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Lowness and highness in degree theory

Definition
A set X islow if X' =1 @' and high if X’ >7 (©')’.
» Xis superlow if X’ =4 @' and superhigh if X' =, @".

> X is generalized low if X' =1 X & @' and generalized high
ifX =r (Xo ).



A general framework

Let C be a relativizable class, and let CX be the class obtained by
using X as an oracle for this class.

> A set X is low for C if CX = C.
> A set X is high for C if C has a maximal element M such
that CX = CM.

Degree theory: C is the A9 sets, and M = @'

Question

Let N be the class of sets that are high in some context. Is N robust,
either in the sense of having a characterization unrelated to highness
or in the sense of being a highness class for multiple notions?



Highness for randomness

Difficulty: There’s no maximality concept here.

Definition
If R1 € Ry, then

X € High(R2, R1) & RX C Ry

Theorem (F, Stephan, & Yu)
The following are equivalent:
1L X>r .
2. X € High(Schnorr, ML) (that is, Schnorr® C ML).
3. X € High(Schnorr, Comp).
4. X € High(Schnorr, W2R).



Lowness in computable structure theory

Definition

A set is low for isomorphism if, whenever it can compute an
isomorphism between two computably presented structures,
there is a computable isomorphism between them.



Examples and counterexamples

Degrees that are low for isomorphism:
» Cohen 2-generic degrees

» Mathias 3-generic degrees

Degrees that are not low for isomorphism:
» Noncomputable A) degrees
» Martin-Lof random degrees

Degrees that could go either way:
» Minimal degrees

» Hyperimmune-free degrees (in fact, computably traceable
degrees)

» Cohen 1-generic degrees



Restricted classes of structures

Definition

A set is low for C-isomorphism if, whenever it can compute an
isomorphism between two computably presented structures in
C, there is a computable isomorphism between them.

Theorem (Suggs)

Let C be the class of equivalence structures with one equivalence class
of each finite size. Then d is low for C-isomorphism if and only if d
doesn’t compute any noncomputable AS degree.



Lowness for paths

Definition

A real A is low for paths for Baire space (or low for paths for Cantor
space) if every I1{ class P C w® (or P C 2¢) with an
A-computable element has a computable element.



Metric structures

Definition
A metric structure is a quintuple M = (U, d, O, F,C) such that
(U,d) is a complete metric space and

1. Foreach T € O, there is a positive integer n so that T is a
uniformly continuous n-ary operation on U.

2. For each f € F, there is a positive integer n so that f is a
uniformly continuous n-ary functional on U; i.e.,
f :U" = F and is uniformly continuous.

3. CCU

A presentation of a metric structure M is a pair (M, (p,)) such
that the p,s (the distinguished points) generate M.



Metric structures

Definition
An isometric isomorphism preserves both the algebraic structure
and distances in a metric structure.

A Turing degree is low for isometric isomorphism if for every
computably presented metric structure M and any two of its
computable presentations M* and M*, whenever it can
compute an isometric isomorphism between these
presentations, there is a computable isometric isomorphism
between them.



A summary

Theorem (F. & Turetsky, F. & McNicholl)

The following classes of degrees are identical:
» the degrees that are low for isomorphism,
» the degrees that are low for paths in Cantor space,
» the degrees that are low for paths in Baire space,

» the degrees that are low for isometric isomorphism.



Highness in computable structure theory

Definition (Calvert, F.,, & Turetsky)

We call a degree d high for isomorphism if for any two
computable structures M and N with M = N, there is a
d-computable isomorphism from M to NV.



Kleene’s O

Definition
Kleene’s O is a complete I} set.

Observation
O is high for isomorphism.

O can compute a path through the tree of partial isomorphisms
between any two structures whenever such a path exists.



A7 sets

Observation
If d is high for isomorphism, then it computes every Al set.

If X is Af, then {X} is a ¥ class and d must compute X.



In the Turing degrees

Proposition

Kleene’s O is arithmetical over any degree high for isomorphism.
Furthermore, if d is high for isomorphism, then O is 113(d) and thus
d" >7 O.

Proof: X = {(i,j) : M; = M;} is a £{-complete set, but if d is
high for isomorphism with D € d, then

(i,j) € X & Fe[{e}? : M; =2 M|

and the matrix of the right-hand side is IT3(D).
Then X} sets are £J(d), making O I13(d).



Proposition
There is a degree d which is high for isomorphism with d" = O.

Proof: Inspired by Jockusch and Simpson’s construction of a
minimal upper bound for Al with a triple jump computable

from O, although we use hyperlow trees rather than their A}
trees.



Uniform highness

Definition

We say d is uniformly high for isomorphism if thereisa D € d and
a total computable f such that for any isomorphic computable
structures M; and M;, the function {f(i,j)} is an
isomorphism from M; to M;.

Proposition

If d is uniformly high for isomorphism, then O is 3(d) and thus
d’ >r 0.

(i) €X & )P M= M,



Structural facts

Proposition

There exist degrees di and dy, each high for isomorphism, with
d; <1 Osuchthatd; & dy =1 O.

Proof: Straightforward construction.



Highness for paths

Definition
A degree d is high for paths if for every nonempty IT0 class of
functions P, d computes an element of P.

Observation

21 classes are uniformly projections of 19 classes, so we can replace
ITY with X1 above: If d is high for paths, then it computes an element
of every nonempty X1 class.

Proposition
A degree is high for isomorphism if and only if it is high for paths.



Harrison orders

Definition

A degree d is high for isomorphism for Harrison orders if d
computes an isomorphism between any two computable linear
orders of order type w$*(1 + Q).

Theorem
The degrees which are high for isomorphism for Harrison orders are
precisely the degrees which are high for isomorphism.



A summary

Theorem
The following classes of degrees are identical:

» the degrees that are high for isomorphism,
» the degrees that are high for paths,

» the degrees that are high for isomorphism for Harrison orders.



Descending sequences

Definition

A degree d is high for descending sequences if any computable
ill-founded linear order £ has a d-computable descending
sequence.

Theorem
If X is not arithmetical, there is a degree that is high for descending
sequences and does not compute X.

Corollary

There is a degree which is high for descending sequences but not high
for isomorphism.
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