000	0000	0000000	00000000	00

Quantified Reflection Calculus with one modality

Ana de Almeida Borges Joost J. Joosten

Universitat de Barcelona

Ghent-Leeds Virtual Logic Seminar October 1, 2020

In this talk we...

- Discuss known shortcomings of quantified provability logic
- Introduce QRC₁ as a candidate solution
- Explore some famous proofs
- State obtained results about QRC1
- Sketch a couple of new proofs

Background ●00		

Provability Logics

- Interpret □ as "is provable"
- Interpret ◊ as "is consistent"

Examples:

- GL is K4 + $\Box(\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$ (Löb's axiom)
- GLP is a polymodal version of GL, with [0], [1], ... as modalities
 - Decidability is PSPACE-complete
- RC is the strictly positive fragment of GLP, with statements of the form φ ⊢ ψ, where φ, ψ are in the language built from ⊤, p, ∧, (0), (1),...
 - E.g. $\langle 1 \rangle p \vdash \langle 0 \rangle p$
 - Decidability is in PTIME

Arithmetical realizations

It is possible to express Gödel's provability predicate in PA:

$$\mathsf{Prov}_{\mathsf{PA}}(\varphi) := \exists p \, \mathsf{Proof}_{\mathsf{PA}}(p, \varphi)$$

Let \mathcal{L}_{\Box} be the language of GL.

An arithmetical realization is any function $(\cdot)^*$ taking:

formulas in $\mathcal{L}_{\Box} \rightarrow$ sentences in \mathcal{L}_{PA} propositional variables \rightarrow arithmetical sentences boolean connectives \rightarrow boolean connectives $\square \rightarrow \mathsf{Prov}_{\mathsf{PA}}$

Background 00●		

Solovay's Theorem

Theorem (Solovay, 1976)

 Let
$$\varphi \in \mathcal{L}_{\Box}$$
. Then:

 $\mathsf{GL} \vdash \varphi$
 $\widehat{\varphi}$
 $\mathsf{PA} \vdash (\varphi)^*$ for any arithmetical realization $(\cdot)^*$

This can be written as:

$$\mathsf{GL} = \{ \varphi \in \mathcal{L}_{\Box} \mid \text{for any } (\cdot)^{\star}, \text{ we have } \mathsf{PA} \vdash (\varphi)^{\star} \}$$

Solovay for quantified modal logic?

Let $\mathcal{L}_{\Box,\forall}$ be the language of relational quantified modal logic:

 \top , relation symbols, boolean connectives, $\forall x$, and \Box Define arithmetical realizations (·)• for $\mathcal{L}_{\Box,\forall}$:

formulas in $\mathcal{L}_{\Box,\forall} \rightarrow$ formulas in $\mathcal{L}_{\mathsf{PA}}$

n-ary relation symbols \rightarrow arithmetical formulas with n free variables boolean connectives \rightarrow boolean connectives

$$\forall x \to \forall x$$

 $\Box \to \mathsf{Prov}_{\mathsf{PA}}$

Theorem (Vardanyan, 1986)

 $\{ closed \ \varphi \in \mathcal{L}_{\Box, \forall} \mid for \ any \ (\cdot)^{\bullet}, \ we \ have \ \mathsf{PA} \vdash (\varphi)^{\bullet} \}$

is Π^0_2 -complete. Thus it is not recursively axiomatizable.

Quantified modal logic ○●○○		

Artemov's Lemma

- Let $F \in \mathcal{L}_{\mathsf{PA}}$ be a formula
- Replace arithmetical symbols 0, +1, +, ×, = with predicates Z, S, A, M, E, obtaining {F} ∈ L_∀
- Go back to $\mathcal{L}_{\mathsf{PA}}$ with a realization $(\cdot)^{\bullet}$
- When are F and F^{\bullet} equivalent?
 - Under {*T*}• to get arithmetical axioms...
 - ... and under D^{\bullet} to get recursive A^{\bullet} and M^{\bullet}
 - By Tennenbaum's Theorem the model induced by $(\cdot)^{\bullet}$ is standard

$$D := \Diamond \top \land$$

$$\forall x (Z(x) \to \Box Z(x)) \land \forall x (\neg Z(x) \to \Box \neg Z(x)) \land$$

$$\cdots S \cdots A \cdots M \cdots E$$

 \mathcal{L}_{PA} \mathcal{L}_{\forall}

Quantified modal logic		

Artemov's Theorem

Theorem (Artemov, 1985)

$$\mathcal{A} := \{ \textit{closed } arphi \in \mathcal{L}_{\Box, orall} \mid \textit{for any } (\cdot)^{ullet}, \textit{ we have } \mathbb{N} \vDash (arphi)^{ullet} \}$$

is not arithmetical.

- By Tarski's Undefinability Theorem the class of true arithmetical sentences ${\cal V}$ is not arithmetical
- We provide a bijection ! between ${\mathcal V}$ and ${\mathcal A}$
- For $F \in \mathcal{L}_{\mathsf{PA}}$, let $F! := \{T\} \land D \to \{F\}$
- We see that F is true iff F! is always true
- (\Rightarrow) If F is true, pick any (·)• and see that $\{T\}^{\bullet} \land D^{\bullet} \to \{F\}^{\bullet}$ is true
- (⇐) If F! is always true, pick (·)• as the "normal" interpretation and see that {F}• - and hence F - are true

Escape to Vardanyan's Theorem?

Restrict $\mathcal{L}_{\Box,\forall}$ to the strictly positive fragment $\mathcal{L}_{\Diamond,\forall}$:

Terms ::= Variables | Constants

 $\mathcal{L}_{\Diamond,\forall} ::= \top \mid \text{relation symbols applied to Terms} \mid \varphi \land \varphi \mid \forall x \varphi \mid \Diamond \varphi$ The arithmetical realizations (·)* for $\mathcal{L}_{\Diamond,\forall}$ send:

formulas in $\mathcal{L}_{\Diamond,\forall} \to$ axiomatizations of theories in $\mathcal{L}_{\mathsf{PA}}$

Define a calculus QRC₁ with statements $\varphi \vdash \psi$ where:

$$\varphi, \psi \in \mathcal{L}_{\Diamond, \forall}$$

Prove arithmetical soundness and completeness for QRC₁:

$$\mathsf{QRC}_1 \stackrel{?}{=} \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } \mathsf{PA} \vdash (\varphi \vdash \psi)^* \}$$

	QRC1 ●000000	

QRC₁: Axioms and rules

$$\begin{array}{ccc} \varphi \vdash \top & \varphi \land \psi \vdash \varphi \\ \varphi \vdash \varphi & \varphi \land \psi \vdash \psi \\ \vdash \psi & \psi \vdash \chi & \frac{\varphi \vdash \psi & \varphi \vdash \chi}{\varphi \vdash \chi \land \chi} \end{array}$$

$$\Diamond \Diamond \varphi \vdash \Diamond \varphi \qquad \frac{\varphi \vdash \psi}{\Diamond \varphi \vdash \Diamond \psi}$$

$$\frac{\varphi \vdash \psi}{\varphi \vdash \forall \, x \, \psi}$$

$$\frac{\varphi[\mathsf{x} \leftarrow t] \vdash \psi}{\forall \mathsf{x} \, \varphi \vdash \psi}$$

$$x \notin \mathsf{fv} \varphi$$

t free for x in φ

$$\frac{\varphi \vdash \psi}{\varphi[x \leftarrow t] \vdash \psi[x \leftarrow t]}$$

t free for x in φ and ψ

$$\frac{\varphi[\textbf{x}\leftarrow \textbf{c}]\vdash\psi[\textbf{x}\leftarrow \textbf{c}]}{\varphi\vdash\psi}$$

 ${\boldsymbol c}$ not in φ nor ψ

 φ

		QRC ₁ ○●○○○○○	
Arithme	tical semantics		

The arithmetical realizations $(\cdot)^*$ for $\mathcal{L}_{\Diamond,\forall}$:

formulas in $\mathcal{L}_{\Diamond,\forall} \rightarrow$ axiomatizations of theories in \mathcal{L}_{PA} constants $c_i \rightarrow$ variables v_i variables $x_i \rightarrow$ variables z_i $(\top)^* := \tau_{1\Sigma_1}(u)$ $(S(c,x))^* := \sigma(y,z,u) \vee \tau_{1\Sigma_1}(u)$ $(\psi(c,x) \wedge \delta(c,x))^* := (\psi(c,x))^* \vee (\delta(c,x))^*$ $(\Diamond \psi(c, x))^* := \tau_{\mathsf{I}\Sigma_1}(u) \lor (u = \mathsf{Con}_{(\psi(c, x))^*}(\top))$ $(\forall x \psi(c, x))^* := \exists z (\psi(c, x))^*$ $(\varphi(c,x) \vdash \psi(c,x))^* := \forall \theta, y, z (\Box_{\psi^*(y,z)} \theta \to \Box_{\varphi^*(y,z)} \theta)$

Arithmetical soundness

Theorem (Arithmetical soundness)

$$\mathsf{QRC}_1 \subseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have} \\ \mathsf{I}\Sigma_1 \vdash \forall \, \theta, y, z \, (\Box_{\psi^*(y,z)} \theta \to \Box_{\varphi^*(y,z)} \theta) \}$$

By induction on the QRC₁-proof. Here is the case of $\Diamond \Diamond \varphi \vdash \Diamond \varphi$:

- Pick any $(\cdot)^*$, reason in I Σ_1 , and let heta, y, z be arbitrary
- Assume $\Box_{(\Diamond \varphi)^*} \theta$
- Then $\Box_{\tau}(\mathsf{Con}_{\varphi^*}(\top) \to \theta)$
- By provable Σ_1 -completeness, $\Box_{\tau}(\mathsf{Con}_{\tau}(\mathsf{Con}_{\varphi^*}(\top)) \to \mathsf{Con}_{\varphi^*}(\top))$
- Then $\Box_{\tau}(\mathsf{Con}_{\tau}(\mathsf{Con}_{\varphi^*}(\top)) \to \theta)$
- We conclude $\Box_{(\Diamond \Diamond \varphi)^*} \theta$

	QRC1 000●000	

Arithmetical completeness

Conjecture (Arithmetical completeness)

 $\mathsf{QRC}_1 \supseteq \{ \varphi \vdash \psi \mid \text{for any } (\cdot)^*, \text{ we have } \mathsf{I}\Sigma_1 \vdash (\varphi \vdash \psi)^* \}$

Solovay's completeness proof

Theorem (Solovay, 1976)

 $\mathsf{GL} \supseteq \{ \varphi \in \mathcal{L}_{\Box} \mid \textit{for any} (\cdot)^*, \textit{ we have } \mathsf{PA} \vdash (\varphi)^* \}$

- Assume $\mathsf{GL} \not\vdash \varphi$
- Take a (finite, transitive, conversely well-founded, rooted) Kripke model \mathcal{M} not satisfying φ at world 1 (the root)
- Embed *M* (with an extra world 0 pointing to the root) into the language of arithmetic, obtaining a formula λ_i representing each world *i*
- Define S^* as the disjunction of the λ_i such that $i \Vdash S$
- Prove a Truth Lemma stating that (for i > 0 and χ a subformula of φ) if $i \Vdash \chi$ then $\mathsf{PA} \vdash \lambda_i \to \chi^*$ and if $i \nvDash \chi$ then $\mathsf{PA} \vdash \lambda_i \to \neg \chi^*$

	QRC1 00000●0	

Solovay's completeness proof (cont'ed)

Theorem (Solovay, 1976)

$$\mathsf{GL} \supseteq \{ \varphi \in \mathcal{L}_{\Box} \mid \textit{for any} (\cdot)^{\star}, \textit{ we have } \mathsf{PA} \vdash (\varphi)^{\star} \}$$

• ...

- Prove a Truth Lemma stating that (for *i* > 0 and *χ* a subformula of *φ*) if *i* ⊨ *χ* then PA ⊢ λ_i → *χ*^{*} and if *i* ⊭ *χ* then PA ⊢ λ_i → ¬*χ*^{*}
- Then $\mathsf{PA} \vdash \lambda_1 \to \neg \varphi^*$
- Prove $\mathbb{N} \vDash \lambda_0$
- Prove $\mathsf{PA} \vdash \lambda_0 \to \Diamond \lambda_1$.
- Then $\mathsf{PA} \vdash \lambda_0 \rightarrow \Diamond(\neg \varphi^*)$
- Then $\mathbb{N} \vDash \neg \Box \varphi^*$
- Then PA $\not\vdash \varphi^*$

	QRC ₁ 000000	

How to adapt Solovay's proof to QRC₁?

- Kripke completeness for QRC1
- Counter models should be finite, transitive, irreflexive and rooted
- Find an appropriate embedding of such models in arithmetic, preserving the nice properties of the λ_i
- We think the relational properties of the models can be encoded with the same λ_i, while independently encoding information about the domains some other way

		Relational semantics •0000000	
Relation	al models		

Kripke models where:

- each world w is a first-order model with a finite domain
- each constant symbol *c* and relational symbol *S* has a denotation at each world
- there is a transitive relation R between worlds
- the domains are inclusive: if wRv, then domain $(w) \subseteq domain(v)$
- the constants have concordant interpretations: if wRv, then denotation_v(c) = denotation_w(c)
- we use *w*-assignments g : Variables \rightarrow domain(*w*) to interpret variables
- we abuse notation and define g(c) := denotation_w(c) for all w-assignments g and constants c

		Relational semantics 00000000	
Satisfact	ion		

Let g be a w-assignment.

 $\mathcal{M}, w \Vdash^{g} S(t, u) \iff \langle g(t), g(u) \rangle \in \mathsf{denotation}_{w}(S)$

 $\mathcal{M}, \mathbf{w}\Vdash^{\mathbf{g}} \Diamond \varphi \iff$

there is a world v such that wRv and $\mathcal{M}, v \Vdash^{g} \varphi$

 $\mathcal{M}, w \Vdash^g \forall x \varphi \iff$ for all *w*-assignments $h \sim_x g$, we have $\mathcal{M}, w \Vdash^h \varphi$

	Relational semantics	

Relational soundness and completeness

Theorem (Relational soundness)

If $\varphi \vdash \psi$, then for any model \mathcal{M} , world w, and w-assignment g:

$$\mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \varphi \implies \mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \psi.$$

Theorem (Relational completeness)

If $\varphi \not\vdash \psi$, then there is a finite model \mathcal{M} , a world w, and a w-assignment g such that:

 $\mathcal{M}, w \Vdash^{g} \varphi$ and $\mathcal{M}, w \nvDash^{g} \psi$.

Since QRC_1 has the finite model property, it is decidable.

Proving relational completeness

- Given $\varphi \not\vdash \psi$, build a counter-model
- The standard is to use term models: each world is the set of formulas true at that world
- We also want to know which formulas are *not* true at given worlds
- Our worlds are pairs of "positive" (true) and "negative" (false) formulas:

$$w = \langle w^+, w^- \rangle$$
 e.g. $\langle \{\varphi\}, \{\psi\} \rangle$

• Worlds should be *well-formed* pairs though...

	Relational semantics	

Well-formed pairs

Let Λ be a set of formulas.

- $\Gamma \vdash \delta$ is shorthand for $(\bigwedge_{\gamma \in \Gamma} \gamma) \vdash \delta$
- A pair *p* is *closed* if every formula in *p* is closed
- A pair *p* is *consistent* if for every $\delta \in p^-$ we have $p^+ \not\vdash \delta$
- A pair p is Λ -maximal if for every $\varphi \in \Lambda$, either $\varphi \in p^+$ or $\varphi \in p^-$
- A pair p is *fully witnessed* if for every formula ∀x φ ∈ p[−] there is a constant c such that φ[x←c] ∈ p[−]
- A pair *p* is Λ-*well-formed* if it is closed, Λ-maximal, consistent and fully witnessed

	Relational semantics	
	000000000	

Building a world from an incomplete pair

- Start with the closed consistent pair $p=\langle p^+,p^angle$
- Let C be a finite set of constants containing the constants in p and some new constants
- Let Λ be the closure under (closed) subformulas of p, and such that if $\forall x \varphi \in \Lambda$, then for every $c \in C$ we have $\varphi[x \leftarrow c] \in \Lambda$
- Goal: end with a Λ -well-formed pair w containing p

Method

- Some formulas in Λ are consequences of $p^+,$ and thus must be added to w^+ to preserve consistency
- We put all the other formulas of Λ in p^-

This Method works!

Lemma

If the number of new constants in C is the maximum \forall -depth of formulas in p, the Method produces a Λ -well-formed pair w containing p.

- *w* is consistent because $\varphi \in w^+$ if and only if $p^+ \vdash \varphi$
- w is fully-witnessed because...

 $\forall x \varphi \in w^-$

there is some new $c \in C$ s.t. c doesn't appear in $\forall x \varphi$

$$\begin{array}{c} \downarrow \\ p^+ \not\vdash \varphi[x \leftarrow c] \\ \downarrow \\ \varphi[x \leftarrow c] \in w^- \end{array}$$

			Relational semantics	
Building a	a counter-mode	I		

- Start with $\varphi \not\vdash \psi$ (both closed)
- Build a (well-formed!) world w s.t. $\varphi \in w^+$ and $\psi \in w^-$
- Let domain(w) be the set of constants C from that construction
- Let the denotation of relation symbols at w correspond to their membership in w^+
- If $\Diamond \chi \in w^+$, create a new world v_{χ} seen from w by completing

$$\langle \{\chi\}, \{\delta, \Diamond \delta \mid \Diamond \delta \in w^-\} \cup \{\Diamond \chi\} \rangle$$

- Define the domain and the denotation at v_{χ} like with w
- Repeat until all ◊-formulas are witnessed

	Relational semantics 00000000●	

Putting it together

Lemma (Truth lemma)

Let \mathcal{M} be the counter-model we just built. Then for any world w, w-assignment g, and formula $\chi^g \in \Lambda$:

$$\mathcal{M}, \mathbf{w} \Vdash^{\mathbf{g}} \chi \iff \chi^{\mathbf{g}} \in \mathbf{w}^+,$$

where χ^g is χ with every free variable x replaced by g(x).

Theorem (Relational completeness)

If $\varphi \not\vdash \psi$, then there is a finite model M, a world w, and a w-assignment g such that:

$$\mathcal{M}, w \Vdash^{g} \varphi$$
 and $\mathcal{M}, w \nvDash^{g} \psi$.

		Final remarks ●○

In summary

 QRC_1 :

- quantified, strictly positive provability logic
- sound w.r.t arithmetical semantics
- complete w.r.t arithmetical semantics? (work in progress)
- sound and complete w.r.t. relational semantics
- decidable

		00

Thank you

ana de almeida gabriel @ ub . edu

			Final remarks 00
Further F	Reading		

A.A.B. and J.J. Joosten (2020) Quantified Reflection Calculus with one modality *Advances in Modal Logic* 13

R. Goldblatt (2011)

Quantifiers, propositions and identity: admissible semantics for quantified modal and substructural logics Cambridge University Press

🔋 V.A. Vardanyan (1986)

Arithmetic complexity of predicate logics of provability and their fragments

Doklady Akad. Nauk SSSR 288(1), 11–14 (Russian) Soviet Mathematics Doklady 33, 569–572 (English)