Mathematical incompleteness without extensional invariants

Anton Freund (TU Darmstadt)

Π^1_2 -statements:

- **Theorems of the form** \forall *x*⊂N∃ \forall ⊂N φ for arithmetical φ
- Examples: infinite Ramsey theorem, Bolzano-Weierstraß, . . .
- Independence via relative (un-)computability

Π^0_2 -statements:

- **Theorems of the form** $\forall_{m\in\mathbb{N}}\exists_{n\in\mathbb{N}}\theta$ for decidable θ
- **Examples: termination of algorithms, Paris-Harrington**
- Independence via growth rates of provably total functions

Π^0_1 -statements:

- \blacksquare Theorems of the form ∀_{n∈N} θ for decidable θ
- **Examples: very few results (S. Shelah, H. Friedman)** and no fully satisfactory overall picture
- **EXECT:** High foundational significance (Hilbert's program)
- **EXECUTE:** Mathematical challenge: independence cannot be shown via uncomputability or provably total functions

In this talk:

- Independent axiom scheme with Σ^0_2 -instances $(\exists_{m\in\mathbb{N}}\forall_{n\in\mathbb{N}}\theta)$
- Same mathematical challenge, less foundational significance

Kruskal's theorem

Let B be the set of (finite) **binary trees**. For s, $t \in B$ we write $s \leq_B t$ if there is an infimum-preserving embedding of s into t:

Theorem (Kruskal 1960). For any infinite sequence t_0, t_1, \ldots of binary trees there are $i < j$ with $t_i \leq_{\mathcal{B}} t_j.$

In fact, Kruskal's theorem is concerned with arbitrary finite (rather than just binary) trees. We consider binary trees for simplicity.

Definition. For a formula $\varphi \equiv \varphi(t)$, let $K\varphi$ be the formula which says that there is a finite set $a \subseteq B$ with

$$
\forall_{s\in a}\,\varphi(s)\,\wedge\,\forall_{t\in\mathcal{B}}(\varphi(t)\rightarrow\exists_{s\in a}\,s\leq_{\mathcal{B}}t).
$$

Corollary. All instances $K\varphi$ are true.

Proof: If $K\varphi$ was false, we could recursively construct t_0, \ldots, t_{n-1} with $\varphi(t_i)$ and $t_i\not\leq_{\mathcal B} t_j$ for $i < j < n$ (consider $a=\{t_0,\ldots,t_{n-1}\}$ to find t_n). This would result in an infinite sequence that contradicts Kruskal's theorem.

A limitation of extensional invariants

Proposition. Peano arithmetic (PA) has the same provably total functions as its extension by the axiom schema

 $\mathcal{K} \mathsf{\Sigma}_1^- := \{ \mathcal{K} \varphi \, | \, \varphi(s) \text{ a } \mathsf{\Sigma}_1^0 \text{-formula without further free variables} \}.$

Proof: Consider an algorithm that computes f and terminates provably in PA $+$ $\mathcal{K}\varphi.$ Since $\mathcal{K}\varphi$ is a true $\mathsf{\Sigma}^0_2$ -formula, it follows from a true Π^0_1 -formula $\forall_{n\in\mathbb{N}}$ $\theta(n).$ To compute f in PA, we

- run the given algorithm, and output its result when a terminating computation is found;
- simultaneously search for an *n* with $\neg \theta(n)$, and output 0 if such an n is found before a terminating computation.

Theorem (F. 2020, following D. de Jongh and H. Friedman). Peano arithmetic does not prove all instances of $\mathcal{K} \Sigma_1^-$.

Proof: Gentzen derived the consistency of PA from Π_1^- -induction up to $\varepsilon_0 = \min\{\alpha \, | \, \omega^\alpha = \alpha\}.$ We show that the minimal element version of induction follows from the finite basis property expressed by $\mathcal{K} \Sigma_1^-$, to conclude by Gödel's theorem. For this purpose, we construct $f : \varepsilon_0 \to \mathcal{B}$ such that $f(\alpha) \leq_{\mathcal{B}} f(\beta)$ implies $\alpha \leq \beta$:

Gentzen has labelled proofs by ordinals below ε_0 . He has shown that each (hypothetical) proof of a contradiction can be transformed into a proof with smaller ordinal label. One can deduce consistency in two different ways:

- **EXECUTE:** argue that a proof of contradiction would lead to a descending sequence of ordinals, which contradicts the primitive recursive well foundedness of ε_0 ;
	- use transfinite Π_1^+ -induction over $\alpha<\varepsilon_0$ to show that there is no proof of contradiction with height α .

```
Theorem (Gentzen, Kreisel,. . . ; Paris & Harrington 1977).
The following are equivalent over Peano arithmetic:
 the primitive recursive well foundedness of \varepsilon_0,
     uniform \Pi^0_2-reflection, which asserts
           "for all n \in \mathbb{N}, if PA proves \varphi(\overline{n}), then \varphi(n) holds",
     where \varphi ranges over \Pi^0_2-formulas,
     the strengthened finite Ramsey theorem
     (also known as Paris-Harrington principle).
```

```
Theorem (F. 2020, following Kreisel, ...).
The following are equivalent over Peano arithmetic:
     parameter-free \Pi^0_1-induction up to \varepsilon_0,
     local \Sigma^0_2-reflection, which consists of the assertions
                       "if PA proves \psi, then \psi holds",
     where \psi ranges over closed \Sigma^0_2-formulas,
     the schema \mathcal{K} \mathsf{\Sigma}_1^-, which asserts that each computably
     enumerable property of binary trees has a finite basis.
```
$\mathsf{\Pi}^0_1$ $\frac{0}{1}$ -consequences of the finite basis property

By Goryachev's theorem on parameter free reflection we get:

Corollary. The theory PA $+$ $\mathcal{K}\Sigma_1^-$ proves the same Π_1^0 -sentences as $PA + Con(PA) + Con(PA + Con(PA)) + ...$

Each instance of $\mathcal{K}\Sigma_1^-$ follows from a true Π^0_1 -sentence. However, a result of Kreisel and Lévy yields:

Corollary. There is no computable consistent Π_1^0 -extension of PA that proves all instances of $\mathcal{K}\mathsf{\Sigma}_1^-$.

Thank you for your attention!

Details and further references can be found in

A. Freund: A mathematical commitment without computational strength, arXiv:2004.06915.