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Modal logic and Kripke semantics

Modal language L♦:

p | ⊥ | → | ♦ϕ

Usual abbreviations:

I ¬ϕ := ϕ→ ⊥

I ϕ ∨ ψ := ¬ϕ→ ψ

I �ϕ := ¬♦¬ϕ
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Kripke semantics:

Frames: Pairs F = (W ,R) where R ⊆W ×W

Valuations: J·K : L♦ → 2W

I J⊥K = ∅
I Jϕ→ ψK = (W \ JϕK) ∪ JψK
I J♦ϕK = R−1 JϕK

Models: TriplesM = (W ,R, J·K)
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A Kripke model
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Axiomatization for modal logic

The basic modal logic is called K.

Axioms
I All classical tautologies
I �(ϕ→ ψ)→ (�ϕ→ �ψ)

Rules

I
ϕ ϕ→ ψ

ψ

I
ϕ

�ϕ

Theorem
A formula is valid over the class of Kripke models iff it is
derivable in K.
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Proof (Soundness)
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Proof (Completeness)
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Proof (Completeness)

Lemma (Truth lemma)
If T ∈Wc and ϕ is any formula, T ∈ JϕKc iff ϕ ∈ T .
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Canonical logics

We may extend K with other axioms.

I Axiom T: �ϕ→ ϕ

Reflexivity of R

I Axiom 4: �ϕ→ ��ϕ Transitivity of R

I Löb’s axiom: �(�ϕ→ ϕ)→ �ϕ Transitivity and converse
well-foundedness of R

Definition
An extension Λ of K (also called a normal logic) is canonical if
its canonical model is based on a Λ-frame.
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Example: K4 := K + 4
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The µ-calculus

Language Lµ:
Add expressions µp.ϕ(p) to the modal language, where p
appears only positively in ϕ.

I Jµp.ϕ(p)K is the least fixed point of X 7→ Jϕ(X )K.

I νp.ϕ(p) := ¬µp.¬ϕ(¬p) is the greatest fixed point of
X 7→ Jϕ(X )K.
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Example: Transitive closure

Define ♦∗ϕ := µp.(ϕ ∨ ♦p).
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Least fixed point of monotone operators

F : 2W → 2W is monotone if whenever A ⊆ B ⊆W , it follows
that F (A) ⊆ F (B).

Theorem
Every monotone operator has a least fixed point.

Lemma
If p appears positively in ϕ(p), then X 7→ Jϕ(X )K is a monotone
operator.
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(Topological) closure semantics of modal logic

If X = (X , T ) is a topological space, we may also define

J♦ϕK := c JϕK .

Recall that � := ¬♦¬. Then,

JϕK = i JϕK .

Theorem
The logic

S4 := K + 4 + T

is sound and complete for the class of closure spaces
(topological spaces equipped with the closure operator).
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Cantor derivative semantics

If X is a topological space and A ⊆ X , define the Cantor
derivative or set of limit points of A by

dA = {x ∈ X : x ∈ c(A \ {x})}.

d-Semantics: J♦ϕK := d JϕK.

Weak transitivity axiom: ϕ ∧�ϕ→ ��ϕ.

Topological interior: Definable by �ϕ := ϕ ∧�ϕ.

Theorem
The logic

wK4 := K + w4

is sound and complete for the class of topological spaces.
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Soundness of w4
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Kripke semantics of wK 4

A relation @ ⊆W ×W is weakly transitive if T @ S @ U
implies that T v U.

Theorem
The logic wK4 is sound and complete for the class of weakly
transitive frames. Moreover, wK4 is canonical.
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Unifying Kripke and topological semantics

Definition
A derivative space is a pair (X ,d) where X is a set and
d : 2X → 2X satisfies
I d∅ = ∅
I d(A ∪ B) = dA ∪ dB
I ddA ⊆ dA ∪ A

Examples:
I If X is a topological space and d its Cantor derivative,

(X ,d) is a derivative space.

I If (W ,@) is a wK4 frame, define d@A := @−1(A). Then,
(W ,d@) is a derivative space.
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(X ,d) is a derivative space.

I If (W ,@) is a wK4 frame, define d@A := @−1(A). Then,
(W ,d@) is a derivative space.
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The derivational µ-calculus

If X = (X ,d) is a derivative space, a valuation J·K on X is
defined by setting J♦ϕK := d JϕK.

Fact: If p is positive on ϕ(p), then A 7→ Jϕ(A)K is a monotone
operator.

Hence the µ-calculus extends to derivative spaces by letting
Jµp.ϕ(p)K be the least fixed point of A 7→ Jϕ(A)K.
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The tangled derivative

Define
♦∞{ϕ1, . . . , ϕn} := νp.

∧
♦(p ∧ ϕi).

One can check that J♦∞{ϕ1, . . . , ϕn}K is the largest subspace
in which every JϕiK is dense.

Theorem (Dawar and Otto 2009)
Every formula of the µ-calculus is equivalent to a formula in
L♦♦∞ over the class of TD spaces: derivative spaces validating

ddA ⊆ dA.

Theorem (Baltag, Bezhanishvili, F-D)
The language L♦♦∞ is not expressively complete over T0
spaces.
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Axiomatizing the µ-calculus

If Λ is a normal logic, define µ-Λ by adding

I ϕ(p)→ ϕ(µp.ϕ(p))

I
ϕ(ψ)→ ψ

µp.ϕ(p)→ ψ

Theorem (Walukiewicz, 2000)
µ-K is sound and complete for the class of Kripke frames.

Theorem (Goldblatt, Hodkinson 2018)
µ-S4 is sound and complete for the class of finite closure
spaces, and for any dense-in-itself metric space.
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The final submodel

LetMc = (Wc ,@c , J·Kc) be the canonical model for µ-wK4. This
model is based on a wK4 frame, since wK4 is canonical.

But: The truth lemma fails forMc over the µ-calculus: it may
be that µp.ϕ(p) ∈ T but T 6∈ Jµp.ϕ(p)Kc

Say that T is ϕ-final if ϕ ∈ T and whenever S w T and ϕ ∈ S, it
follows that T w S.

Say that T is Σ-final if T is ϕ-final for some ϕ ∈ Σ.

Final submodel: MΣ
c = (WΣ

c ,@
Σ
c , J·K

Σ
c ) is the submodel of

Σ-final theories.
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Truth lemma for the final submodel

Lemma (Σ-Final Truth Lemma)
Let Σ be finite and closed under subformulas (and a few other
operations, such as single negation). Let

MΣ
c = (WΣ

c ,@
Σ
c , J·K

Σ
c )

be the canonical wK4 model.

Then, for T ∈WΣ
c and ϕ ∈ Σ, T ∈ JϕK iff ϕ ∈W.

Theorem (Baltag, Bezhanishvili, F-D)
The logic µ-wK4 is sound and complete for the class of wK4
frames.
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Shallow model property

A model is shallow if there is n bounding the length of any
strict @-chain.

Fact: Any fixed point stabilizes after finitely many iterations on a
shallow model. This allows us to prove the truth lemma.

Fact: If Σ is finite,MΣ
c is shallow.

Fact: Shallow frames are bisimilar to finite frames, so we
further obtain the following:

Theorem (Baltag, Bezhanishvili, F-D)
The logic µ-wK4 has the finite model property, hence is
decidable.
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Cofinal subframe logics

A cofinal subframe of (W ,@) is a subframe based on
unbounded U ⊆W .

A logic is cofinal if any cofinal subframe of a Λ-frame is a
Λ-frame.

Theorem (Baltag, Bezhanishvili, F-D)
If Λ is a canonical, cofinal subframe extension of wK4, then µ-Λ
is sound and complete for the class of finite Λ frames.

This includes µ-S4, µ-K4, and many other examples.
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Topological completeness

Theorem (Baltag, Bezhanishvili, F-D)

1. The logic µ-wK4 is sound and complete for the class of
topological spaces with Cantor derivative.

2. The logic µ-K4 is sound and complete for the class of TD
spaces with Cantor derivative.

3. The logic µ-S4 is sound and complete for the class of TD
spaces with topological closure.

4. The logic µ-wK4T0 (which I won’t define here) is sound and
complete for the class of TD spaces with topological
closure.
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Proof of topological completeness
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Proof of topological completeness



Concluding remarks

I The µ-calculus is naturally interpretable over the class of
topological spaces, and is axiomatizable and decidable.

I Weak transitivity allows for a simplified completeness proof
which applies to uncountably many logics, the first such
result for the µ-calculus.

I The µ-calculus collapses to its tangled derivative fragment
over TD spaces, but not over arbitrary spaces.

Is there also a simple, expressively complete fragment for
all topological spaces?

I Connectedness axioms do not yield cofinal subframe
logics.

Can our proof be adapted for connected spaces, possibly
with a universal modality? (Probably yes!)
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Thank you!
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