

Quantified Reflection Calculus with one modality

Ana de Almeida Borges Joost J. Joosten

Universitat de Barcelona

Ghent-Leeds Virtual Logic Seminar October 1, 2020

In this talk we...

- Discuss known shortcomings of quantified provability logic
- Introduce $QRC₁$ as a candidate solution
- Explore some famous proofs
- State obtained results about $QRC₁$
- Sketch a couple of new proofs

Provability Logics

- Interpret \Box as "is provable"
- Interpret \Diamond as "is consistent"

Examples:

- GL is $K4 + \Box(\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$ (Löb's axiom)
- GLP is a polymodal version of GL, with $[0], [1], \ldots$ as modalities
	- Decidability is PSPACE-complete
- RC is the strictly positive fragment of GLP, with statements of the form $\varphi \vdash \psi$, where φ, ψ are in the language built from \top , p, \wedge , $\langle 0 \rangle, \langle 1 \rangle, \ldots$
	- E.g. $\langle 1 \rangle p \vdash \langle 0 \rangle p$
	- Decidability is in PTIME

It is possible to express Gödel's provability predicate in PA:

$$
\mathsf{Prov}_{\mathsf{PA}}(\varphi) := \exists \rho \mathsf{Proof}_{\mathsf{PA}}(\rho, \varphi)
$$

Let \mathcal{L}_{\Box} be the language of GL.

An arithmetical realization is any function $(\cdot)^{\star}$ taking:

formulas in $\mathcal{L}_{\Box} \rightarrow$ sentences in \mathcal{L}_{PA} propositional variables \rightarrow arithmetical sentences boolean connectives \rightarrow boolean connectives $\square \rightarrow \mathsf{Prov}_{\mathsf{PA}}$

Solovay's Theorem

Theorem (Solovay, 1976)

\nLet
$$
\varphi \in \mathcal{L}_{\Box}
$$
. Then:

\n $\mathbb{G}L \vdash \varphi$

\n \Downarrow

\nPA $\vdash (\varphi)^*$ for any arithmetical realization $(\cdot)^*$

This can be written as:

$$
\mathsf{GL} = \{ \varphi \in \mathcal{L}_{\Box} \mid \text{for any } (\cdot)^{\star}, \text{ we have } \mathsf{PA} \vdash (\varphi)^{\star} \}
$$

Solovay for quantified modal logic?

Let $\mathcal{L}_{\Box\forall}$ be the language of relational quantified modal logic:

 \top , relation symbols, boolean connectives, $\forall x$, and \square

Define arithmetical realizations $(\cdot)^\bullet$ for $\mathcal L_{\Box,\forall}$:

formulas in $\mathcal{L}_{\Box \forall} \rightarrow$ formulas in $\mathcal{L}_{\mathsf{PA}}$

n-ary relation symbols \rightarrow arithmetical formulas with n free variables boolean connectives \rightarrow boolean connectives

$$
\forall x \to \forall x
$$

$$
\Box \to \text{Prov}_{\text{PA}}
$$

Theorem (Vardanyan, 1986)

{closed $\varphi \in \mathcal{L}_{\Box,\forall}$ | for any $(\cdot)^\bullet$, we have PA $\vdash (\varphi)^\bullet$ }

is Π^0_2 -complete. Thus it is not recursively axiomatizable.

Artemov's Lemma

- Let $F \in \mathcal{L}_{PA}$ be a formula
- Replace arithmetical symbols $0, +1, +, \times, =$ with predicates Z, S, A, M, E , obtaining ${F} \in \mathcal{L}_{\forall}$
- Go back to $\mathcal{L}_{\mathsf{PA}}$ with a realization $(\cdot)^\bullet$
- When are F and F^{\bullet} equivalent?
	- Under $\{T\}$ [•] to get arithmetical axioms...
	- ... and under D^{\bullet} to get recursive A^{\bullet} and M^{\bullet}
	- By Tennenbaum's Theorem the model induced by (\cdot) is standard

$$
D := \Diamond \top \wedge
$$

\forall x (Z(x) \rightarrow \Box Z(x)) \wedge \forall x (\neg Z(x) \rightarrow \Box \neg Z(x)) \wedge
\n...
\n
$$
S \cdots A \cdots M \cdots E
$$

A.A. Borges, J.J. Joosten (UB) CRC₁ [QRC](#page-0-0)₁ Ghent-Leeds, Oct 1 7/28

Artemov's Theorem

Theorem (Artemov, 1985)

$$
\mathcal{A}:=\{\textit{closed}\ \varphi\in\mathcal{L}_{\Box,\forall}\ |\ \textit{for any}\ (\cdot)^\bullet,\ \textit{we have}\ \mathbb{N}\vDash(\varphi)^\bullet\}
$$

is not arithmetical.

- By Tarski's Undefinability Theorem the class of true arithmetical sentences V is not arithmetical
- We provide a bijection ! between V and $\mathcal A$
- For $F \in \mathcal{L}_{\mathsf{PA}}$, let $F! := \{T\} \wedge D \rightarrow \{F\}$
- We see that F is true iff $F!$ is always true
- $\bullet \; (\Rightarrow)$ If F is true, pick any $(\cdot)^{\bullet}$ and see that $\{T\}^{\bullet} \wedge D^{\bullet} \to \{F\}^{\bullet}$ is true
- (\Leftarrow) If F! is always true, pick (\cdot) as the "normal" interpretation and see that $\{F\}^{\bullet}$ - and hence \bar{F} - are true

Escape to Vardanyan's Theorem?

Restrict $\mathcal{L}_{\Box \forall}$ to the strictly positive fragment $\mathcal{L}_{\Diamond \forall}$:

Terms ::= Variables | Constants

 $\mathcal{L}_{\Diamond \forall} ::= \top \vert$ relation symbols applied to Terms $\vert \varphi \land \varphi \vert \forall x \varphi \vert \Diamond \varphi$ The arithmetical realizations $(\cdot)^*$ for $\mathcal{L}_{\Diamond,\forall}$ send:

formulas in $\mathcal{L}_{\Diamond \forall} \rightarrow$ axiomatizations of theories in $\mathcal{L}_{\mathsf{PA}}$

Define a calculus QRC₁ with statements $\varphi \vdash \psi$ where:

$$
\varphi,\psi\in\mathcal{L}_{\Diamond,\forall}
$$

Prove arithmetical soundness and completeness for $QRC₁$:

$$
\mathsf{QRC}_1 \stackrel{?}{=} \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } \mathsf{PA} \vdash (\varphi \vdash \psi)^* \}
$$

$QRC₁$: Axioms and rules

$$
\varphi \vdash \top \qquad \varphi \land \psi \vdash \varphi
$$

\n
$$
\varphi \vdash \varphi \qquad \varphi \land \psi \vdash \psi
$$

\n
$$
\vdash \psi \quad \psi \vdash \chi \qquad \varphi \vdash \psi \quad \varphi \vdash \chi
$$

\n
$$
\varphi \vdash \chi \qquad \varphi \vdash \psi \land \chi
$$

$$
\Diamond \Diamond \varphi \vdash \Diamond \varphi \qquad \frac{\varphi \vdash \psi}{\Diamond \varphi \vdash \Diamond \psi}
$$

$$
\frac{\varphi \vdash \psi}{\varphi \vdash \forall \mathbf{x} \,\psi}
$$

$$
\frac{\varphi[x \leftarrow t] \vdash \psi}{\forall x \varphi \vdash \psi}
$$

 $x \notin f \lor \varphi$ t free for x in φ

$$
\frac{\varphi \vdash \psi}{\varphi[x \leftarrow t] \vdash \psi[x \leftarrow t]}
$$

t free for *x* in φ and ψ

$$
\frac{\varphi[\textbf{x}\textbf{+} \textbf{c}]+\psi[\textbf{x}\textbf{+}\textbf{c}]}{\varphi \vdash \psi}
$$

c not in φ nor ψ

 φ

The arithmetical realizations $(\cdot)^*$ for $\mathcal{L}_{\Diamond,\forall}\colon$

formulas in $\mathcal{L}_{\Diamond,\forall} \to$ axiomatizations of theories in $\mathcal{L}_{\mathsf{PA}}$ constants $c_i \rightarrow$ variables v_i variables $x_i \rightarrow$ variables z_i $(\top)^* := \tau_{\mathsf{I}\Sigma_1}(u)$ $(S(c, x))^* := \sigma(y, z, u) \vee \tau_{\mathsf{I}\Sigma_1}(u)$ $(\psi(c,x) \wedge \delta(c,x))^* := (\psi(c,x))^* \vee (\delta(c,x))^*$ $(\Diamond \psi(c,x))^* := \tau_{\mathsf{I}\Sigma_1}(u) \vee (u = \mathsf{Con}_{(\psi(c,x))^*}(\top))$ $(\forall x \psi(c,x))^* := \exists z (\psi(c,x))^*$ $(\varphi(c, x) \vdash \psi(c, x))^* := \forall \theta, y, z \left(\Box_{\psi^*(y, z)} \theta \rightarrow \Box_{\varphi^*(y, z)} \theta \right)$

Arithmetical soundness

Theorem (Arithmetical soundness)

 $\mathsf{QRC}_1 \subseteq \{\varphi \vdash \psi \mid \textit{for any } (\cdot)^*, \textit{ we have} \}$ $\left[\sum_{1} \vdash \forall \theta, y, z \left(\Box_{\psi^{*}(y,z)}\theta \rightarrow \Box_{\varphi^{*}(y,z)}\theta\right)\right]$

By induction on the QRC₁-proof. Here is the case of $\Diamond \Diamond \varphi \vdash \Diamond \varphi$:

- Pick any $(\cdot)^*$, reason in I Σ_1 , and let θ, y, z be arbitrary
- Assume $\Box_{(\Diamond \varphi)^*} \theta$
- Then $\Box_{\tau}(\mathrm{Con}_{\varnothing^*}(\top) \to \theta)$
- By provable Σ_1 -completeness, $\Box_\tau(\mathrm{Con}_\tau(\mathrm{Con}_{\varphi^*}(\top)) \to \mathrm{Con}_{\varphi^*}(\top))$
- Then $\Box_{\tau}(\mathrm{Con}_{\tau}(\mathrm{Con}_{\varnothing^*}(\top)) \to \theta)$
- We conclude $\Box_{(\Diamond \Diamond \varphi)^*} \theta$

Arithmetical completeness

Conjecture (Arithmetical completeness)

 $\mathsf{QRC}_1 \supseteq \{\varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } \mathsf{I\Sigma}_1 \vdash (\varphi \vdash \psi)^* \}$

Solovay's completeness proof

Theorem (Solovay, 1976)

 $GL \supseteq {\varphi \in \mathcal{L}_{\Box} | for any (\cdot)[*], we have $PA \vdash (\varphi)^{*}$ }$

- Assume GL $\nvdash \varphi$
- Take a (finite, transitive, conversely well-founded, rooted) Kripke model M not satisfying φ at world 1 (the root)
- Embed M (with an extra world 0 pointing to the root) into the language of arithmetic, obtaining a formula λ_i representing each world i
- Define S^* as the disjunction of the λ_i such that $i \Vdash S$
- Prove a Truth Lemma stating that (for $i > 0$ and χ a subformula of φ) if $i \Vdash \chi$ then PA $\vdash \lambda_i \to \chi^\star$ and if $i \not \Vdash \chi$ then PA $\vdash \lambda_i \to \neg \chi^\star$

Solovay's completeness proof (cont'ed)

Theorem (Solovay, 1976)

$$
\mathsf{GL}\supseteq\{\varphi\in\mathcal{L}_\Box\mid\text{for any }(\cdot)^\star,\text{ we have } \mathsf{PA}\vdash(\varphi)^\star\}
$$

- Prove a Truth Lemma stating that (for $i > 0$ and χ a subformula of $\varphi)$ if $i \Vdash \chi$ then PA $\vdash \lambda_i \to \chi^\star$ and if $i \not \Vdash \chi$ then PA $\vdash \lambda_i \to \neg \chi^\star$
- Then $PA \vdash \lambda_1 \rightarrow \neg \varphi^*$
- Prove $\mathbb{N} \models \lambda_0$
- Prove PA $\vdash \lambda_0 \rightarrow \Diamond \lambda_1$.
- Then $PA \vdash \lambda_0 \rightarrow \Diamond(\neg \varphi^*)$
- Then $\mathbb{N} \models \neg \Box \varphi^*$
- Then PA $\nvdash \varphi^{\star}$

How to adapt Solovay's proof to $QRC₁$?

- Kripke completeness for $QRC₁$
- Counter models should be finite, transitive, irreflexive and rooted
- Find an appropriate embedding of such models in arithmetic, preserving the nice properties of the λ_i
- We think the relational properties of the models can be encoded with the same λ_i , while independently encoding information about the domains some other way

Relational models

Kripke models where:

- each world w is a first-order model with a finite domain
- each constant symbol c and relational symbol S has a denotation at each world
- \bullet there is a transitive relation R between worlds
- the domains are inclusive: if wRv, then domain(w) \subseteq domain(v)
- \bullet the constants have concordant interpretations: if wRv, then denotation_v (c) = denotation_w (c)
- we use w-assignments $g :$ Variables \rightarrow domain(w) to interpret variables
- we abuse notation and define $g(c) :=$ denotation $w(c)$ for all w -assignments g and constants c

Let g be a *w*-assignment.

alisiaction

 $\mathcal{M},$ w $\mathrel{\Vdash}^{\mathcal{B}}\mathcal{S}(t,u) \iff \langle \mathcal{g}(t), \mathcal{g}(u) \rangle \in \mathsf{denotation}_w(\mathcal{S})$

 $\mathcal{M},\textcolor{red}{w} \Vdash^{\textcolor{red}{\cal S}} \Diamond \varphi \iff$

there is a world v such that wRv and $\mathcal{M},$ $v\Vdash^{\mathcal{B}}\varphi$

 $\mathcal{M}, w \Vdash^g \forall x \varphi \iff$

for all *w-*assignments $h \sim_\mathsf{x} g$, we have $\mathcal{M},$ w $\Vdash^h \varphi$

Relational soundness and completeness

Theorem (Relational soundness)

If $\varphi \vdash \psi$, then for any model M, world w, and w-assignment g:

$$
\mathcal{M}, w\Vdash^g \varphi \implies \mathcal{M}, w\Vdash^g \psi.
$$

Theorem (Relational completeness)

If $\varphi \nvdash \psi$, then there is a finite model M, a world w, and a w-assignment g such that:

 $\mathcal{M}, w \Vdash^g \varphi$ and $\mathcal{M}, w \Vdash^g \psi$.

Since $QRC₁$ has the finite model property, it is decidable.

Proving relational completeness

- Given $\varphi \not\vdash \psi$, build a counter-model
- The standard is to use term models: each world is the set of formulas true at that world
- We also want to know which formulas are *not* true at given worlds
- Our worlds are pairs of "positive" (true) and "negative" (false) formulas:

$$
w = \langle w^+, w^- \rangle \qquad \text{e.g. } \langle \{\varphi\}, \{\psi\} \rangle
$$

• Worlds should be well-formed pairs though...

Well-formed pairs

Let Λ be a set of formulas.

- $\bullet\,$ $\mathsf{\Gamma}\vdash\delta$ is shorthand for $(\bigwedge_{\gamma\in\mathsf{\Gamma}}\gamma)\vdash\delta$
- A pair p is closed if every formula in p is closed
- \bullet A pair p is *consistent* if for every $\delta \in p^-$ we have $p^+ \not \vdash \delta$
- $\bullet\,$ A pair $\,p\,$ is Λ -*maximal* if for every $\varphi\in \Lambda,$ either $\varphi\in p^+$ or $\varphi\in p^-$
- A pair p is fully witnessed if for every formula $\forall x \varphi \in p^-$ there is a constant c such that $\varphi[x \leftarrow c] \in \rho^{-1}$
- A pair p is Λ-well-formed if it is closed, Λ-maximal, consistent and fully witnessed

Building a world from an incomplete pair

- Start with the closed consistent pair $p = \langle p^+, p^- \rangle$
- Let C be a finite set of constants containing the constants in p and some new constants
- Let Λ be the closure under (closed) subformulas of p , and such that if $\forall x \varphi \in \Lambda$, then for every $c \in C$ we have $\varphi[x \leftarrow c] \in \Lambda$
- Goal: end with a Λ -well-formed pair w containing p

Method

- $\bullet\,$ Some formulas in Λ are consequences of ρ^+ , and thus must be added to w^+ to preserve consistency
- We put all the other formulas of Λ in p^-

This Method works!

Lemma

If the number of new constants in C is the maximum \forall -depth of formulas in p, the Method produces a Λ-well-formed pair w containing p.

- $\bullet\,$ ω is consistent because $\varphi \in \omega^+$ if and only if $p^+ \vdash \varphi$
- w is fully-witnessed because...

$$
\forall x \varphi \in w^{-}
$$

$$
\Downarrow
$$

there is some new $c \in C$ s.t. c doesn't appear in $\forall x \varphi$

$$
\psi
$$

\n
$$
\rho^{+} \not\vdash \varphi[x \leftarrow c]
$$

\n
$$
\psi
$$

\n
$$
\varphi[x \leftarrow c] \in w^{-}
$$

Building a counter-model

- Start with $\varphi \not\vdash \psi$ (both closed)
- $\bullet\,$ Build a (well-formed!) world w s.t. $\varphi \in w^+$ and $\psi \in w^-$
- Let domain(w) be the set of constants C from that construction
- Let the denotation of relation symbols at w correspond to their membership in w^+
- \bullet If $\diamondsuit\chi\in\mathsf{w}^+$, create a new world v_χ seen from w by completing

$$
\langle \{\chi\}, \{\delta, \Diamond \delta \mid \Diamond \delta \in w^-\} \cup \{\Diamond \chi\} \rangle
$$

- Define the domain and the denotation at v_x like with w
- Repeat until all \diamond -formulas are witnessed

Putting it together

Lemma (Truth lemma)

Let M be the counter-model we just built. Then for any world w, w-assignment g, and formula $\chi^g \in \Lambda$:

$$
\mathcal{M}, w \Vdash^g \chi \iff \chi^g \in w^+,
$$

where χ^g is χ with every free variable x replaced by $g(x)$.

Theorem (Relational completeness)

If $\varphi \not\vdash \psi$, then there is a finite model M, a world w, and a w-assignment g such that:

$$
\mathcal{M}, w \Vdash^g \varphi \quad \text{and} \quad \mathcal{M}, w \Vdash^g \psi.
$$

In summary

 $QRC₁$:

- quantified, strictly positive provability logic
- sound w.r.t arithmetical semantics
- complete w.r.t arithmetical semantics? (work in progress)
- sound and complete w.r.t. relational semantics
- decidable

Thank you

ana de almeida gabriel @ ub . edu

Further Reading

A.A.B. and J.J. Joosten (2020) Quantified Reflection Calculus with one modality

Advances in Modal Logic 13

R. Goldblatt (2011)

Quantifiers, propositions and identity: admissible semantics for quantified modal and substructural logics Cambridge University Press

V.A. Vardanyan (1986)

Arithmetic complexity of predicate logics of provability and their fragments

Doklady Akad. Nauk SSSR 288(1), 11–14 (Russian) Soviet Mathematics Doklady 33, 569–572 (English)