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Background on Regularity Lemmas

Szemerédi’'s Regularity Lemma (1976):

Given € > 0, any finite graph has an equitable partition of size
n < exp@(1/<)(1), in which at least (1 — €)n? pairs are e-regular.

Malliaris-Shelah (2013): “Szemerédi regularity for stable graphs”

Given k > 1 and € > 0, any sufficiently large finite “k-stable” graph has
an equitable partition of size (1/¢)%% ("), in which all pairs are e-regular
with edge densities within ¢ of 0 or 1.

Green (2005): “Arithmetic regularity for vector spaces over F»”
Suppose G is a finite abelian group of exponent 2 and A C G. Then for
any ¢ > 0, there is a subgroup H of index n < expﬁ’om(1) such that Ais
“Fourier-uniform” in all but en cosets of H.
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Terry & Wolf: Stable arithmetic regularity

A subset A of a group G is k-stable if there do not exist
ay,...,ak, by,...,bx € Gsuchthat g;b; € Aifand only if i < j.

Theorem (Terry-Wolf 2017/2018)
Suppose G is a finite abelian group and A C G is k-stable. Then, for
any € > 0, there is a subgroup H < G of index exp((1/¢)%(1)) such that
forany x € G,

|xH N A] < €|H| or [ xH\A| < €|H|.

SoifD=J{xH: |xHNA| > ¢|H|} then |AsD| < €G].

The proof is modeled after Malliaris-Shelah and, in particular, the
correspondence between the order property and R(—, ¢, 2)-rank. They
also use tools from discrete Fourier analysis.
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Background: Stable arithmetic regularity

Theorem (C.-Pillay-Terry 2017)

Suppose G is a finite group and A C G is k-stable. Then, for any ¢ > 0,
there is a normal subgroup H < G of index Ok (1), and a set D which
is a union of cosets of H, such that |AAD| < €|H|.

Note: for any x € G, either xHNAC AaD or xH\AC AAaD.
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Compare & Contrast

Summary

e TW: A k-stable set in a finite abelian group G is ¢| G|-approximated
by a union of cosets of a subgroup H of index exp((1/¢)%(1).

e CPT: A k-stable set in a finite group G is ¢|H|-approximated by a
union of cosets of a normal subgroup H of index Oy .(1).

Questions

(1) Can the bound in TW be improved to (1/¢)%(1)?

(2) Can ¢|/G|in TW be improved to ¢|H| with comparable bounds?
(3) What is an explicit bound for Oy (1) in CPT?

Goal: A new proof of CPT, which answers these three questions.
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Main Result

(1) Can the bound in TW be improved to (1/¢)(1)?
(2) Can ¢|G|in TW be improved to ¢|H| with comparable bounds?
(3) What is an explicit bound for Ok (1) in CPT?

Theorem (C. 2020)
Suppose G is a finite group and A C G is k-stable. Then, for any ¢ > 0,

there is a subgroup H < G of index (1/¢)%(1), and a set D which is a
union of left cosets of H, such that |AAD| < €|H|.

e This gives positive answers to (1) and (2).

e For (3), a variation of the argument can be use to obtain a normal
subgroup of index expPk( (1 /¢).
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Pseudofinite Setting

Let G be an ultraproduct of finite groups, and let 1 be the normalized
pseudofinite counting measure on internal subsets of G.

Fix an internal set A C G, which is k-stable for some k > 1.

Theorem (Pseudofinite stable arithmetic regularity, CPT)
There is an internal finite-index subgroup H < G such that, for any
x € G, either u(xHN A) = 0 or u(xH\A) = 0.

Remarks
e The previous theorem (and Los$) yields the stable arithmetic
regularity lemma, but with no explicit bounds.
e The proof in CPT uses local stability theory (Hrushovski-Pillay),
including definability of types, symmetry of forking, finite
equivalence relation theorem, dynamics of generic types.
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Proof Sketch
Givene > 0, let S.(A) = {x € G: u(Ax 2 A) < €} (“e-stabilizer” of A).
S(A)" = S.(A) and S.(A)? C Sy (A). So Sy(A) is a subgroup of G.

VC-theory (Haussler; Komlos-Pach-Woeginger)
(a) Fore > 0, G can be covered by (30/¢)k~1 right translates of S.(A).
(b) If X C Gisinternal and ¢-stable, and u(X) > 0, then G can be

covered by at most 8(¢ — 1)u(X)? right translates of X.
Suppose we know: H := Sy(A) = S.(A) for some ¢ > 0.
By VC(a), H has finite index (at most (30/¢)k—").

Exercise: H is internal.

8/13



Regularity
Assumption: H := Sy(A) = S.(A) for some € > 0.

Proposition
For any g € G, either u(gH N A) = 0 or pu(gH\A) = 0.

Proof.
Suppose we have g € G such that u(gH N A) > 0 and p(gH\A) > 0.

SetB=Hng'Aand C= H\g'A.

Then B is k-stable and n(B) > 0. So G is covered by finitely many
right translates of B by VC(b).

Since u(C) > 0, there is some x € G such that u(Bx N C) > 0.
Rewrite: Bx N C = Hx N HN g1 (Ax\A).
So x € H and u(Ax\A) > 0. This contradicts H = Sy(A). O
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The Stabilizer

Theorem
So(A) = Sc(A) for some e > 0.

Proof. Suppose not.

Let ¢(x; y) be the formula x € Ay; 2 Ay., where y = (y1, y2).
Then ¢(x; y) is k,-stable, where k, = 241,

Given b € G x G, let X(b) = ¢(G; b).

For all e > 0, there is some b such that 0 < (X (b)) <e.
Pick by such that (X (b)) > 0.

Pick ¢ such that 0 < p(X(c)) < u(X(b1)).

There is some g € G such that n(X(by) N X(c)g) > 0.

Note that X(c)g = X(b») for some by € G x G.

We have 1(X(b1) N X(b2)) > 0 and (X (b1) N =X(b2)) > 0.

10/13



Stabilizer Proof (continued)

We have 1(X(b1) N X(b2)) > 0 and (X (br) N =X(b2)) > 0.
Pick ¢’ such that

0 < u(X(@) < min {u(X(5r) 1 X(B2)) . (X(b1) N ~X(b2) |

Find bz such that the following sets have positive measure:

as € X(by) N X(b2) N X(bs3)
a» € X(by) N X(bz) N —X(bs)
ay € X(by) N —=X(b2) N =X(bs)

Then a; € X(by) (i.e., ¢(a;, by) holds) if and only if i > j.

Construct by, .. ., by, violating k*-stability of ¢(x; y).
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Finitization

Theorem (pseudofinite)

If G is a pseudofinite group and A C G is internal and stable, then
So(A) = S.(A) for some e > 0.

Theorem (finite)

Suppose G is a finite group and A C G is k-stable. For any function
f:(0,1) — (0,1) ande > 0, there is § = (¢, f, k) < e andn € (0, ¢€)
such that S, (A) C Sg(,))(A).
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Finitization

Theorem (finite)

Suppose G is a finite group and A C G is k-stable. For any function
f: (0,1) — (0,1) ande > 0, there is § = d(e, f, k) < e andn € (J,¢)
such that §,(A) C Sy, (A).

If f(n) < 3, then H = S,(A) is a subgroup of index < (30/n)~.
Let f(x) = x*. Forany g € G, |gH N A| < L|H| or |gH\A| < |H]|.
Direct proof: § = hk"(¢), where h(x) = xf(1x)?/8k*.

S0 6 > %) and m < (30/n)k1 < (30/6)K 1 < (1/€)O(1),

Choosing f(x) = exp(-x¥), one can replace H by (s gHg™". But this
pushes the bound on the index to exp®((1 /¢).
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