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Lowness for speed

An important concept in complexity theory and crucial in computability theory:
relativization.

Add an oracle A (= infinite binary sequence) available on a special read-only
tape, which can be used for computations.

Computability theory: HPA (also called A ′),DNCA,MLRA, …

Complexity theory: PA,NPA, …
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Lowness for speed

Relativization in complexity can shed light on important questions:

Theorem (Baker, Gill, Solovay)
There are oracles A such thatPA = NPA, and oracles B such thatPB ̸= NPB
Theorem (Baker, Gill, Solovay)
There are oracles A such thatPA = NPA, and oracles B such thatPB ̸= NPB
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Lowness for speed
Allender proposed to study lowness for speed (inspired by computability
theory):

Definition (Allender)
X is low for speed (l.f.s) if every decidable set/language L that can be
computed with oracle X in time f can be computed without oracle in time
poly(f).
(model of computation: Turing machine with a dedicated tape; the machine
may write n on this tape then query the oracle X as to whether n ∈ X).

This basically amounts to collapsing all time classes simultaneously: PA = P,
NPA = NP, EXPTIMEA = EXPTIME, ….

Does such an A exist? Obviously yes: take A to be in PTIME-computable!
(note: X computable but EXPTIME-complete would not work, so lowness for
speed is not closed under ≡T).
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Lowness for speed

Much less obvious: is there a non-computable A that is l.f.s. ?

Theorem (Bayer, Slaman)
There exists A non-computable and computably enumerable that is l.f.s.
Theorem (Bayer, Slaman)
There exists A non-computable and computably enumerable that is l.f.s.

Proof is a priority argument. One constructs A to be sparse, so that at stage t
there are few candidates for A ↾ t, thus for a functionalΦ one can try to
simulate all possibleΦA in parallel (+ some very nice twist to handle
Friedberg-Muchnik requirements).

5/21



Lowness for speed

Much less obvious: is there a non-computable A that is l.f.s. ?

Theorem (Bayer, Slaman)
There exists A non-computable and computably enumerable that is l.f.s.
Theorem (Bayer, Slaman)
There exists A non-computable and computably enumerable that is l.f.s.

Proof is a priority argument. One constructs A to be sparse, so that at stage t
there are few candidates for A ↾ t, thus for a functionalΦ one can try to
simulate all possibleΦA in parallel (+ some very nice twist to handle
Friedberg-Muchnik requirements).

5/21



Lowness for speed

Much less obvious: is there a non-computable A that is l.f.s. ?

Theorem (Bayer, Slaman)
There exists A non-computable and computably enumerable that is l.f.s.
Theorem (Bayer, Slaman)
There exists A non-computable and computably enumerable that is l.f.s.

Proof is a priority argument. One constructs A to be sparse, so that at stage t
there are few candidates for A ↾ t, thus for a functionalΦ one can try to
simulate all possibleΦA in parallel (+ some very nice twist to handle
Friedberg-Muchnik requirements).

5/21



Lowness for speed

Three directions for the study of lowness for speed:
1. What are the c.e. sets in LFS?

2. What is the situation outside c.e. sets? How big is the set LFS in terms of
cardinality/category/measure? (category answered by Bayer and Slaman)

3. Closing under ≡T: what are the X that are equivalent to some low for
speed? (note: every degree contains a non low for speed). Are such X
closed downwards? under join?

6/21



Lowness for speed

Three directions for the study of lowness for speed:
1. What are the c.e. sets in LFS?
2. What is the situation outside c.e. sets? How big is the set LFS in terms of

cardinality/category/measure? (category answered by Bayer and Slaman)

3. Closing under ≡T: what are the X that are equivalent to some low for
speed? (note: every degree contains a non low for speed). Are such X
closed downwards? under join?

6/21



Lowness for speed

Three directions for the study of lowness for speed:
1. What are the c.e. sets in LFS?
2. What is the situation outside c.e. sets? How big is the set LFS in terms of

cardinality/category/measure? (category answered by Bayer and Slaman)
3. Closing under ≡T: what are the X that are equivalent to some low for

speed? (note: every degree contains a non low for speed). Are such X
closed downwards? under join?

6/21



Within c.e. sets

Can we characterize the c.e. sets in LFS? Seems very hard, but one can get
partial results.

One way to study LFS inside c.e. sets is with respect to the high/low hierarchy:

• A is low if A ′ = 0 ′; A is lown if A(n) = 0(n).
• A is high if A ′ = 0 ′′; A is highn if A(n) = 0(n+1).

7/21



8/21



Within c.e. sets

We were able to prove:

Theorem (BD)
If A ≥T ∅ ′, then A is not l.f.s. (does not require A to be c.e.).
Theorem (BD)
If A ≥T ∅ ′, then A is not l.f.s. (does not require A to be c.e.).

Theorem (BD)
It is possible for A to be c.e., high and l.f.s. .
Theorem (BD)
It is possible for A to be c.e., high and l.f.s. .

Theorem (BD)
If A is c.e., non-computable but low, it is necessarily not l.f.s. (!).
Theorem (BD)
If A is c.e., non-computable but low, it is necessarily not l.f.s. (!).

Theorem (BD)
However, there is a c.e. set A which is non-computable, low2, and l.f.s. .
Theorem (BD)
However, there is a c.e. set A which is non-computable, low2, and l.f.s. .
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Outside the c.e. world

How common are low for speed sets? Is the set LFS uncountable?
co-meager? of measure 1?
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Quick definitions

A set U of infinite binary sequence is open for the product topology if it can be
written as:

U =
∪
σ∈W

[σ]

where W is a (countable) set of binary strings and [σ] is the set of infinite
binary sequences that start with σ.

We say that U is effectively open if W can be chosen to be computably
enumerable (or computable)
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Quick definitions

Effective Baire category:

• A sequence X is weakly 1-generic if for every dense effectively open set
U , we have that X is in U .

• A sequence X is 1-generic if for every effectively open set U , we have
X ∈ U or X is in the interior of the complement of U .
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Quick definitions

Effective measure theory:

• A sequence X is Martin-Löf random if for every sequence of uniformly
effectively open sets (Un) such that µ(Un) ≤ 2−n, we have X /∈

∩
n Un

• A sequence X is Schnorr random if for every sequence of uniformly
effectively open sets (Un) such that µ(Un) = 2−n, we have X /∈

∩
n Un
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The strange case of generics

So, back to our first question. Is the set LFS meager or co-meager?

Well...... it’s complicated....

Theorem (Bayer-Slaman)
LFS is meager if and only if P ̸= NP.
Theorem (Bayer-Slaman)
LFS is meager if and only if P ̸= NP.

So we might not know for a while whether LFS is meager or co-meager.
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The strange case of generics

However,

Theorem (BD)
LFS contains a computably homeomorphic copy of the set of 1-generics (which
is a co-meager set).

Theorem (BD)
LFS contains a computably homeomorphic copy of the set of 1-generics (which
is a co-meager set).

Therefore:

• LFS has size 2ℵ0

• Every non-computable c.e. set computes a l.f.s. set.
• Almost every oracle (in the measure sense) computes a l.f.s. set.
• There is a low ∆0

2 set that is low for speed.
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Randomness vs lowness for speed

Like for generics, one could expect a conditional behaviour of randoms w.r.t.
lowness for speed, for example a dependance on the answer to P = BPP.
This is not the case:

Theorem (BD)
If A is Schnorr random, it is not l.f.s.
Theorem (BD)
If A is Schnorr random, it is not l.f.s.

A Schnorr random can however be equivalent to a l.f.s. (take a l.f.s. of high
degree). However, unlike for generics (assuming P ̸= NP), the phenomenon
disappears for Martin-Löf randomness. In fact:

Theorem (BD)
If A has Martin-Löf random degree (in fact, DNC degree is enough), it is not low
for speed.

Theorem (BD)
If A has Martin-Löf random degree (in fact, DNC degree is enough), it is not low
for speed.

Proof inspired by Blum’s speedup theorem.
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Turing degrees and LFS

Some more results on the Turing degrees of l.f.s. sets.

Theorem (BD)
The Turing degrees of LFS are not closed downwards.
Theorem (BD)
The Turing degrees of LFS are not closed downwards.

Proof: extend the earlier result to show that a low c.e. degree does not contain
any l.f.s. set. Take a non-computable c.e. set X which is l.f.s. and apply Sack’s
splitting theorem to get a low c.e. Y with 0 <T Y <T X.

How does lowness interact with minimality? We were able to prove

Theorem (BD)
There exists a minimal Turing degree which does not contain any l.f.s. set.
Theorem (BD)
There exists a minimal Turing degree which does not contain any l.f.s. set.

We conjectured that there is also a l.f.s. oracle of minimal Turing degree.......
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Turing degrees and LFS

A very recent result:

Theorem (Harrison-Trainor, Downey)
There exists a l.f.s. oracle of minimal Turing degree.
Theorem (Harrison-Trainor, Downey)
There exists a l.f.s. oracle of minimal Turing degree.
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Thank you!
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