Variants of Ramsey's theorem over RCA₀*

Katarzyna W. Kowalik (joint work with Marta Fiori Carones and Leszek Kołodziejczyk)

Leeds-Ghent Virtual Logic Seminar 10 November 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Second order arithmetic

Language \mathcal{L}_2 : first-order variables: x, y, z, \ldots , second-order variables: X, Y, Z, \ldots , non-logical symbols: $0, 1, +, \cdot, \exp, <, \in$. Models: (M, \mathcal{X}) , where $\mathcal{X} \subseteq \mathcal{P}(M)$.

Arithmetical hierarchy: Σ_n^0, Π_n^0 allow set parameters; Σ_n, Π_n are purely first-order; $\Sigma_n(A), \Pi_n(A)$ contain only one distinguished set parameter A.

The traditional base theory RCA₀:

- 1. basic properties of +, \cdot , exp, < etc.,
- 2. comprehension scheme for Δ_1^0 -formulas,
- 3. induction scheme for Σ_1^0 -formulas ($I\Sigma_1^0$).

 \mbox{RCA}_0^* is obtained from \mbox{RCA}_0 by replacing $\Sigma_1^0\mbox{-induction}$ with $\Delta_1^0\mbox{-induction}$ + exp.

 $exp = ,, 2^{x}$ is a total function"

Failure of Σ_1^0 -induction

I is a Σ_1^0 -definable proper cut.

A is an unbounded set enumerated in increasing order by the cut *I*. Its cardinality is strictly smaller then \mathbb{N} .

Two notions of an infinite set:

- A set S is unbounded if for every x there exists y ∈ S with y ≥ x.
- A set S is of cardinality N if there exists a bijection from N to S.

Ramsey-theoretic principles

$$\mathsf{RT}_2^2 =$$
 for every $c : [\mathbb{N}]^2 \to 2$ there exists an infinite set $S \subseteq \mathbb{N}$ such that c is constant on $[S]^2$.

CAC = For every partial order
$$(\mathbb{N}, \preceq)$$
 there exists an infinite set $S \subseteq \mathbb{N}$ which is a \preceq -chain or \preceq -antichain.

$$ADS =$$
 For every linear order (\mathbb{N}, \preceq) there exists an infinite
set $S \subseteq \mathbb{N}$ which is an \preceq -ascending or \preceq -descending
sequence.

$$CRT_2^2 =$$
 for every $c : [\mathbb{N}]^2 \to 2$ there exists an infinite $S \subseteq \mathbb{N}$
such that $c \upharpoonright S$ is stable, i.e. for every $x \in S$ there
exists $y \in S$ such that for all $z \in S$ if $z \ge y$, then
 $c(x, y) = c(x, z)$.

$$\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \Rightarrow \mathsf{CAC} \Rightarrow \mathsf{ADS} \Rightarrow \mathsf{CRT}_2^2$$

More beasts in the reverse-mathematical zoo

Normal versions: *infinite* = *unbounded* RT_2^2 , CAC, ADS, CRT_2^2

Long versions: $infinite = of \ cardinality \mathbb{N}$ ℓ -RT²₂, ℓ -CAC, ℓ -ADS^{set}, ℓ -ADS^{seq}, ℓ -CRT²₂

Normal versions

$$\operatorname{Cod}(M/I) = \{X \subseteq I : \exists s \in M \ (s)_{\operatorname{Ack}} \cap I = X\}$$

Theorem

Let P be one of RT_2^2 , CAC, ADS, CRT_2^2 . For every $(M, \mathcal{X}) \vDash RCA_0^*$ and every proper Σ_1^0 -definable cut $I \subseteq M$, it holds that

$$(M, \mathcal{X}) \vDash P$$
 iff $(I, \operatorname{Cod}(M/I)) \vDash P$.

Consequences

- Each of the principles RT²₂, CAC, ADS, CRT²₂ can be satisfied in a model of the form (M, Δ₁-Def(M)).
- RT₂², CAC, ADS are not Π₄- and CRT₂² is not Π₅-conservative over RCA₀^{*}.
- Each of the principles RT²₂, CAC, ADS, CRT²₂ is Π⁰₃-conservative over RCA⁶₀.

Idea of the proof for $(M, \mathcal{X}) \vDash \mathsf{CRT}_2^2 \Rightarrow (I, \mathrm{Cod}(M/I)) \vDash \mathsf{CRT}_2^2$

Let $(M, \mathcal{X}) \models CRT_2^2$, I be a Σ_1^0 -definable cut and $A = \{a_i\}_{i \in I}$ a cofinal set indexed by *I*. Let $f: [I]^2 \rightarrow 2$ be a colouring in $\operatorname{Cod}(M/I)$. Define a colouring f' on A by $f'(a_i, a_i) = f(i, j)$ and extend it on the whole M by looking at closest elements of A. Use CRT_2^2 in (M, \mathcal{X}) to get an unbounded set S on which f'is stable. Now $S' = \{i \in I : S \cap [a_i, a_{i+1}) \neq \emptyset\}$ is in $\operatorname{Cod}(M/I)$ by [Chong-Mourad 1990].

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → ○ へ ⊙

Long versions

One of two different behaviours:

•
$$\ell$$
-RT₂², ℓ -CAC and ℓ -ADS^{set} imply I Σ_1^0

• ℓ -ADS^{seq} and ℓ -CRT²₂ are Π^0_3 -conservative over RCA^{*}₀.

 $\mathsf{RCA}_0^* \vdash \ell\text{-}\mathsf{RT}_2^2 \Rightarrow \mathrm{I}\Sigma_1^0$ was observed by Yokoyama in 2013.

 $\label{eq:constraint} \begin{array}{l} \mbox{Theorem} \\ \mbox{RCA}_0^* \vdash \ell\mbox{-}\mbox{ADS}^{\rm seq} \Leftrightarrow \mbox{ADS} \mbox{ and } \mbox{WKL}_0^* \vdash \ell\mbox{-}\mbox{CRT}_2^2 \Leftrightarrow \mbox{CRT}_2^2. \\ \\ \mbox{WKL}_0^* = \mbox{RCA}_0^* + \mbox{WKL}_0 \end{array}$

Growing grouping principle

The growing grouping principle GGP_2^2 states that for every colouring $c : [\mathbb{N}]^2 \to 2$ there exists a sequence of finite sets $(G_i)_{i \in I}$ such that

- 1. for every $i < j \in I$ and every $x \in G_i$, $y \in G_j$ it holds that x < y,
- 2. for every $i < j \in I$, the colouring $c \upharpoonright (G_i \times G_j)$ is constant,

3. for every $i \in I$, $|G_i| \leq |G_{i+1}|$ and $\sup_{i \in I} |G_i| = \mathbb{N}$.

Lemma

 $\mathsf{WKL}_0^* + \neg \mathrm{I}\Sigma_1^0 \vdash \mathsf{GGP}_2^2.$

 $\label{eq:GGP2} GGP_2^2 \mbox{ restricted to transitive colourings} \\ \mbox{is provable in } RCA_0^* + \neg I\Sigma_1^0. \\$

Proof of $WKL_0^* \vdash \ell \text{-} CRT_2^2 \Leftrightarrow CRT_2^2$

We only have to prove WKL₀^{*} + $\neg I\Sigma_1^0 \vdash CRT_2^2 \Rightarrow \ell$ -CRT₂². Take any $c : [\mathbb{N}]^2 \rightarrow 2$. Apply GGP₂² to obtain a sequence of finite sets $G_0 < G_1 < \ldots < G_i < \ldots$ indexed by some Σ_1^0 -cut *I*. Let $D = \{\min(G_i) : i \in I\}$. Apply CRT₂² to $c \upharpoonright D$ and get an unbounded set $S \subseteq D$ on which c is stable. *S* has the form $\{\min(G_{i_j}) : j \in J\}$ for some cut $J \subseteq I$. Now c is also stable on the set $\bigcup_{j \in J} G_{i_j}$, which has cardinality \mathbb{N} : $\sup_{j \in J} |G_{i_j}| = \sup_{i \in I} |G_i| = \mathbb{N}$.

Summary

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Cohesiveness Principle

COH: For each sequence $(R_n)_{n \in \mathbb{N}}$ of subsets of \mathbb{N} , there exists an unbounded set C which is cohesive for $(R_n)_{n \in \mathbb{N}}$ (i.e. for every $i \in \mathbb{N}$ either $C \subseteq^* R_i$ or $C \subseteq^* \overline{R_i}$).

- RCA^{*}₀ ⊢ COH ⇒ CRT²₂: given a colouring c: [N]² → 2 take a cohesive set S for the sequence {x ∈ N: c(n, x) = 0}_{n∈N}. Then the colouring c is stable on S.
- ▶ $RCA_0 \vdash RT_2^2 \Rightarrow COH$ (Cholak, Jockusch, Slaman 2001, Mileti 2004).
- COH is Π_1^1 -conservative over RCA₀ (Cholak, Jockusch, Slaman 2001).

► $RCA_0 + B\Sigma_2^0 \vdash CRT_2^2 \Leftrightarrow COH$ (Hirschfeldt, Shore 2007).

 Σ_2^0 -separation: For every two disjoint Σ_2^0 -definable sets A_0 , A_1 there exists a Δ_2^0 -definable set B such that $A_0 \subseteq B$ and $A_1 \subseteq \overline{B}$.

Lemma

 $\mathsf{RCA}_0^* \vdash \mathsf{COH} \Rightarrow \Sigma_2^0\text{-separation}.$

 $\mathsf{RCA}_0 \vdash \mathsf{COH} \Rightarrow \Sigma_2^0$ -separation was proved by Belanger in 2015.

Proof sketch.

Given two Π_2^0 -sets A_0 , A_1 such that $A_0 \cup A_1 = \mathbb{N}$ we look for a Δ_2^0 -set B such that $B \subseteq A_0$ and $\overline{B} \subseteq A_1$. One can define a computable function $f : \mathbb{N} \times \mathbb{N} \to 2$ such that

$$\{s: f(x,s) = i\}$$
 is unbounded $\implies x \in A_i$.

Define a computable sequence of sets $R_x = \{s \colon f(x, s) = 0\}$ and let C be cohesive for this sequence. Put $n \in B$ iff $C \subseteq^* R_n$.

Lemma

 $B\Sigma_1 + exp$ proves that there exist two disjoint Σ_2 -sets that cannot be separated by a Δ_2 -set.

Take $A_0 = \{e \in \mathbb{N} : \Phi_e^{0'}(e) = 0\}$ and $A_1 = \{e \in \mathbb{N} : \Phi_e^{0'}(e) = 1\}$ and check that with a careful formalisation of basic computability theory it goes through in $B\Sigma_1 + exp$. (Cf. Chong and Yang *The jump of* $a \Sigma_n$ -cut.)

COH is never computably true over RCA_0^* :

Corollary

Every model of the form $(M, \Delta_1 \operatorname{-Def}(M))$ satisfying RCA₀^{*} does not satisfy COH.

Theorem

 $\mathsf{RCA}_0^* \nvDash \mathsf{RT}_2^2 \Rightarrow \mathsf{COH}.$

There exist models of $RCA_0^* + RT_2^2$ of the form $(M, \Delta_1 - Def(M))$.

Questions

- Does ADS or CAC imply CRT²₂ over RCA^{*}₀?
- ► Does $RCA_0^* + \neg I\Sigma_1^0$ imply GGP_2^2 ? Is GGP_2^2 equivalent to WKL_0^* over $RCA_0^* + \neg I\Sigma_1^0$?
- ► Are ℓ-CRT²₂ and CRT²₂ equivalent over RCA^{*}₀? Does ℓ-CRT²₂ follow from RT²₂?
- Does COH imply IΣ⁰₁ over RCA^{*}₀? Is COH Π⁰₃-conservative over RCA^{*}₀?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

References

- David R. Belanger. Conservation theorems for the cohesiveness principle, 2015. Preprint.
- Marta Fiori Carones, Leszek A. Kołodziejczyk, Katarzyna W. Kowalik. *Weaker cousins of Ramsey's theorem over a weak base theory.* Annals of Pure and Applied Logic, 172(10), 2021, article 103028.
- Denis R. Hirschfeldt, Richard A. Shore. Combinatorial Principles Weaker than Ramsey's Theorem for Pairs. The Journal of Symbolic Logic, 72(1):171-206, 2007.
- Leszek A. Kołodziejczyk, Katarzyna W. Kowalik, Keita Yokoyama. How strong is Ramsey's theorem if infinity can be weak?, 2021. Submitted. Available at arXiv:2011.02550.
- Keita Yokoyama. On the strength of Ramsey's theorem without Σ₁-induction. Mathematical Logic Quarterly, 59:108-111, 2013.

Thank you!

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?