The Topological μ -Calculus

David Fernández-Duque

with Alexandru Baltag and Nick Bezhanishvili

Ghent University and ILLC, Amsterdam

Ghent-Leeds Logic Seminar 17 February 2021

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Modal language \mathcal{L}_{\Diamond} :

$$p \mid \perp \mid \rightarrow \mid \Diamond \varphi$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

```
Modal language \mathcal{L}_{\Diamond}:
```

 $p \mid \perp \mid \rightarrow \mid \Diamond \varphi$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Modal language \mathcal{L}_{\Diamond} :

 $p \mid \perp \mid \rightarrow \mid \Diamond \varphi$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\triangleright \neg \varphi := \varphi \to \bot$$

Modal language \mathcal{L}_{\Diamond} :

 $p \mid \perp \mid \rightarrow \mid \Diamond \varphi$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\blacktriangleright \neg \varphi := \varphi \to \bot$$

$$\blacktriangleright \varphi \lor \psi := \neg \varphi \to \psi$$

Modal language \mathcal{L}_{\Diamond} :

 $p \mid \perp \mid \rightarrow \mid \Diamond \varphi$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\blacktriangleright \neg \varphi := \varphi \to \bot$$

$$\blacktriangleright \ \varphi \lor \psi := \neg \varphi \to \psi$$

$$\blacktriangleright \Box \varphi := \neg \Diamond \neg \varphi$$

Kripke semantics:

Frames: Pairs $\mathcal{F} = (W, R)$ where $R \subseteq W \times W$

Kripke semantics:

Frames: Pairs $\mathcal{F} = (W, R)$ where $R \subseteq W \times W$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Valuations: $\llbracket \cdot \rrbracket : \mathcal{L}_{\Diamond} \to 2^{W}$ • $\llbracket \bot \rrbracket = \varnothing$ • $\llbracket \varphi \to \psi \rrbracket = (W \setminus \llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket$ • $\llbracket \Diamond \varphi \rrbracket = R^{-1} \llbracket \varphi \rrbracket$

Kripke semantics:

Frames: Pairs $\mathcal{F} = (W, R)$ where $R \subseteq W \times W$

Valuations:
$$\llbracket \cdot \rrbracket : \mathcal{L}_{\Diamond} \to 2^{W}$$

 $\blacktriangleright \llbracket \bot \rrbracket = \emptyset$
 $\blacktriangleright \llbracket \varphi \to \psi \rrbracket = (W \setminus \llbracket \varphi \rrbracket) \cup \llbracket \psi \rrbracket$
 $\blacktriangleright \llbracket \Diamond \varphi \rrbracket = R^{-1} \llbracket \varphi \rrbracket$
 $\omega \in \llbracket \Diamond \varphi \rrbracket \in \neg \exists v$
 $(vRv \& v \in \llbracket \varphi \rrbracket)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Models: Triples $\mathcal{M} = (\underline{W}, R, \llbracket \cdot \rrbracket)$

A Kripke model

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Axiomatization for modal logic

The basic modal logic is called K.

Axioms

- All classical tautologies
- $\blacktriangleright \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \quad \clubsuit \quad \checkmark$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Axiomatization for modal logic

The basic modal logic is called K.

Axioms

- All classical tautologies
- $\blacktriangleright \ \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Rules

Axiomatization for modal logic

The basic modal logic is called K.

Axioms

- All classical tautologies
- $\blacktriangleright \ \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$

Rules

Theorem

A formula is valid over the class of Kripke models iff it is derivable in K.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Canonical model: Mc = (Wc, Rc, I. J.) Proof (Completeness) Wc= set of "theories" = maximal consistent sets of formulas $TR_{c}S: \forall q (q e S => \Diamond q e T)$ [p] = {TeWc: peT}

Proof (Completeness)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

We may extend K with other axioms.

We may extend K with other axioms.

Reflexivity of R

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

We may extend K with other axioms.

• Axiom T:
$$\Box \varphi \rightarrow \varphi$$

Reflexivity of R

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

We may extend K with other axioms.

• Axiom T:
$$\Box \varphi \rightarrow \varphi$$

Reflexivity of R

Transitivity of R

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

We may extend K with other axioms.

• Axiom T:
$$\Box \varphi \rightarrow \varphi$$
 Reflexivity of R

• Axiom 4: $\Box \varphi \rightarrow \Box \Box \varphi$

Transitivity of R

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Löb's axiom: $\Box(\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$

We may extend K with other axioms.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

We may extend K with other axioms.

Definition

An extension Λ of K (also called a **normal logic**) is **canonical** if its canonical model is based on a Λ -frame.

(日) (日) (日) (日) (日) (日) (日)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

The μ -calculus

Language \mathcal{L}_{μ} : Add expressions $(\mu p.\varphi(p)$ to the modal language, where p appears only **positively** in φ .

The μ -calculus

Language \mathcal{L}_{μ} :

Add expressions $\mu p.\varphi(p)$ to the modal language, where *p* appears only **positively** in φ .

• $\llbracket \mu p.\varphi(p) \rrbracket$ is the **least fixed point** of $X \mapsto \llbracket \varphi(X) \rrbracket$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

The μ -calculus

Language \mathcal{L}_{μ} :

Add expressions $\mu p.\varphi(p)$ to the modal language, where *p* appears only **positively** in φ .

• $\llbracket \mu p.\varphi(p) \rrbracket$ is the **least fixed point** of $X \mapsto \llbracket \varphi(X) \rrbracket$.

•
$$\nu p.\varphi(p) := \neg \mu p.\neg \varphi(\neg p)$$
 is the greatest fixed point of $X \mapsto [\![\varphi(X)]\!]$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Example: Transitive closure

Define $\Diamond^* \varphi := \mu p.(\varphi \lor \Diamond p).$

Least fixed point of monotone operators

 $F: 2^{\underbrace{W}} \to 2^{\underbrace{W}}$ is **monotone** if whenever $A \subseteq B \subseteq W$, it follows that $F(A) \subseteq F(B)$.

Least fixed point of monotone operators

 $F: 2^W \to 2^W$ is **monotone** if whenever $A \subseteq B \notin W$, it follows that $F(A) \subseteq F(B)$.

Theorem

Every monotone operator has a least fixed point.

Least fixed point of monotone operators

 $F: 2^W \to 2^W$ is **monotone** if whenever $A \subseteq B \subseteq W$, it follows that $F(A) \subseteq F(B)$.

Theorem Every monotone operator has a least fixed point.

Lemma

If p appears positively in $\varphi(p)$, then $X \mapsto \llbracket \varphi(X) \rrbracket$ is a monotone operator.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(Topological) closure semantics of modal logic

If $\mathcal{X} = (X, \mathcal{T})$ is a topological <u>space</u>, we may also define

 $\llbracket \Diamond \varphi \rrbracket := \boldsymbol{c} \llbracket \varphi \rrbracket.$

$$\begin{bmatrix} I \end{bmatrix} = \phi$$

$$\begin{bmatrix} \varphi \\ \neg \psi \end{bmatrix} = (X \cdot [\varphi]) \cup \begin{bmatrix} \psi \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(Topological) closure semantics of modal logic

If $\mathcal{X} = (X, \mathcal{T})$ is a topological space, we may also define

$$[\varphi] := c \llbracket \varphi \rrbracket$$
.
 $\int c \mathsf{losure}$

Recall that $\Box := \neg \Diamond \neg$. Then,

$$\llbracket \varphi \rrbracket = i \llbracket \varphi \rrbracket.$$

(Topological) closure semantics of modal logic

If $\mathcal{X} = (X, \mathcal{T})$ is a topological space, we may also define

 $\llbracket \Diamond \varphi \rrbracket := \mathbf{c} \llbracket \varphi \rrbracket.$

Recall that $\Box := \neg \Diamond \neg$. Then,

$$\llbracket \varphi \rrbracket = i \llbracket \varphi \rrbracket.$$
Theorem
The logic
$$\begin{bmatrix} 1 & \text{arski} & \neg & | & q \leq l & \neg \end{bmatrix} \\ S4 := K + 4 + T \end{bmatrix}$$

is sound and complete for the class of **closure spaces** (topological spaces equipped with the closure operator).

Cantor derivative semantics

If X is a topological space and $A \subseteq X$, define the **Cantor** derivative or set of limit points of A by

$$dA = \{x \in X : x \in c(A \setminus \{x\})\}.$$

Cantor derivative semantics

If X is a topological space and $A \subseteq X$, define the **Cantor** derivative or set of limit points of A by

$$dA = \{x \in X : x \in c(A \setminus \{x\})\}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

d-Semantics: $[\diamond \varphi] := d [\varphi]$.
Cantor derivative semantics

If X is a topological space and $A \subseteq X$, define the **Cantor** derivative or set of limit points of A by

$$dA = \{x \in X : x \in c(A \setminus \{x\})\}.$$

d-Semantics: $[\![\Diamond \varphi]\!] := d [\![\varphi]\!].$ Weak transitivity axiom: $\varphi \land \Box \varphi \to \Box \Box \varphi$.

Cantor derivative semantics

If X is a topological space and $A \subseteq X$, define the **Cantor** derivative or set of limit points of A by

$$dA = \{x \in X : x \in c(A \setminus \{x\})\}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

d-Semantics: $[\diamond \varphi] := d [\varphi]$.

Weak transitivity axiom: $\varphi \land \Box \varphi \rightarrow \Box \Box \varphi$.

Topological interior: Definable by $\Box \varphi := \varphi \land \Box \varphi$.

Cantor derivative semantics

If X is a topological space and $A \subseteq X$, define the **Cantor** derivative or set of limit points of A by

$$dA = \{x \in X : x \in c(A \setminus \{x\})\}.$$

d-Semantics: $[\Diamond \varphi] := \mathcal{Q} [\varphi]$.

Weak transitivity axiom: $\varphi \land \Box \varphi \rightarrow \Box \Box \varphi$. Topological interior: Definable by $\Box \varphi := \varphi \land \Box \varphi$.

Theorem The logic

wK4 := (K) + w4

is sound and complete for the class of topological spaces.

◆ロ▶★舂▶★≧▶★≧▶ 差 のなぐ

Kripke semantics of wK4

Kripke semantics of wK4

A relation $\Box \subseteq W \times W$ is **weakly transitive** if $T \Box S \Box U$ implies that $T \sqsubseteq U$.

Theorem

The logic wK4 is sound and complete for the class of weakly transitive frames. Moreover, wK4 is canonical.

Unifying Kripke and topological semantics

Definition A derivative space is a pair (X, d) where X is a set and $d: 2^{X} \to 2^{X} \text{ satisfies}$ $d \otimes = \emptyset$ $d (A \cup B) = dA \cup dB$ $d dA \subseteq dA \cup A$ $A \subseteq B$ $B = A \cup B$ $d(B) = d(A) \cup d(B) \ge d(A)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●○○◆

Unifying Kripke and topological semantics

Definition A **derivative space** is a pair (X, d) where X is a set and $d: 2^X \rightarrow 2^X$ satisfies

► **d**Ø = Ø

$$\blacktriangleright d(A \cup B) = \underline{dA \cup dB}$$

 $\blacktriangleright ddA \subseteq dA \cup A$

Examples:

If X is a topological space and d its Cantor derivative, (X, d) is a derivative space.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Unifying Kripke and topological semantics

Examples:

- If X is a topological space and d its Cantor derivative, (X, d) is a derivative space.
- ▶ If (W, \Box) is a wK4 frame, define $d_{\Box}A := \Box^{-1}(A)$. Then, (W, d_{\Box}) is a derivative space.

The derivational μ -calculus

If $\mathcal{X} = (X, d)$ is a derivative space, a valuation $\llbracket \cdot \rrbracket$ on \mathcal{X} is defined by setting $\llbracket \Diamond \varphi \rrbracket := d \llbracket \varphi \rrbracket$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The derivational μ -calculus

If $\mathcal{X} = (X, d)$ is a derivative space, a valuation $\llbracket \cdot \rrbracket$ on \mathcal{X} is defined by setting $\llbracket \Diamond \varphi \rrbracket := d \llbracket \varphi \rrbracket$.

Fact: If $\underline{\rho}$ is positive on $\underline{\varphi}(\underline{\rho})$, then $A \mapsto \llbracket \varphi(A) \rrbracket$ is a monotone operator.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The derivational μ -calculus

If $\mathcal{X} = (X, d)$ is a derivative space, a valuation $\llbracket \cdot \rrbracket$ on \mathcal{X} is defined by setting $\llbracket \Diamond \varphi \rrbracket := d \llbracket \varphi \rrbracket$.

Fact: If p is positive on $\varphi(p)$, then $A \mapsto [\![\varphi(A)]\!]$ is a monotone operator.

Hence the μ -calculus extends to derivative spaces by letting $\llbracket \mu p.\varphi(p) \rrbracket$ be the least fixed point of $A \mapsto \llbracket \varphi(A) \rrbracket$.

(日) (日) (日) (日) (日) (日) (日)

Define

$$\Diamond^{\infty}\{\varphi_{1},\ldots,\varphi_{n}\}:=\nu p.\bigwedge\Diamond(p\wedge\varphi_{i}).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Define

$$\Diamond^{\infty}\{\varphi_1,\ldots,\varphi_n\}:=\nu p.\bigwedge \Diamond(p\land\varphi_i).$$

One can check that $[\langle \phi^{\infty} \{ \varphi_1, \dots, \varphi_n \}]]$ is the largest subspace in which every $[\varphi_i]$ is dense.

Define

$$\Diamond^{\infty}\{\varphi_{1},\ldots,\varphi_{n}\}:=\nu\boldsymbol{p}.\bigwedge\Diamond(\boldsymbol{p}\wedge\varphi_{i}).$$

One can check that $[\![\Diamond^{\infty} \{\varphi_1, \dots, \varphi_n\}]\!]$ is the largest subspace in which every $[\![\varphi_i]\!]$ is dense.

Theorem (Dawar and Otto 2009)

Every formula of the μ -calculus is equivalent to a formula in $\mathcal{L}_{\Diamond \Diamond \infty}$ over the class of T_D spaces: derivative spaces validating

Define

$$\checkmark \diamond^{\infty} \{\varphi_1, \ldots, \varphi_n\} := \nu p. \bigwedge \Diamond (p \land \varphi_i).$$

One can check that $[\![\Diamond^{\infty} \{\varphi_1, \dots, \varphi_n\}]\!]$ is the largest subspace in which every $[\![\varphi_i]\!]$ is dense.

Theorem (Dawar and Otto 2009)

Every formula of the μ -calculus is equivalent to a formula in $\mathcal{L}_{\Diamond\Diamond\infty}$ over the class of T_D spaces: derivative spaces validating

 $ddA \subseteq dA$.

Theorem (Baltag, Bezhanishvili, F-D) The language $\mathcal{L}_{\Diamond\Diamond\infty}$ is not expressively complete over T_0 spaces.

Axiomatizing the μ -calculus

If Λ is a normal logic, define μ - Λ by adding

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$\varphi(\mathbf{p}) \to \varphi(\mu \mathbf{p}.\varphi(\mathbf{p}))$$

$$\varphi(\psi) \to \psi$$

$$\overline{\mu \mathbf{p}.\varphi(\mathbf{p}) \to \psi}$$

.

Axiomatizing the μ -calculus

If Λ is a normal logic, define $\mu\text{-}\Lambda$ by adding

$$\varphi(\mathbf{p}) \to \varphi(\mu \mathbf{p}.\varphi(\mathbf{p}))$$

$$\frac{\varphi(\psi) \to \psi}{\mu \mathbf{p}.\varphi(\mathbf{p}) \to \psi}$$

Theorem (Walukiewicz, 2000)

 $\mu\text{-K}$ is sound and complete for the class of Kripke frames.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Axiomatizing the μ -calculus

If Λ is a normal logic, define μ - Λ by adding

$$\varphi(\boldsymbol{p}) \to \varphi(\mu \boldsymbol{p}.\varphi(\boldsymbol{p}))$$

$$\frac{\varphi(\psi) \to \psi}{\mu \boldsymbol{p}.\varphi(\boldsymbol{p}) \to \psi}$$

Theorem (Walukiewicz, 2000) μ -K is sound and complete for the class of Kripke frames.

Theorem (Goldblatt, Hodkinson 2018) μ -S4 is <u>sound and complete</u> for the class of finite closure spaces, and for any dense-in-itself metric space.

Let $\mathcal{M}_c = (W_c, \Box_c, \llbracket \cdot \rrbracket_c)$ be the canonical model for μ -wK4. This model is based on a wK4 frame, since wK4 is canonical.

Let $\mathcal{M}_c = (W_c, \Box_c, \llbracket \cdot \rrbracket_c)$ be the canonical model for μ -wK4. This model is based on a wK4 frame, since wK4 is canonical.

But: The **truth lemma** fails for \mathcal{M}_c over the μ -calculus: it may be that $\mu p.\varphi(p) \in T$ but $T \notin [\![\mu p.\varphi(p)]\!]_c$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let $\mathcal{M}_c = (W_c, \Box_c, \llbracket \cdot \rrbracket_c)$ be the canonical model for μ -wK4. This model is based on a wK4 frame, since wK4 is canonical.

But: The **truth lemma** fails for \mathcal{M}_c over the μ -calculus: it may be that $\mu p.\varphi(p) \in T$ but $T \notin \llbracket \mu p.\varphi(p) \rrbracket_c$

Say that *T* is φ -final if $\varphi \in T$ and whenever $S \supseteq T$ and $\varphi \in S$, it follows that $T \supseteq S$.

(日) (日) (日) (日) (日) (日) (日)

Let $\mathcal{M}_c = (W_c, \Box_c, \llbracket \cdot \rrbracket_c)$ be the canonical model for μ -wK4. This model is based on a wK4 frame, since wK4 is canonical.

But: The **truth lemma** fails for \mathcal{M}_c over the μ -calculus: it may be that $\mu p.\varphi(p) \in T$ but $T \notin \llbracket \mu p.\varphi(p) \rrbracket_c$

Say that *T* is φ -final if $\varphi \in T$ and whenever $S \supseteq T$ and $\varphi \in S$, it follows that $T \supseteq S$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Say that T is Σ -final if T is φ -final for some $\varphi \in \Sigma$.

Let $\mathcal{M}_c = (W_c, \Box_c, \llbracket \cdot \rrbracket_c)$ be the canonical model for μ -wK4. This model is based on a wK4 frame, since wK4 is canonical.

But: The **truth lemma** fails for \mathcal{M}_c over the μ -calculus: it may be that $\mu p.\varphi(p) \in T$ but $T \notin \llbracket \mu p.\varphi(p) \rrbracket_c$

Say that *T* is φ -final if $\varphi \in T$ and whenever $S \supseteq T$ and $\varphi \in S$, it follows that $T \supseteq S$.

Say that *T* is Σ -final if *T* is φ -final for some $\varphi \in \Sigma$.

Final submodel: $\mathcal{M}_{c}^{\Sigma} \neq (\mathcal{W}_{c}^{\Sigma}, \Box_{c}^{\Sigma}, \llbracket \cdot \rrbracket_{c}^{\Sigma})$ is the submodel of Σ -final theories.

Truth lemma for the final submodel

Lemma (Σ-Final Truth Lemma)

Let Σ be finite and closed under subformulas (and a few other operations, such as single negation). Let

$$\mathcal{M}_{\mathcal{C}}^{\Sigma} = \left(\mathcal{W}_{\mathcal{C}}^{\Sigma}, \Box_{\mathcal{C}}^{\Sigma}, \llbracket \cdot \rrbracket_{\mathcal{C}}^{\Sigma} \right)$$

be the canonical wK4 model. Then, for $T \in W_c^{\Sigma}$ and $\varphi \in \Sigma$ $T \in \llbracket \varphi \rrbracket$ if $\varphi \in M$.

Truth lemma for the final submodel

Lemma (Σ -Final Truth Lemma)

Let Σ be finite and closed under subformulas (and a few other operations, such as single negation). Let

$$\mathcal{M}_{c}^{\Sigma} = (\mathit{W}_{c}^{\Sigma}, \sqsubset_{c}^{\Sigma}, \llbracket \cdot \rrbracket_{c}^{\Sigma})$$

be the canonical wK4 model.

Then, for $T \in W_c^{\Sigma}$ and $\varphi \in \Sigma$, $T \in \llbracket \varphi \rrbracket$ iff $\varphi \in W$.

Theorem (Baltag, Bezhanishvili, F-D) The logic μ -wK4 is sound and complete for the class of wK4 frames.

・ロト・日本・日本・日本・日本

A model is **shallow** if there is *n* bounding the length of any strict \Box -chain.

A model is **shallow** if there is *n* bounding the length of any strict \Box -chain.

Fact: Any fixed point stabilizes after finitely many iterations on a shallow model. This allows us to prove the truth lemma.

 $F^{*}(\phi)$

A model is **shallow** if there is *n* bounding the length of any strict \Box -chain.

Fact: Any fixed point stabilizes after finitely many iterations on a shallow model. This allows us to prove the truth lemma.

Fact: If Σ is finite, \mathcal{M}_c^{Σ} is shallow.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

A model is **shallow** if there is *n* bounding the length of any strict \Box -chain.

Fact: Any fixed point stabilizes after finitely many iterations on a shallow model. This allows us to prove the truth lemma.

Fact: If Σ is finite, \mathcal{M}_{c}^{Σ} is shallow.

Fact: Shallow frames are bisimilar to finite frames, so we further obtain the following:

Theorem (Baltag, Bezhanishvili, F-D)

The logic μ -wK4 has the finite model property, hence is decidable.

A cofinal subframe of (W, \Box) is a subframe based on unbounded $U \subseteq W$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A cofinal subframe of (W, \Box) is a subframe based on unbounded $U \subseteq W$.

A logic is cofinal if any cofinal subframe of a $\Lambda\text{-frame}$ is a $\Lambda\text{-frame}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A cofinal subframe of (W, \Box) is a subframe based on unbounded $U \subseteq W$.

A logic is cofinal if any cofinal subframe of a Λ -frame is a Λ -frame.

Theorem (Baltag, Bezhanishvili, F-D)

If Λ is a canonical, cofinal subframe extension of wK4, then μ - Λ is sound and complete for the class of finite Λ frames.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A cofinal subframe of (W, \Box) is a subframe based on unbounded $U \subseteq W$.

A logic is cofinal if any cofinal subframe of a Λ -frame is a Λ -frame.

Theorem (Baltag, Bezhanishvili, F-D)

If Λ is a canonical, cofinal subframe extension of wK4, then μ - Λ is sound and complete for the class of finite Λ frames.

This includes μ -S4, μ -K4, and many other examples.

Topological completeness

Theorem (Baltag, Bezhanishvili, F-D)

 The logic μ-wK4 is sound and complete for the class of topological spaces with Cantor derivative.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Topological completeness

Theorem (Baltag, Bezhanishvili, F-D)

- 1. The logic μ -wK4 is sound and complete for the class of topological spaces with Cantor derivative.
- 2. The logic μ -K4 is sound and complete for the class of T_D spaces with Cantor derivative.

(ロ) (同) (三) (三) (三) (○) (○)
Topological completeness

Theorem (Baltag, Bezhanishvili, F-D)

- 1. The logic μ -wK4 is sound and complete for the class of topological spaces with Cantor derivative.
- 2. The logic μ -K4 is sound and complete for the class of T_D spaces with Cantor derivative.
- 3. The logic μ -S4 is sound and complete for the class of T_D spaces with topological closure.

(日) (日) (日) (日) (日) (日) (日)

Topological completeness

Theorem (Baltag, Bezhanishvili, F-D)

The logic μ -wK4 is sound and complete for the class of topological spaces with Cantor derivative.

2. The logic μ -K4 is sound and complete for the class of T_D spaces with Cantor derivative.

 The logic μ-S4 is sound and complete for the class of T_D spaces with topological closure.

 The logic μ-wK4T₀ (which I won't define here) is sound and complete for the class of T_D spaces with topological closure.

Proof of topological completeness

Proof of topological completeness

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

The μ-calculus is naturally interpretable over the class of topological spaces, and is axiomatizable and decidable.

- The μ-calculus is naturally interpretable over the class of topological spaces, and is axiomatizable and decidable.
- Weak transitivity allows for a simplified completeness proof which applies to uncountably many logics, the first such result for the μ-calculus.

(ロ) (同) (三) (三) (三) (○) (○)

- The μ-calculus is naturally interpretable over the class of topological spaces, and is axiomatizable and decidable.
- Weak transitivity allows for a simplified completeness proof which applies to uncountably many logics, the first such result for the μ-calculus.
- The μ -calculus collapses to its tangled derivative fragment over T_D spaces, but not over arbitrary spaces.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- The μ-calculus is naturally interpretable over the class of topological spaces, and is axiomatizable and decidable.
- Weak transitivity allows for a simplified completeness proof which applies to uncountably many logics, the first such result for the μ-calculus.
- The μ-calculus collapses to its tangled derivative fragment over T_D spaces, but not over arbitrary spaces.

Is there also a simple, expressively complete fragment for all topological spaces?

(ロ) (同) (三) (三) (三) (○) (○)

- The μ-calculus is naturally interpretable over the class of topological spaces, and is axiomatizable and decidable.
- Weak transitivity allows for a simplified completeness proof which applies to uncountably many logics, the first such result for the μ-calculus.
- The μ-calculus collapses to its tangled derivative fragment over T_D spaces, but not over arbitrary spaces.

Is there also a simple, expressively complete fragment for all topological spaces?

 Connectedness axioms do not yield cofinal subframe logics.

- The μ-calculus is naturally interpretable over the class of topological spaces, and is axiomatizable and decidable.
- Weak transitivity allows for a simplified completeness proof which applies to uncountably many logics, the first such result for the μ-calculus.
- The μ-calculus collapses to its tangled derivative fragment over T_D spaces, but not over arbitrary spaces.

Is there also a simple, expressively complete fragment for all topological spaces?

 Connectedness axioms do not yield cofinal subframe logics.

Can our proof be adapted for connected spaces, possibly with a universal modality?

- The μ-calculus is naturally interpretable over the class of topological spaces, and is axiomatizable and decidable.
- Weak transitivity allows for a simplified completeness proof which applies to uncountably many logics, the first such result for the μ-calculus.
- The μ-calculus collapses to its tangled derivative fragment over T_D spaces, but not over arbitrary spaces.

Is there also a simple, expressively complete fragment for all topological spaces?

 Connectedness axioms do not yield cofinal subframe logics.

Can our proof be adapted for connected spaces, possibly with a universal modality? (Probably yes!)

・ロト ・ 同 ト ・ 回 ト ・ 回 ト