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Second order arithmetic

Language L2: first-order variables: x , y , z , . . . , second-order
variables: X ,Y ,Z , . . . , non-logical symbols: 0, 1,+, ·, exp, <,∈.

Models: (M,X ), where X ⊆ P(M).

Arithmetical hierarchy: Σ0
n,Π0

n allow set parameters; Σn,Πn are
purely first-order; Σn(A),Πn(A) contain only one distinguished set
parameter A.

The traditional base theory RCA0:

1. basic properties of +, ·, exp, < etc.,

2. comprehension scheme for ∆0
1-formulas,

3. induction scheme for Σ0
1-formulas (IΣ0

1).

RCA∗
0 is obtained from RCA0 by replacing Σ0

1-induction with
∆0

1-induction + exp.

exp = ,,2x is a total function”



Failure of Σ0
1-induction

I is a Σ0
1-definable proper cut.

A is an unbounded set
enumerated in increasing order
by the cut I . Its cardinality is
strictly smaller then N.

Two notions of an infinite set:

▶ A set S is unbounded if
for every x there exists
y ∈ S with y ≥ x .

▶ A set S is of cardinality N
if there exists a bijection
from N to S .



Ramsey-theoretic principles

RT2
2 = for every c : [N]2 → 2 there exists an infinite set

S ⊆ N such that c is constant on [S ]2.

CAC = For every partial order (N,⪯) there exists an infinite
set S ⊆ N which is a ⪯-chain or ⪯-antichain.

ADS = For every linear order (N,⪯) there exists an infinite
set S ⊆ N which is an ⪯-ascending or ⪯-descending
sequence.

CRT2
2 = for every c : [N]2 → 2 there exists an infinite S ⊆ N

such that c ↾S is stable, i.e. for every x ∈ S there
exists y ∈ S such that for all z ∈ S if z ≥ y , then
c(x , y) = c(x , z).

RCA0 ⊢ RT2
2 ⇒ CAC ⇒ ADS ⇒ CRT2

2



More beasts in the reverse-mathematical zoo
Normal versions: infinite = unbounded
RT2

2, CAC, ADS, CRT2
2

Long versions: infinite = of cardinality N
ℓ-RT2

2, ℓ-CAC, ℓ-ADSset, ℓ-ADSseq, ℓ-CRT2
2 .

ℓ-RT2
2

RT2
2

ℓ-CAC

CAC

ℓ-ADSset

ℓ-ADSseq ADS ℓ-CRT2
2

CRT2
2

Imply IΣ0
1

Π0
3-conservative
over RCA∗

0



Normal versions

Cod(M/I ) = {X ⊆ I : ∃s ∈ M (s)Ack ∩ I = X}

Theorem
Let P be one of RT2

2,CAC,ADS,CRT2
2. For every (M,X ) ⊨ RCA∗

0

and every proper Σ0
1-definable cut I ⊆ M, it holds that

(M,X ) ⊨ P iff (I ,Cod(M/I )) ⊨ P.

Consequences

▶ Each of the principles RT2
2,CAC,ADS,CRT2

2 can be satisfied
in a model of the form (M,∆1-Def(M)).

▶ RT2
2,CAC,ADS are not Π4- and CRT2

2 is not Π5-conservative
over RCA∗

0.

▶ Each of the principles RT2
2,CAC,ADS,CRT2

2 is
Π0
3-conservative over RCA∗

0.



Idea of the proof for (M,X ) ⊨ CRT2
2 ⇒ (I ,Cod(M/I )) ⊨ CRT2

2

Let (M,X ) ⊨ CRT2
2, I be a

Σ0
1-definable cut and

A = {ai}i∈I a cofinal set
indexed by I . Let f : [I ]2 → 2
be a colouring in Cod(M/I ).
Define a colouring f ′ on A by
f ′(ai , aj) = f (i , j) and extend
it on the whole M by looking
at closest elements of A.
Use CRT2

2 in (M,X ) to get an
unbounded set S on which f ′

is stable. Now
S ′ = {i ∈ I : S ∩ [ai , ai+1) ̸= ∅}
is in Cod(M/I ) by
[Chong-Mourad 1990].



Long versions

One of two different behaviours:

▶ ℓ-RT2
2, ℓ-CAC and ℓ-ADSset imply IΣ0

1

▶ ℓ-ADSseq and ℓ-CRT2
2 are Π0

3-conservative over RCA∗
0.

RCA∗
0 ⊢ ℓ-RT2

2 ⇒ IΣ0
1 was observed by Yokoyama in 2013.

Theorem
RCA∗

0 ⊢ ℓ-ADSseq ⇔ ADS and WKL∗
0 ⊢ ℓ-CRT2

2 ⇔ CRT2
2.

WKL∗0 = RCA∗
0 +WKL0



Growing grouping principle

The growing grouping principle GGP2
2 states that for every

colouring c : [N]2 → 2 there exists a sequence of finite sets (Gi )i∈I
such that

1. for every i < j ∈ I and every x ∈ Gi , y ∈ Gj it holds that
x < y ,

2. for every i < j ∈ I , the colouring c ↾ (Gi × Gj) is constant,

3. for every i ∈ I , |Gi | ≤ |Gi+1| and supi∈I |Gi | = N.

Lemma
WKL∗

0 + ¬IΣ0
1 ⊢ GGP2

2.

GGP2
2 restricted to transitive colourings

is provable in RCA∗
0 + ¬IΣ0

1.



Proof of WKL∗
0 ⊢ ℓ-CRT2

2 ⇔ CRT2
2

We only have to prove WKL∗
0 + ¬IΣ0

1 ⊢ CRT2
2 ⇒ ℓ-CRT2

2.
Take any c : [N]2 → 2. Apply GGP2

2 to obtain a sequence of finite
sets G0 < G1 < . . . < Gi < . . . indexed by some Σ0

1-cut I . Let
D = {min(Gi ) : i ∈ I}.
Apply CRT2

2 to c ↾D and get an unbounded set S ⊆ D on which c
is stable. S has the form {min(Gij ) : j ∈ J} for some cut J ⊆ I .
Now c is also stable on the set

⋃
j∈J Gij , which has cardinality N:

supj∈J |Gij | = supi∈I |Gi | = N.



Summary
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Cohesiveness Principle

COH: For each sequence (Rn)n∈N of subsets of N, there exists an
unbounded set C which is cohesive for (Rn)n∈N (i.e. for every i ∈ N
either C ⊆∗ Ri or C ⊆∗ R i ).

▶ RCA∗
0 ⊢ COH ⇒ CRT2

2: given a colouring c : [N]2 → 2 take a
cohesive set S for the sequence {x ∈ N : c(n, x) = 0}n∈N. Then the
colouring c is stable on S .

▶ RCA0 ⊢ RT2
2 ⇒ COH (Cholak, Jockusch, Slaman 2001, Mileti 2004).

▶ COH is Π1
1-conservative over RCA0 (Cholak, Jockusch, Slaman 2001).

▶ RCA0 + BΣ0
2 ⊢ CRT2

2 ⇔ COH (Hirschfeldt, Shore 2007).



Σ0
2-separation: For every two disjoint Σ0

2-definable sets A0, A1

there exists a ∆0
2-definable set B such that A0 ⊆ B and A1 ⊆ B.

Lemma
RCA∗

0 ⊢ COH ⇒ Σ0
2-separation.

RCA0 ⊢ COH ⇒ Σ0
2-separation was proved by Belanger in 2015.

Proof sketch.
Given two Π0

2-sets A0, A1 such that A0 ∪ A1 = N we look for a
∆0

2-set B such that B ⊆ A0 and B ⊆ A1.
One can define a computable function f : N× N → 2 such that

{s : f (x , s) = i} is unbounded =⇒ x ∈ Ai .

Define a computable sequence of sets Rx = {s : f (x , s) = 0} and
let C be cohesive for this sequence. Put n ∈ B iff C ⊆∗ Rn.



Lemma
BΣ1 + exp proves that there exist two disjoint Σ2-sets that cannot
be separated by a ∆2-set.

Take A0 = {e ∈ N : Φ0′
e (e) = 0} and A1 = {e ∈ N : Φ0′

e (e) = 1}
and check that with a careful formalisation of basic computability
theory it goes through in BΣ1 + exp. (Cf. Chong and Yang The jump of
a Σn-cut.)

COH is never computably true over RCA∗
0 :

Corollary

Every model of the form (M,∆1-Def(M)) satisfying RCA∗
0 does

not satisfy COH.

Theorem
RCA∗

0 ⊬ RT2
2 ⇒ COH.

There exist models of RCA∗
0 + RT2

2 of the form (M,∆1-Def(M)).



Questions

▶ Does ADS or CAC imply CRT2
2 over RCA∗

0?

▶ Does RCA∗
0 + ¬IΣ0

1 imply GGP2
2? Is GGP2

2 equivalent to
WKL∗

0 over RCA∗
0 + ¬IΣ0

1?

▶ Are ℓ-CRT2
2 and CRT2

2 equivalent over RCA∗
0? Does ℓ-CRT2

2

follow from RT2
2?

▶ Does COH imply IΣ0
1 over RCA∗

0? Is COH Π0
3-conservative

over RCA∗
0?
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Thank you!


