greater or smaller than the maximum [am] in F , we can then
compute the Σ2-complete set {e : |We | finite}. Thus 0′′ ≤T 0′, a
contradiction.



Proof of Theorem 1: expl 6= BC.

If the E -finite sets are not expl-learnable, we are done. Otherwise,
let C consist of:

1. An = [a0] ∪ · · · ∪ [an−1];

2. Fn = [an] =
⋃

k 6=n[ak ];

3. If |Wn| = m is finite, then for all k : Bn,k = Fn ∩ Ak .

This is an E -family by Lemmas 1 and 3.

By Lemma 2, every Fn has an F
fin

⊆ Fn such that F ⊆ G
fin

⊆ Fn
implies M(F ) = M(G ) = e, and this limit e can be found using 0′.

Bn also has such a subset. So if |Wn| is finite, F must contain
some [am] with m ≥ |Wn|. Using 0′ to check whether |Wn| is
greater or smaller than the maximum [am] in F , we can then
compute the Σ2-complete set {e : |We | finite}. Thus 0′′ ≤T 0′, a
contradiction.



Proof of Theorem 2: ∃E s.t. expl = vac.
Construction. Begin with am = m for all m. For each s = 0, 1, . . .
in turn, search for n, k , ` < s s.t.:

I n < ` and k < `;

I [ak ] ∩Wn = ∅ as approximated at stage s; and

I [a`] ∩Wn 6= ∅ as approximated at stage s.

If n, k , ` exist, select a triple with ` as small as possible. Merge
[ak ] and [a`] together, renumbering other am as necessary. Repeat
until no more n, k, ` exist. Then move on to the s.
Claim 1. If Wn is E -closed, then either Wn ⊆ An, or Wn = Am for
some m ≥ n, or Wn = N.
Claim 2. If C is an E -family then there are infinitely many B ∈ C
such that An ⊆ B.
Proof: Induction on n, with Claim 1 and the Pigeonhole Principle.
Claim 3. expl = vac
Proof: Suppose M vac-learns C. By Claims 1 and 2, N 6∈ C. Given
an A ∈ C, M will output some largest index n∗. Watch for this n∗,
and use Claim 1 to form guesses about A.



Thank you!

I: I’m thinking of a set A ⊆ N.
I: 3, 5, 7, . . .
II: It’s {2n + 1 : n ≥ 1}!
I: . . . 11, 13, 17, . . .
II: It’s the prime numbers!
I: . . . 9, 15, 19, 21, . . .
II: It’s {2n + 1 : n ≥ 1} after all!
I: . . . 8 . . .

I: I’m thinking of a set that equals either the odd numbers, or the
prime numbers.
I: 3, 5, 7, . . .
I: 17, 23, 11, 101, . . .
I: 107, 31, 97, 79, . . .
I: 199, 139, 29, 2—
II: It’s the primes!


