Mathematical incompleteness without extensional invariants

Anton Freund (TU Darmstadt)

Π_2^1 -statements:

- Theorems of the form $\forall_{X \subseteq \mathbb{N}} \exists_{Y \subseteq \mathbb{N}} \varphi$ for arithmetical φ
- Examples: infinite Ramsey theorem, Bolzano-Weierstraß, ...
- ____ Independence via relative (un-)computability

Π_2^0 -statements:

- **___** Theorems of the form $\forall_{m \in \mathbb{N}} \exists_{n \in \mathbb{N}} \theta$ for decidable θ
- Examples: termination of algorithms, Paris-Harrington
- ____ Independence via growth rates of provably total functions

Π_1^0 -statements:

- **___** Theorems of the form $\forall_{n\in\mathbb{N}} \theta$ for decidable θ
- Examples: very few results (S. Shelah, H. Friedman) and no fully satisfactory overall picture
- High foundational significance (Hilbert's program)
- Mathematical challenge: independence cannot be shown via uncomputability or provably total functions

In this talk:

- − Independent axiom scheme with Σ_2^0 -instances $(\exists_{m \in \mathbb{N}} \forall_{n \in \mathbb{N}} \theta)$
- ____ Same mathematical challenge, less foundational significance

Kruskal's theorem

Let \mathcal{B} be the set of (finite) binary trees. For $s, t \in \mathcal{B}$ we write $s \leq_{\mathcal{B}} t$ if there is an **infimum-preserving embedding** of *s* into *t*:

Theorem (Kruskal 1960). For any infinite sequence $t_0, t_1, ...$ of binary trees there are i < j with $t_i \leq_{\mathcal{B}} t_j$.

In fact, Kruskal's theorem is concerned with arbitrary finite (rather than just binary) trees. We consider binary trees for simplicity.

Definition. For a formula $\varphi \equiv \varphi(t)$, let $\mathcal{K}\varphi$ be the formula which says that there is a finite set $a \subseteq \mathcal{B}$ with

$$\forall_{s\in a} \varphi(s) \land \forall_{t\in \mathcal{B}}(\varphi(t) \to \exists_{s\in a} s \leq_{\mathcal{B}} t).$$

Corollary. All instances $\mathcal{K}\varphi$ are true.

Proof: If $\mathcal{K}\varphi$ was false, we could recursively construct t_0, \ldots, t_{n-1} with $\varphi(t_i)$ and $t_i \not\leq_{\mathcal{B}} t_j$ for i < j < n (consider $a = \{t_0, \ldots, t_{n-1}\}$ to find t_n). This would result in an infinite sequence that contradicts Kruskal's theorem.

A limitation of extensional invariants

Proposition. Peano arithmetic (PA) has the same provably total functions as its extension by the axiom schema $\mathcal{K}\Sigma_1^- := \{\mathcal{K}\varphi \,|\, \varphi(s) \text{ a } \Sigma_1^0 \text{-formula without further free variables} \}.$

Proof: Consider an algorithm that computes f and terminates provably in PA + $\mathcal{K}\varphi$. Since $\mathcal{K}\varphi$ is a true Σ_2^0 -formula, it follows from a true Π_1^0 -formula $\forall_{n \in \mathbb{N}} \theta(n)$. To compute f in PA, we

- run the given algorithm, and output its result when a terminating computation is found;
- **—** simultaneously search for an *n* with $\neg \theta(n)$, and output 0 if such an *n* is found before a terminating computation.

Theorem (F. 2020, following D. de Jongh and H. Friedman). Peano arithmetic does not prove all instances of $\mathcal{K}\Sigma_1^-$.

Proof: Gentzen derived the consistency of PA from Π_1^- -induction up to $\varepsilon_0 = \min\{\alpha \mid \omega^\alpha = \alpha\}$. We show that the minimal element version of induction follows from the finite basis property expressed by $\mathcal{K}\Sigma_1^-$, to conclude by Gödel's theorem. For this purpose, we construct $f : \varepsilon_0 \to \mathcal{B}$ such that $f(\alpha) \leq_{\mathcal{B}} f(\beta)$ implies $\alpha \leq \beta$:

Gentzen has labelled proofs by ordinals below ε_0 . He has shown that each (hypothetical) proof of a contradiction can be transformed into a proof with smaller ordinal label. One can **deduce consistency in two different ways**:

- argue that a proof of contradiction would lead to a descending sequence of ordinals, which contradicts the **primitive recursive well foundedness** of ε_0 ;
- use transfinite Π_1^- -induction over $\alpha < \varepsilon_0$ to show that there is no proof of contradiction with height α .

```
Theorem (Gentzen, Kreisel,...; Paris & Harrington 1977).
The following are equivalent over Peano arithmetic:
 — the primitive recursive well foundedness of \varepsilon_0,
 ____ uniform Π<sup>0</sup><sub>2</sub>-reflection, which asserts
            "for all n \in \mathbb{N}, if PA proves \varphi(\overline{n}), then \varphi(n) holds",
     where \varphi ranges over \Pi_2^0-formulas,
     the strengthened finite Ramsey theorem
     (also known as Paris-Harrington principle).
```

```
Theorem (F. 2020, following Kreisel, ...).
The following are equivalent over Peano arithmetic:
 ___ parameter-free \Pi_1^0-induction up to \varepsilon_0,
 Local \Sigma_2^0-reflection, which consists of the assertions
                       "if PA proves \psi, then \psi holds",
     where \psi ranges over closed \Sigma_2^0-formulas,
     the schema \mathcal{K}\Sigma_1^-, which asserts that each computably
     enumerable property of binary trees has a finite basis.
```

Π_1^0 -consequences of the finite basis property

By Goryachev's theorem on parameter free reflection we get:

Corollary. The theory $PA + \mathcal{K}\Sigma_1^-$ proves the same Π_1^0 -sentences as $PA + Con(PA) + Con(PA + Con(PA)) + \dots$

Each instance of $\mathcal{K}\Sigma_1^-$ follows from a true Π_1^0 -sentence. However, a result of Kreisel and Lévy yields:

Corollary. There is no **computable** consistent Π_1^0 -extension of PA that proves all instances of $\mathcal{K}\Sigma_1^-$.

Thank you for your attention!

Details and further references can be found in

A. Freund: A mathematical commitment without computational strength, arXiv:2004.06915.