Simplicity of the automorphism groups of countable structures

Aleksandra Kwiatkowska

joint work with Filippo Calderoni and Katrin Tent

March 18, 2021

Let G be a Polish group.

Proposition

The following conditions are equivalent:

- G is a closed subgroup of S_∞ = Sym(X) topological group of all bijections of a countable set X, equipped with the pointwise convergence topology;
- G has a neighbourhood basis of the identity that consists of open subgroups;
- G is an automorphism group of a countable first-order structure;
- G is an automorphism group of a countable homogeneous relational first-order structure.

A countable first-order structure M is homogeneous if every isomorphism between finite substructures of M can be extended to an automorphism of the whole M.

A countable first-order structure M is homogeneous if every isomorphism between finite substructures of M can be extended to an automorphism of the whole M.

Example

- rationals with the ordering
- the random graph
- the random poset
- the rational Urysohn metric space

A countable family \mathcal{F} of finite structures is a Fraissé family if:

- (F1) (hereditary property: HP) if $A \in \mathcal{F}$ and $B \subseteq A$ then $B \in \mathcal{F}$;
- (F2) (joint embedding property: JEP) for any $A, B \in \mathcal{F}$ there is $C \in \mathcal{F}$ and embeddings from A to C and from B to C;
- **③** (F3) (amalgamation property: AP) for A, B₁, B₂ ∈ F and embeddings $\varphi_1 : A \to B_1$ and $\varphi_2 : A \to B_2$, there exist C, and embeddings $\psi_1 : B_1 \to C$ and $\psi_2 : B_2 \to C$ such that $\psi_1 \circ \varphi_1 = \psi_2 \circ \varphi_2$.

Theorem (Fraïssé)

For every Fraïssé family \mathcal{F} there is a unique countable homogeneous structure **M** (called Fraïssé limit), such that the set of finite substructures of **M** is equal to \mathcal{F} .

Example

- \mathcal{F} = the family of finite linear orders Fraïssé limit = rationals with the ordering
- \mathcal{F} = the family of finite graphs Fraïssé limit = the random graph
- \mathcal{F} = the family of finite metric spaces with rational distances Fraïssé limit = the rational Urysohn metric space

Theorem (Higman, 1955)

The following is the complete list of proper normal subgroups of $Aut(\mathbb{Q})$:

伺 ト イヨト イヨト

Theorem (Glass-McCleary-Rubin, 1993)

The automorphism group of the random poset is simple.

- ₹ 🖬 🕨

Theorem (Glass-McCleary-Rubin, 1993)

The automorphism group of the random poset is simple.

Theorem (Macpherson-Tent, 2011)

Let **M** be the Fraïssé limit of a free, transitive and nontrivial amalgamation class, or a random tournament. Then the automorphism group of **M** is simple.

Theorem (Tent - Ziegler, 2012, 2013)

Let **M** be the Fraïssé limit of a free, transitive and nontrivial amalgamation class, or the bounded countable Urysohn space. Then the automorphism group of **M** is simple.

To prove their theorems, Tent-Ziegler introduced a stationary independence relation.

Let \mathcal{F}_1 and \mathcal{F}_2 be Fraïssé classes. Let \mathcal{F}_i consist of L_i -structures. Suppose $L_1 \cap L_2 = \emptyset$.

Definition

The free fusion of \mathcal{F}_1 and \mathcal{F}_2 is

 $\mathcal{F}_1 * \mathcal{F}_2 = \{A: A \text{ is an } L_1 \cup L_2 \text{-structure } A \upharpoonright L_i \in \mathcal{F}_i, i = 1, 2\}.$

Let \mathcal{F} be a Fraïssé class.

Definition (Order Expansion)

It is $\mathcal{F} * LO$, where LO is the Fraissé class of finite linear orders.

Let \mathcal{F} be a Fraïssé class.

Definition (Order Expansion)

It is $\mathcal{F} * LO$, where LO is the Fraissé class of finite linear orders.

Definition (Tournament Expansion)

It is $\mathcal{F} * \mathcal{T}$, where \mathcal{T} is the Fraissé class of finite tournaments.

Theorem

Assume that **M** is one of the following:

- the Fraïssé limit of a free, transitive and nontrivial amalgamation class, or
- 2 the bounded countable Urysohn space.
- the random poset.

If M^* is an order expansion of M, then $G := Aut(M^*)$ is simple. The same holds if M^* is a tournament expansion of (1) or (2).

Let M be a countable structure with universe M and let \bigcup be a ternary relation between finite subset of M. We say that \bigcup is a stationary independence relation on M if for all finite sets $A, B, C, D \subseteq M$ the following hold:

- (Invariance) Whether A and B are independent over C depends only on the type of ABC.
- (Monotonicity) $A \perp_B CD$ implies that $A \perp_B C$ and $A \perp_{BC} D$.
- (Transitivity)

$$A \underset{B}{\bigcup} C$$
 and $A \underset{BC}{\bigcup} D$ implies $A \underset{B}{\bigcup} D$.

• • = • • = •

Definition (Continuation of the definition)

- (Symmetry) $A \perp_B C$ if and only if $C \perp_B A$.
- (Existence) If p is a type over B and C is a finite set, there is some a realizing p such that $a \perp_B C$.
- (Stationarity) If the tuples x and y have the same type over B and are both independent from C over B, then x and y have the same type over BC.

Example (Free amalgamation classes)

We put $A boxsim_B C$ if and only if ABC is isomorphic to the free amalgam of A and C over B, i.e. if and only if $A \cap C = B$ and for every *n*-ary relation R in L, if d_1, \ldots, d_n is an *n*-tuple in $A \cup B \cup C$ with some $d_i \in A \setminus B$ and $d_j \in C \setminus B$, then $R(d_1, \ldots, d_n)$ does not hold.

Example (Free amalgamation classes)

We put $A boxsim_B C$ if and only if ABC is isomorphic to the free amalgam of A and C over B, i.e. if and only if $A \cap C = B$ and for every *n*-ary relation R in L, if d_1, \ldots, d_n is an *n*-tuple in $A \cup B \cup C$ with some $d_i \in A \setminus B$ and $d_j \in C \setminus B$, then $R(d_1, \ldots, d_n)$ does not hold.

Example (Metric spaces)

We put $A \, {}_C B$ if and only if for all $a \in A, b \in B$ there is some $c \in C$ such that d(a, b) = d(a, c) + d(c, b), and $A \, {}_C B$ if and only if for all $a \in A, b \in B$ the distance d(a, c) is maximal.

Definition (Order-homogeneity)

If $M_{<}$ is an order expansion of M, then $g \in G$ is <-homogeneous if and only if g is unboundedly increasing or unboundedly decreasing.

Definition (Order-homogeneity)

If $M_{<}$ is an order expansion of M, then $g \in G$ is <-homogeneous if and only if g is unboundedly increasing or unboundedly decreasing.

Definition (Tournament-homogeneity)

If \mathbf{M}_{\rightarrow} is a tournament expansion of \mathbf{M} , then $g \in G$ is \rightarrow -homogeneous if and only if $a \rightarrow g(a)$ for all $a \in M$ or $g(a) \rightarrow a$ for all $a \in M$.

$A \perp_{B;C} D$ means $AB \perp_C D$ and $A \perp_B CD$

Aleksandra Kwiatkowska Simplicity of automorphism groups

・ロト ・回ト ・ヨト ・ヨト

æ

Let \mathbf{M}^* be the Fraïssé limit of $\mathcal{F} * LO$ or $\mathcal{F} * \mathcal{T}$, where \mathcal{F} carries a stationary independence relation and let $G = \operatorname{Aut}(\mathbf{M}^*)$. We say that $g \in G$ moves maximally if

(g is <-homogeneous (respectively, \rightarrow -homogeneous); and

2 every type over a finite set X has a realization a such that

$$a \bigcup_{X;g(X)} g(a).$$

Theorem

Let \mathbf{M}^* be the Fraïssé limit of $\mathcal{F} * LO$ or $\mathcal{F} * \mathcal{T}$, where \mathcal{F} carries a stationary independence relation. If $g \in G$ moves maximally, then any element of G is the product of at most eight conjugates of g and g^{-1} .

Proposition

If \mathbf{M}^* is a tournament expansion of a homogeneous L_1 -structure \mathbf{M}_1 carrying a stationary independence relation, any $g \in G = Aut(\mathbf{M}^*)$ that moves maximally is compatible. If \mathbf{M}^* is an order expansion of a homogeneous L_1 -structure \mathbf{M}_1 carrying a stationary independence relation, any $g \in G = Aut(\mathbf{M}^*)$ that moves maximally is compatible.

Proposition

If \mathbf{M}^* is a tournament expansion of a homogeneous L_1 -structure \mathbf{M}_1 carrying a stationary independence relation, any $g \in G = Aut(\mathbf{M}^*)$ that moves maximally is compatible. If \mathbf{M}^* is an order expansion of a homogeneous L_1 -structure \mathbf{M}_1 carrying a stationary independence relation, any $g \in G = Aut(\mathbf{M}^*)$ that moves maximally is compatible.

In particular, every finite set X₀ has a finite extension X depending only on X₀ and g, which is full for g, i.e. the following holds: for Y = g(X) and all tuples x, y such that g(tp(x/X)) = tp(y/Y), tp_{L2}(yⁱ/xⁱ) = tp_{L2}(g(xⁱ)/xⁱ) and x ⊥_{X:Y} y there is some a ∈ Fix(XY) such that g^a(x) = y

< 🗇 🕨 < 🚍 🕨

Proposition

Let $g_1, \ldots, g_4 \in G$ move maximally, and assume that g_2 is conjugate to g_3^{-1} . Then, for any open non-empty set $U \subseteq G^4$, there is some open non-empty set $W \subseteq G$ such that the image $\phi(U)$ under the map

$$\phi \colon G^4 o G \colon (h_1, \dots, h_4) \mapsto g_4^{h_4} g_3^{h_3} g_2^{h_2} g_1^{h_1}.$$

is dense in W.

Theorem

If \mathbf{M}^* is an order or tournament expansion of a structure \mathbf{M} as in the Main Theorem and $h \in G = Aut(\mathbf{M}^*)$, $h \neq Id$, then there is some $g \in \langle h \rangle^G$ that moves maximally.

We construct an unboundedly increasing automorphism $g \in \langle h \rangle^G$ moving maximally starting from an arbitrary $h \in G$. This is done in four steps.

- construct a fixed point free $h_1 = [h, f_1] \in \langle h \rangle^G$;
- ② construct a strictly increasing $h_2 = [h_1, f_2] \in \langle h_1 \rangle^G$;
- **③** construct an unboundedly increasing $h_3 \in \langle h_2 \rangle^G$;
- construct an unboundedly increasing g = [h₃, f₃] ∈ (h₃)^G moving maximally.

A Polish group G has the automatic continuity property if for every Polish group H every abstract homomorphism $\phi: G \to H$ is continuous.

A Polish group G has the automatic continuity property if for every Polish group H every abstract homomorphism $\phi: G \to H$ is continuous.

Question

- Do automorphims groups of structures studied above have the automatic continuity property?
- In particular, does the automorphism group of the linearly ordered random graph have the automatic continuity property?