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Automorphism groups of countable structures

Let G be a Polish group.

Proposition

The following conditions are equivalent:

1 G is a closed subgroup of S∞ = Sym(X ) – topological group
of all bijections of a countable set X , equipped with the
pointwise convergence topology;

2 G has a neighbourhood basis of the identity that consists of
open subgroups;

3 G is an automorphism group of a countable first-order
structure;

4 G is an automorphism group of a countable homogeneous
relational first-order structure.
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Homogeneous structures

Definition

A countable first-order structure M is homogeneous if every
isomorphism between finite substructures of M can be extended to
an automorphism of the whole M.

Example

rationals with the ordering

the random graph

the random poset

the rational Urysohn metric space
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How do we obtain countable homogeneous structures?

A countable family F of finite structures is a Fräıssé family if:

1 (F1) (hereditary property: HP) if A ∈ F and B ⊆ A then
B ∈ F ;

2 (F2) (joint embedding property: JEP) for any A,B ∈ F there
is C ∈ F and embeddings from A to C and from B to C ;

3 (F3) (amalgamation property: AP) for A,B1,B2 ∈ F and
embeddings ϕ1 : A→ B1 and ϕ2 : A→ B2, there exist C , and
embeddings ψ1 : B1 → C and ψ2 : B2 → C such that
ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2.
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Fräıssé’s Theorem

Theorem (Fräıssé)

For every Fräıssé family F there is a unique countable
homogeneous structure M (called Fräıssé limit), such that the set
of finite substructures of M is equal to F .
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Examples

Example

F = the family of finite linear orders
Fräıssé limit = rationals with the ordering

F = the family of finite graphs
Fräıssé limit = the random graph

F = the family of finite metric spaces with rational distances
Fräıssé limit = the rational Urysohn metric space
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Some history 1

Theorem (Higman, 1955)

The following is the complete list of proper normal subgroups of
Aut(Q):

1 H1 = {f : ∃a f � (−∞, a) = Id},
2 H2 = {f : ∃b f � (b,∞) = Id},
3 H1 ∩ H2.
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Some history 2

Theorem (Glass-McCleary-Rubin, 1993)

The automorphism group of the random poset is simple.

Theorem (Macpherson-Tent, 2011)

Let M be the Fräıssé limit of a free, transitive and nontrivial
amalgamation class, or a random tournament. Then the
automorphism group of M is simple.
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Some history 3

Theorem (Tent - Ziegler, 2012, 2013)

Let M be the Fräıssé limit of a free, transitive and nontrivial
amalgamation class, or the bounded countable Urysohn space.
Then the automorphism group of M is simple.

To prove their theorems, Tent-Ziegler introduced a stationary
independence relation.
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Free fusion of Fräıssé families

Let F1 and F2 be Fräıssé classes. Let Fi consist of Li -structures.
Suppose L1 ∩ L2 = ∅.

Definition

The free fusion of F1 and F2 is

F1 ∗ F2 = {A : A is an L1 ∪ L2-structure A � Li ∈ Fi , i = 1, 2}.
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Order and Tournament Expansions

Let F be a Fräıssé class.

Definition (Order Expansion)

It is F ∗ LO, where LO is the Fräıssé class of finite linear orders.

Definition (Tournament Expansion)

It is F ∗ T , where T is the Fräıssé class of finite tournaments.
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Main Theorem

Theorem

Assume that M is one of the following:

1 the Fräıssé limit of a free, transitive and nontrivial
amalgamation class, or

2 the bounded countable Urysohn space.

3 the random poset.

If M∗ is an order expansion of M , then G := Aut(M∗) is simple.
The same holds if M∗ is a tournament expansion of (1) or (2).
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Stationary Independence Relation

Definition

Let M be a countable structure with universe M and let |̂ be a
ternary relation between finite subset of M. We say that |̂ is a
stationary independence relation on M if for all finite sets
A,B,C ,D ⊆ M the following hold:

(Invariance) Whether A and B are independent over C
depends only on the type of ABC .

(Monotonicity) A |̂ B CD implies that A |̂ B C and
A |̂ BC D.

(Transitivity)

A |̂
B

C and A |̂
BC

D implies A |̂
B

D.
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Stationary Independence Relation

Definition (Continuation of the definition)

(Symmetry) A |̂ B C if and only if C |̂ B A.

(Existence) If p is a type over B and C is a finite set, there is
some a realizing p such that a |̂ B C .

(Stationarity) If the tuples x and y have the same type over B
and are both independent from C over B, then x and y have
the same type over BC .
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Examples

Example (Free amalgamation classes)

We put A |̂ B C if and only if ABC is isomorphic to the free
amalgam of A and C over B, i.e. if and only if A ∩ C = B and for
every n-ary relation R in L, if d1, . . . , dn is an n-tuple in A ∪ B ∪ C
with some di ∈ A \ B and dj ∈ C \ B, then R(d1, . . . , dn) does not
hold.

Example (Metric spaces)

We put A |̂ C B if and only if for all a ∈ A, b ∈ B there is some
c ∈ C such that d(a, b) = d(a, c) + d(c , b), and A |̂ B if and
only if for all a ∈ A, b ∈ B the distance d(a, c) is maximal.
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Order-homogeneity and Tournament-homogeneity

Definition (Order-homogeneity)

If M< is an order expansion of M, then g ∈ G is <-homogeneous if
and only if g is unboundedly increasing or unboundedly decreasing.

Definition (Tournament-homogeneity)

If M→ is a tournament expansion of M, then g ∈ G is
→-homogeneous if and only if a→ g(a) for all a ∈ M or g(a)→ a
for all a ∈ M.
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Notation

Definition

A |̂ B;C D means AB |̂ C D and A |̂ B CD
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Moving maximally

Definition

Let M∗ be the Fräıssé limit of F ∗ LO or F ∗ T , where F carries a
stationary independence relation and let G = Aut(M∗). We say
that g ∈ G moves maximally if

1 g is <-homogeneous (respectively, →-homogeneous); and

2 every type over a finite set X has a realization a such that

a |̂
X ;g(X )

g(a).
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Step 1

Theorem

Let M∗ be the Fräıssé limit of F ∗ LO or F ∗ T , where F carries a
stationary independence relation. If g ∈ G moves maximally, then
any element of G is the product of at most eight conjugates of g
and g−1.
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Step 1-continuation

Proposition

If M∗ is a tournament expansion of a homogeneous L1-structure
M1 carrying a stationary independence relation, any
g ∈ G = Aut(M∗) that moves maximally is compatible.

If M∗ is an order expansion of a homogeneous L1-structure M1

carrying a stationary independence relation, any g ∈ G = Aut(M∗)
that moves maximally is compatible.

In particular, every finite set X0 has a finite extension X
depending only on X0 and g , which is full for g , i.e. the
following holds: for Y = g(X ) and all tuples x , y such that
g(tp(x/X )) = tp(y/Y ), tpL2(y i/x i ) = tpL2(g(x i )/x i ) and
x |̂ X ;Y y there is some a ∈ Fix(XY ) such that ga(x) = y
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Step 1-continuation

Proposition

Let g1, . . . , g4 ∈ G move maximally, and assume that g2 is
conjugate to g−13 . Then, for any open non-empty set U ⊆ G 4,
there is some open non-empty set W ⊆ G such that the image
φ(U) under the map

φ : G 4 → G : (h1, . . . , h4) 7→ gh4
4 gh3

3 gh2
2 gh1

1 .

is dense in W .
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Step 2

Theorem

If M∗ is an order or tournament expansion of a structure M as in
the Main Theorem and h ∈ G = Aut(M∗), h 6= Id, then there is
some g ∈ 〈h〉G that moves maximally.
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Step 2 for M<

We construct an unboundedly increasing automorphism g ∈ 〈h〉G
moving maximally starting from an arbitrary h ∈ G . This is done
in four steps.

1 construct a fixed point free h1 = [h, f1] ∈ 〈h〉G ;

2 construct a strictly increasing h2 = [h1, f2] ∈ 〈h1〉G ;

3 construct an unboundedly increasing h3 ∈ 〈h2〉G ;

4 construct an unboundedly increasing g = [h3, f3] ∈ 〈h3〉G
moving maximally.
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Questions

Definition

A Polish group G has the automatic continuity property if for every
Polish group H every abstract homomorphism φ : G → H is
continuous.

Question

Do automorphims groups of structures studied above have the
automatic continuity property?

In particular, does the automorphism group of the linearly
ordered random graph have the automatic continuity
property?
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