
Vapnik-Chervonenkis Dimension and Density on Johnson and
Hamming Graphs

https://arxiv.org/abs/2007.16042

Bjarki Geir Benediktsson

October 8, 2020

https://arxiv.org/abs/2007.16042


Set systems

Definition
A set system is a pair (X ,S) consisting of a universe set X and a family S of subsets of
X .

Definition
Let φ(~x ; ~y) be a formula, we call ~x the object variables and ~y the parameter variables of
φ(~x ; ~y). A set system for a formula φ(~x ; ~y) with m object variables and n parameter
variables in a model M with universe set M is a set system (Mm,Sφ) where:

Sφ = {{~a ∈ Mm : M |= φ(~a; ~b)} : ~b ∈ Mn}
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Example
Let φ(x , y) be the formula in the language of graphs stating that there is an edge
between x and y.
Then the set system for φ(x , y) on a graph G is the collection:

(V (G ), (N(v))v∈V (G))



Shatter function

Definition
Let (X ,S) be a set system. The shatter function π(X ,S) : N→ N for (X ,S) is:

π(X ,S)(n) := max{|{T ∩ A : T ∈ S}| : A ⊆ X ∧ |A| = n}

The shatter function πC : N→ N for a class C of set systems:

πC(n) := max{π(X ,S)(n) : (X ,S) ∈ C)}
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VC-Characteristics

Definition
The VC-Dimension of a (class of) set system is the largest n (if one exists) such that
π(n) = 2n.

Definition
The VC-Density of a (class of) set system is the infimum r (if one exists) such that
π(n) ∈ O(nr )
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Lemma (Sauer-Shelah)
If (X ,S) has finite VC -dimension d then πS(n) ≤

∑d
i=0
(n
i

)
.

Corollary
VC -Density ≤ VC -Dimension.
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Motivations

VC -dimension and VC -density arise as important factors in:

Statistical learning theory as a metric on Probably Approximately Correct (PAC)
learning.
A formula has finite VC -dimension (and VC -density) if and only if it does not have the
independence property. Dependent (NIP) theories are those where no formula has the
independence property.
Extremal combinatorics.
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Johnson Graphs

Definition
Let n and k be natural numbers n ≥ k . The Johnson graph J(n, k) is a graph whose
vertices correspond to the k-element subsets of a set of size n and two vertices are
adjacent if their corresponding sets intersect in all but one element, i.e. their symmetric
difference has size 2.

Example
J(4, 2) is the octahedral graph.
J(5, 2) is the complement of the Petersen graph.
J(n, 1) = Kn.
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The Johnson graph J(4, 2).

{1, 2}

{1, 3}{1, 4}

{2, 3}{2, 4}

{3, 4}



Hamming Graphs

Definition
Let d and q be natural numbers. The Hamming graph H(d , q) is a graph whose
vertices correspond to the d-tuples of a set of size q and two vertices are adjacent if
their corresponding tuples agree in all but one coordinate.

Example
H(d , 2) is the d dimensional hypercube graph.
H(2, q) is the q × q rook’s graph
H(1, q) = Kq
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The Hamming graph H(3, 2).

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)



Motivations

Johnson graphs and Hamming graphs have many interesting applications.

Graph isomorphism in quasy-polynomial time.
Coding theory, error correcting codes
They are higly symmetric and nice to work with. E.g. Aut(J(n, k)) is at least Sn
A result by Adler and Adler stating that nowhere dense classes of graphs have stable
(and therefore dependent) theories.
By fixing one parameter Johnson graphs and Hamming graphs give classes with a
dependent limit theory.
Yet Johnson and Hamming graphs graphs are clearly somewhere dense.
Furthermore they have unbounded local clique-width.
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Main results

Theorem
The edge relation has:

VC -dimension 4 on the class of all Johnson graphs.
VC -dimension 3 on the class of all Hamming graphs.
VC -density 2 on the class of all Johnson graphs.
VC -density 2 on the class of all Hamming graphs.



Main results

Theorem
The VC -density of the edge relation on the class of all Johnson graphs is 2.

Observation.
In the Johnson graph J(m, k) we have N(v) = {(v \ {a}) ∪ {x}|a ∈ v ∧ x 6∈ v}. This
induces the k × (m − k) rook’s graph.
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Proof

We need to show π(n) ∈ O(n2)

Assume m and k are arbitrarily large.
Let A be a maximally shattered set of size n in J(m, k).
Let

S(A) : = {N(u) ∩ A; u ∈ V (G )},
C1(A) : = {N ∈ S(A) : N is a clique}.
C2(A) : = {N ∈ S(A) : N is not a clique}.
π(n) = |S(A)| = |C1(A)|+ |C2(A)|.



Proof

We need to show π(n) ∈ O(n2)
Assume m and k are arbitrarily large.

Let A be a maximally shattered set of size n in J(m, k).
Let

S(A) : = {N(u) ∩ A; u ∈ V (G )},
C1(A) : = {N ∈ S(A) : N is a clique}.
C2(A) : = {N ∈ S(A) : N is not a clique}.
π(n) = |S(A)| = |C1(A)|+ |C2(A)|.



Proof

We need to show π(n) ∈ O(n2)
Assume m and k are arbitrarily large.
Let A be a maximally shattered set of size n in J(m, k).

Let

S(A) : = {N(u) ∩ A; u ∈ V (G )},
C1(A) : = {N ∈ S(A) : N is a clique}.
C2(A) : = {N ∈ S(A) : N is not a clique}.
π(n) = |S(A)| = |C1(A)|+ |C2(A)|.



Proof

We need to show π(n) ∈ O(n2)
Assume m and k are arbitrarily large.
Let A be a maximally shattered set of size n in J(m, k).
Let

S(A) : = {N(u) ∩ A; u ∈ V (G )},
C1(A) : = {N ∈ S(A) : N is a clique}.
C2(A) : = {N ∈ S(A) : N is not a clique}.
π(n) = |S(A)| = |C1(A)|+ |C2(A)|.



Counting elements of C1(A)

C1(A) := {N ∈ S(A) : N is a clique}.

There are at most O(n2) cliques in C1(A) with 2 or fewer elements.

There are at most O(n) cliques Q in C1(A) such that Q = N(v) ∩ A where v ∈ A.
That just leaves those cliques that are of the form A ∩ Q where Q is a maximal clique
of J(m, k).
For every vertex u ∈ A we have that A intersects at most |A| rows and at most |A|
columns of the rook’s graph induced by N(u).
So u can be a member of at most 2|A| maximal cliques of J(m, k) that intersect A in
more than two vertices.
So the number of maximal cliques of J(m, k) that intersect A in more than two vertices
is at most 2|A|2 ∈ O(n2).
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Counting elements of C2(A)

C2(A) := {N ∈ S(A) : N is not a clique}

Take a pair of vertices u,w ∈ A such that d(u,w) = 2.

Then we can write u = (w \ {a, b}) ∪ {x , y}.
Let v be such that {u,w} ⊆ N(v).
Then v is one of

(w \ {a}) ∪ {x}
(w \ {a}) ∪ {y}
(w \ {b}) ∪ {x}
(w \ {b}) ∪ {y}

So |C2(A)| ≤ 4|A|2 ∈ O(n2).
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Proof continued

So we have shown that:

|C1(A)| ∈ O(n2)
|C2(A)| ∈ O(n2)
Therefore π(n) = |S(A)| = |C1(A)|+ |C2(A)| ∈ O(n2).
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