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Incompleteness via extensional invariants

Π1
2-statements:

Theorems of the form ∀X⊆N∃Y⊆N ϕ for arithmetical ϕ

Examples: infinite Ramsey theorem, Bolzano-Weierstraß, . . .

Independence via relative (un-)computability

Π0
2-statements:

Theorems of the form ∀m∈N∃n∈N θ for decidable θ

Examples: termination of algorithms, Paris-Harrington

Independence via growth rates of provably total functions
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Incompleteness without extensional invariants?

Π0
1-statements:

Theorems of the form ∀n∈N θ for decidable θ

Examples: very few results (S. Shelah, H. Friedman)

and no fully satisfactory overall picture

High foundational significance (Hilbert’s program)

Mathematical challenge: independence cannot be shown

via uncomputability or provably total functions

In this talk:

Independent axiom scheme with Σ0
2-instances (∃m∈N∀n∈N θ)

Same mathematical challenge, less foundational significance
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Kruskal’s theorem

Let B be the set of (finite) binary trees. For s, t ∈ B we write

s ≤B t if there is an infimum-preserving embedding of s into t:

Theorem (Kruskal 1960). For any infinite sequence t0, t1, . . .

of binary trees there are i < j with ti ≤B tj .

In fact, Kruskal’s theorem is concerned with arbitrary finite (rather

than just binary) trees. We consider binary trees for simplicity.
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A finite basis property

Definition. For a formula ϕ ≡ ϕ(t), let Kϕ be the formula which

says that there is a finite set a ⊆ B with

∀s∈a ϕ(s) ∧ ∀t∈B(ϕ(t)→ ∃s∈a s ≤B t).

Corollary. All instances Kϕ are true.

Proof: If Kϕ was false, we could recursively construct t0, . . . , tn−1

with ϕ(ti ) and ti 6≤B tj for i < j < n (consider a = {t0, . . . , tn−1}
to find tn). This would result in an infinite sequence that

contradicts Kruskal’s theorem.
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A limitation of extensional invariants

Proposition. Peano arithmetic (PA) has the same provably total

functions as its extension by the axiom schema

KΣ−1 := {Kϕ |ϕ(s) a Σ0
1-formula without further free variables}.

Proof: Consider an algorithm that computes f and terminates

provably in PA +Kϕ. Since Kϕ is a true Σ0
2-formula, it follows

from a true Π0
1-formula ∀n∈N θ(n). To compute f in PA, we

run the given algorithm, and output its result when a

terminating computation is found;

simultaneously search for an n with ¬θ(n), and output 0 if

such an n is found before a terminating computation.
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Independence via Gödel’s theorem

Theorem (F. 2020, following D. de Jongh and H. Friedman).

Peano arithmetic does not prove all instances of KΣ−1 .

Proof: Gentzen derived the consistency of PA from Π−1 -induction

up to ε0 = min{α |ωα = α}. We show that the minimal element

version of induction follows from the finite basis property expressed

by KΣ−1 , to conclude by Gödel’s theorem. For this purpose, we

construct f : ε0 → B such that f (α) ≤B f (β) implies α ≤ β:
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On Gentzen’s ordinal analysis

Gentzen has labelled proofs by ordinals below ε0. He has shown

that each (hypothetical) proof of a contradiction can be

transformed into a proof with smaller ordinal label. One can

deduce consistency in two different ways:

argue that a proof of contradiction would lead to a

descending sequence of ordinals, which contradicts the

primitive recursive well foundedness of ε0;

use transfinite Π−1 -induction over α < ε0 to show that there

is no proof of contradiction with height α.
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Primitive recursive well foundedness

Theorem (Gentzen, Kreisel,. . . ; Paris & Harrington 1977).

The following are equivalent over Peano arithmetic:

the primitive recursive well foundedness of ε0,

uniform Π0
2-reflection, which asserts

“for all n ∈ N, if PA proves ϕ(n), then ϕ(n) holds”,

where ϕ ranges over Π0
2-formulas,

the strengthened finite Ramsey theorem

(also known as Paris-Harrington principle).
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Transfinite induction

Theorem (F. 2020, following Kreisel, . . . ).

The following are equivalent over Peano arithmetic:

parameter-free Π0
1-induction up to ε0,

local Σ0
2-reflection, which consists of the assertions

“if PA proves ψ, then ψ holds”,

where ψ ranges over closed Σ0
2-formulas,

the schema KΣ−1 , which asserts that each computably

enumerable property of binary trees has a finite basis.
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Π0
1-consequences of the finite basis property

By Goryachev’s theorem on parameter free reflection we get:

Corollary. The theory PA +KΣ−1 proves the same Π0
1-sentences as

PA + Con(PA) + Con(PA + Con(PA)) + . . . .

Each instance of KΣ−1 follows from a true Π0
1-sentence.

However, a result of Kreisel and Lévy yields:

Corollary. There is no computable consistent Π0
1-extension of PA

that proves all instances of KΣ−1 .

Mathematical incompleteness without extensional invariants

Anton Freund, TU Darmstadt



Thank you for your attention!

Details and further references can be found in

A. Freund: A mathematical commitment without

computational strength, arXiv:2004.06915.


