Highness in computable structure theory

Johanna Franklin

Hofstra University

February 9, 2022

Outline

- General concepts
- Randomness
 - Highness for pairs
- Computable structure theory
 - Lowness for isomorphism
 - ► Highness for isomorphism

Lowness and highness in degree theory

Definition

A set *X* is low if $X' \equiv_T \emptyset'$ and high if $X' \geq_T (\emptyset')'$.

- ▶ *X* is superlow if $X' \equiv_{tt} \emptyset'$ and superhigh if $X' \equiv_{tt} \emptyset''$.
- ▶ *X* is generalized low if $X' \equiv_T X \oplus \emptyset'$ and generalized high if $X' \equiv_T (X \oplus \emptyset')'$.

A general framework

Let C be a relativizable class, and let C^X be the class obtained by using X as an oracle for this class.

- ▶ A set *X* is *low* for \mathcal{C} if $\mathcal{C}^X = \mathcal{C}$.
- A set *X* is *high* for *C* if *C* has a maximal element *M* such that $C^X = C^M$.

Degree theory: C is the Δ_2^0 sets, and $M = \emptyset'$.

Question

Let $\mathcal N$ be the class of sets that are high in some context. Is $\mathcal N$ robust, either in the sense of having a characterization unrelated to highness or in the sense of being a highness class for multiple notions?

Highness for randomness

Difficulty: There's no maximality concept here.

Definition

If $\mathcal{R}_1 \subseteq \mathcal{R}_2$, then

$$X \in High(\mathcal{R}_2, \mathcal{R}_1) \Leftrightarrow \mathcal{R}_2^X \subseteq \mathcal{R}_1.$$

Theorem (F., Stephan, & Yu)

The following are equivalent:

- 1. $X \geq_T \emptyset'$.
- 2. $X \in High(Schnorr, ML)$ (that is, Schnorr^X \subseteq ML).
- 3. $X \in High(Schnorr, Comp)$.
- 4. $X \in High(Schnorr, W2R)$.

Lowness in computable structure theory

Definition

A set is *low for isomorphism* if, whenever it can compute an isomorphism between two computably presented structures, there is a computable isomorphism between them.

Examples and counterexamples

Degrees that are low for isomorphism:

- ► Cohen 2-generic degrees
- Mathias 3-generic degrees

Degrees that are not low for isomorphism:

- Noncomputable Δ_2^0 degrees
- Martin-Löf random degrees

Degrees that could go either way:

- Minimal degrees
- Hyperimmune-free degrees (in fact, computably traceable degrees)
- Cohen 1-generic degrees

Restricted classes of structures

Definition

A set is *low for C-isomorphism* if, whenever it can compute an isomorphism between two computably presented structures in C, there is a computable isomorphism between them.

Theorem (Suggs)

Let C be the class of equivalence structures with one equivalence class of each finite size. Then \mathbf{d} is low for C-isomorphism if and only if \mathbf{d} doesn't compute any noncomputable Δ_2^0 degree.

Lowness for paths

Definition

A real A is low for paths for Baire space (or low for paths for Cantor space) if every Π^0_1 class $\mathcal{P} \subseteq \omega^\omega$ (or $\mathcal{P} \subseteq 2^\omega$) with an A-computable element has a computable element.

Metric structures

Definition

A *metric structure* is a quintuple $\mathcal{M} = (U, d, \mathcal{O}, \mathcal{F}, \mathcal{C})$ such that (U, d) is a complete metric space and

- 1. For each $T \in \mathcal{O}$, there is a positive integer n so that T is a uniformly continuous n-ary operation on U.
- 2. For each $f \in \mathcal{F}$, there is a positive integer n so that f is a uniformly continuous n-ary functional on U; i.e., $f: U^n \to \mathbb{F}$ and is uniformly continuous.
- 3. $C \subseteq U$.

A presentation of a metric structure \mathcal{M} is a pair $(\mathcal{M}, (p_n))$ such that the p_ns (the *distinguished points*) generate \mathcal{M} .

Metric structures

Definition

An *isometric isomorphism* preserves both the algebraic structure and distances in a metric structure.

A Turing degree is *low for isometric isomorphism* if for every computably presented metric structure \mathcal{M} and any two of its computable presentations \mathcal{M}^* and $\mathcal{M}^\#$, whenever it can compute an isometric isomorphism between these presentations, there is a computable isometric isomorphism between them.

A summary

Theorem (F. & Turetsky, F. & McNicholl)

The following classes of degrees are identical:

- the degrees that are low for isomorphism,
- the degrees that are low for paths in Cantor space,
- the degrees that are low for paths in Baire space,
- ▶ the degrees that are low for isometric isomorphism.

Highness in computable structure theory

Definition (Calvert, F., & Turetsky)

We call a degree **d** *high for isomorphism* if for any two computable structures \mathcal{M} and \mathcal{N} with $\mathcal{M} \cong \mathcal{N}$, there is a **d**-computable isomorphism from \mathcal{M} to \mathcal{N} .

Kleene's \mathcal{O}

Definition

Kleene's \mathcal{O} is a complete Π_1^1 set.

Observation

O is high for isomorphism.

 \mathcal{O} can compute a path through the tree of partial isomorphisms between any two structures whenever such a path exists.

Δ_1^1 sets

Observation

If **d** *is high for isomorphism, then it computes every* Δ_1^1 *set.*

If *X* is Δ_1^1 , then $\{X\}$ is a Σ_1^1 class and **d** must compute *X*.

In the Turing degrees

Proposition

Kleene's \mathcal{O} is arithmetical over any degree high for isomorphism. Furthermore, if \mathbf{d} is high for isomorphism, then \mathcal{O} is $\Pi_3^0(\mathbf{d})$ and thus $\mathbf{d}''' \geq_T \mathcal{O}$.

Proof: $X = \{(i,j) : \mathcal{M}_i \cong \mathcal{M}_j\}$ is a Σ_1^1 -complete set, but if **d** is high for isomorphism with $D \in \mathbf{d}$, then

$$(i,j) \in X \Leftrightarrow \exists e [\{e\}^D : \mathcal{M}_i \cong \mathcal{M}_j]$$

and the matrix of the right-hand side is $\Pi_2^0(D)$.

Then Σ_1^1 sets are $\Sigma_3^0(\mathbf{d})$, making $\mathcal{O} \Pi_3^0(\mathbf{d})$.

Proposition

There is a degree **d** which is high for isomorphism with $\mathbf{d}''' = \mathcal{O}$.

Proof: Inspired by Jockusch and Simpson's construction of a minimal upper bound for Δ^1_1 with a triple jump computable from \mathcal{O} , although we use hyperlow trees rather than their Δ^1_1 trees.

Uniform highness

Definition

We say **d** is *uniformly high for isomorphism* if there is a $D \in \mathbf{d}$ and a total computable f such that for any isomorphic computable structures \mathcal{M}_i and \mathcal{M}_j , the function $\{f(i,j)\}^D$ is an isomorphism from \mathcal{M}_i to \mathcal{M}_j .

Proposition

If **d** is uniformly high for isomorphism, then \mathcal{O} is $\Sigma_2^0(\mathbf{d})$ and thus $\mathbf{d}'' \geq_T \mathcal{O}$.

$$(i,j) \in X \iff \{f(i,j)\}^D : \mathcal{M}_i \cong \mathcal{M}_j$$

Structural facts

Proposition

There exist degrees \mathbf{d}_1 and \mathbf{d}_2 , each high for isomorphism, with $\mathbf{d}_i \leq_T \mathcal{O}$ such that $\mathbf{d}_1 \oplus \mathbf{d}_2 \equiv_T \mathcal{O}$.

Proof: Straightforward construction.

Highness for paths

Definition

A degree **d** is *high for paths* if for every nonempty Π_1^0 class of functions \mathcal{P} , **d** computes an element of \mathcal{P} .

Observation

 Σ^1_1 classes are uniformly projections of Π^0_1 classes, so we can replace Π^0_1 with Σ^1_1 above: If **d** is high for paths, then it computes an element of every nonempty Σ^1_1 class.

Proposition

A degree is high for isomorphism if and only if it is high for paths.

Harrison orders

Definition

A degree **d** is *high for isomorphism for Harrison orders* if **d** computes an isomorphism between any two computable linear orders of order type $\omega_1^{ck}(1+Q)$.

Theorem

The degrees which are high for isomorphism for Harrison orders are precisely the degrees which are high for isomorphism.

A summary

Theorem

The following classes of degrees are identical:

- the degrees that are high for isomorphism,
- ▶ the degrees that are high for paths,
- the degrees that are high for isomorphism for Harrison orders.

Descending sequences

Definition

A degree \mathbf{d} is *high for descending sequences* if any computable ill-founded linear order \mathcal{L} has a \mathbf{d} -computable descending sequence.

Theorem

If X is not arithmetical, there is a degree that is high for descending sequences and does not compute X.

Corollary

There is a degree which is high for descending sequences but not high for isomorphism.

References

- Calvert, Wesley, Franklin, Johanna N.Y. and Turetsky, Dan. Structural highness notions. Submitted.
- Franklin, Johanna N.Y. and McNicholl, Timothy H. Degrees of and lowness for isometric isomorphism. Journal of Logic and Analysis, vol. 12, Paper 6, 2020.
- Franklin, Johanna N.Y. and Solomon, Reed. Degrees that are low for isomorphism. Computability, vol. 3, pp. 73–89, 2014.
- ▶ Franklin, Johanna N.Y. and Solomon, Reed. Lowness for isomorphism, countable ideals, and computable traceability. Mathematical Logic Quarterly, vol. 66(1), pp. 104-114, 2020.
- ► Franklin, Johanna N.Y. and Turetsky, Dan. Taking the path computably traveled. Journal of Logic and Computation, vol. 29, pp. 969-973, 2019.

