Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	000000

Distributive Laws for Relative Monads

Ghentrire-Leeds Virtual Logic Seminar

Gabriele Lobbia

University of Leeds

11 June 2020

Э

DQC

イロト イロト イヨト イヨト

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
•	000000	000	000000	000000

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
•	000000	000	000000	000000

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
•	000000	000	000000	000000

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
•	000000	000	000000	000000

Introduction O	Monads ●00000	Distributive Laws	Relative Monads	Relative Distributive Laws
Why Monads?				

When dealing with *algebraic structures* we usually have the following picture:

All these *forgetful* functors have a left adjoint given by the free-constructions.

Looking at the properties that all the *UF* satisfy we can generalise this notion.

Introduction O	Monads ●00000	Distributive Laws	Relative Monads	Relative Distributive Laws 000000

Why Monads?

When dealing with *algebraic structures* we usually have the following picture:

All these *forgetful* functors have a left adjoint given by the free-constructions.

Looking at the properties that all the *UF* satisfy we can generalise this notion.

DQC

Introduction O	Monads ●00000	Distributive Laws	Relative Monads	Relative Distributive Laws

Why Monads?

When dealing with *algebraic structures* we usually have the following picture:

All these *forgetful* functors have a left adjoint given by the free-constructions.

Looking at the properties that all the UF satisfy we can generalise this notion.

SAC

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	00000	000	000000	000000

Theorem

Mon is complete and cocomplete.

Theorem

Ab is complete and cocomplete.

Thanks to monads we can prove these theorems all at once with:

Theorem If U : D → C is "monadic", then: If C is complete, then D is complete; If C is cocomplete and D has reflexive coequalizers, then D is cocomplete

<ロト <回ト < 三ト < 三ト

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	00000	000	000000	000000

Theorem

Mon is complete and cocomplete.

Theorem

Ab is complete and cocomplete.

Thanks to monads we can prove these theorems all at once with:

TheoremIf $U : \mathbb{D} \to \mathbb{C}$ is "monadic", then:• If \mathbb{C} is complete, then \mathbb{D} is complete;

If C is cocomplete and D has reflexive coequalizers, then D is cocomplete.

イロト イヨト イヨト イヨト

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	00000	000	000000	000000

Definition

Let \mathbb{C} be a category. A monad (S, m, s) on \mathbb{C} consists of:

- A functor $S : \mathbb{C} \to \mathbb{C}$;
- Natural transformations $m:S^2 \to S$ and $s:1_{\mathbb{C}} \to S$ s.t.

Example: If $F \dashv G$, then $(GF, G \epsilon F, \eta)$ is a monad.

SAC

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	00000	000	000000	000000

Definition

Let \mathbb{C} be a category. A monad (S, m, s) on \mathbb{C} consists of:

- A functor $S : \mathbb{C} \to \mathbb{C}$;
- Natural transformations $m:S^2\to S$ and $s:1_\mathbb{C}\to S$ s.t.

Example: If $F \dashv G$, then $(GF, G \in F, \eta)$ is a monad.

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	00000	000	000000	000000

Definition

Let \mathbb{C} be a category. A monad (S, m, s) on \mathbb{C} consists of:

- A functor $S : \mathbb{C} \to \mathbb{C}$;
- Natural transformations $m:S^2\to S$ and $s:1_\mathbb{C}\to S$ s.t.

Example: If $F \dashv G$, then $(GF, G \in F, \eta)$ is a monad.

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	000000

Algebras for a Monad

 $S : \mathbb{C} \to \mathbb{C}$ monad, an *S*-algebra is an object $A \in \mathbb{C}$ with a structural map $a : SA \to A$ s.t.

Sac

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	000000

Algebras for a Monad

 $S : \mathbb{C} \to \mathbb{C}$ monad, an *S*-algebra is an object $A \in \mathbb{C}$ with a structural map $a : SA \to A$ s.t.

11 June 2020

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	000000

Algebras for a Monad

 $S : \mathbb{C} \to \mathbb{C}$ monad, an *S*-algebra is an object $A \in \mathbb{C}$ with a structural map $a : SA \to A$ s.t.

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	000000

Let $a : SA \rightarrow A$ and $b : SB \rightarrow B$ be two *S*-algebras. An **algebra morphism** is a map $f : A \rightarrow B$ s.t.

 \Rightarrow we get a category of *S*-algebras *S*-Alg.

Theorem (Eilenberg-Moore) For any monad $S : \mathbb{C} \to \mathbb{C}$, there is an adjunction $\mathbb{C} = S - Alg$ that induces exactly S as monad.

DQC

<ロト < 回 ト < 三 ト < 三 ト - 三</p>

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	000000

Let $a : SA \rightarrow A$ and $b : SB \rightarrow B$ be two *S*-algebras. An **algebra morphism** is a map $f : A \rightarrow B$ s.t.

 \Rightarrow we get a category of *S*-algebras *S*-Alg.

Theorem (Eilenberg-Moore) For any monad $S : \mathbb{C} \to \mathbb{C}$, there is an adjunction $\mathbb{C} = S - Alg$ that induces exactly S as monad.

DQC

<ロト < 回 > < 注 > < 注 > … 注 … … 注 …

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	000000

Let $a : SA \rightarrow A$ and $b : SB \rightarrow B$ be two *S*-algebras. An **algebra morphism** is a map $f : A \rightarrow B$ s.t.

 \Rightarrow we get a category of *S*-algebras *S*-Alg.

Theorem (Eilenberg-Moore)

For any monad $S : \mathbb{C} \to \mathbb{C}$, there is an adjunction $\mathbb{C} \sqcup S$ -Alg that induces exactly S as monad.

<ロト < 回 > < 注 > < 注 > … 注 … … 注 …

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	00000	000	000000	000000

Examples

_	<i>S</i> (<i>X</i>)	Algebras
Set ⊥ Mon	Underlying set of the free monoid generated by X	Monoids
Set 🔔 Ab	Underlying set of the free abelian group generated by X	Abelian Groups
Power set	$\mathcal{P}(X)$	Suplattices

590

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	•00	000000	000000

Distributive Laws

Definition (Beck)

Let (S, m, s) and (T, n, t) be monads on \mathbb{C} . A **distributive law** of T over S consists of a natural transformation $d : ST \rightarrow TS$ such that:

Relative Distributive Laws

DQC

<ロト < 回 ト < 三 ト < 三 ト - 三</p>

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	•00	000000	000000

Distributive Laws

Definition (Beck)

Let (S, m, s) and (T, n, t) be monads on \mathbb{C} . A **distributive law** of T over S consists of a natural transformation $d : ST \rightarrow TS$ making four diagrams commutative.

Lemma (Beck)

Given a distributive law d of T on S, then there is a monad structure on TS given by

$$TSTS \xrightarrow{TdS} T^2S^2 \xrightarrow{nS} TS^2 \xrightarrow{Tm} TS \qquad 1_{\mathbb{C}} \xrightarrow{s} S \xrightarrow{tS} TS$$

3

<ロト <回ト < 三ト < 三ト -

Introduction O	Monads 000000	Distributive Laws O●O	Relative Monads 000000	Relative Distributive Laws 000000
Example				

T = power set monad, S = monad of monoids.

For $X \in \mathbf{Set}$

$$SX = \{x_1 \cdots x_n \mid x_i \in X, n \in \mathbb{N}\}$$
$$TX = P(X) = \{A \mid A \subseteq X\}$$

 \Rightarrow a distributive law $d: ST \rightarrow TS$ of T on S:

$$d_X : STX \longrightarrow TSX$$
$$A_1...A_n \longmapsto \{a_1...a_n \mid a_i \in A_i\}$$

Introduction O	Monads 000000	Distributive Laws ○●○	Relative Monads 000000	Relative Distributive Laws

Example

T = power set monad, S = monad of monoids.

For
$$X \in \mathbf{Set}$$

 $SX = \{x_1 \cdots x_n \mid x_i \in X, n \in \mathbb{N}\}$
 $TX = P(X) = \{A \mid A \subseteq X\}$

 \Rightarrow a distributive law $d: ST \rightarrow TS$ of T on S:

$$d_X : STX \longrightarrow TSX$$
$$A_1...A_n \longmapsto \{a_1...a_n \mid a_i \in A_i\}$$

Introduction O	Monads 000000	Distributive Laws O●O	Relative Monads 000000	Relative Distributive Laws

Example

T = power set monad, S = monad of monoids.

For $X \in \mathbf{Set}$

$$SX = \{x_1 \cdots x_n \mid x_i \in X, n \in \mathbb{N}\}$$
$$TX = P(X) = \{A \mid A \subseteq X\}$$

 \Rightarrow a distributive law $d: ST \rightarrow TS$ of T on S:

$$d_X : STX \longrightarrow TSX$$
$$A_1...A_n \longmapsto \{a_1...a_n \mid a_i \in A_i\}$$

•

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	000000

Let S and T be two monads on \mathbb{C} . TFAE

(i) a distributive law $d: ST \implies TS$;

(ii) a lifting of T to S-algebras \hat{T} : S-Alg \rightarrow S-Alg;

(iii) an extension $\widetilde{S}: \mathit{Kl}(\mathcal{T}) o \mathit{Kl}(\mathcal{T})$ of S to the Kleisli category $\mathit{Kl}(\mathcal{T});$

(iv) A monad structure on TS that is compatible with S and T.

Corollary

- There exists a lifting \hat{P} : **Mon** \rightarrow **Mon** of the power set monad P;
- There exists an extension S
 : Rel → Rel of the monoid monad S to the category Rel of sets and relations;
- There exists a monad structure on $TSX := P(SX) = \{A \mid A \subseteq SX\}.$

<ロト <回ト < 三ト < 三ト

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	000000

Let S and T be two monads on \mathbb{C} . TFAE

- (i) a distributive law $d: ST \implies TS$;
- (ii) a lifting of T to S-algebras \hat{T} : S-Alg \rightarrow S-Alg;

(iii) an **extension** $ilde{S}$: Kl(T)
ightarrow Kl(T) of S to the Kleisli category Kl(T);

(iv) A monad structure on TS that is compatible with S and T.

Corollary

- There exists a lifting \hat{P} : **Mon** \rightarrow **Mon** of the power set monad P;
- There exists an extension S
 : Rel → Rel of the monoid monad S to the category Rel of sets and relations;
- There exists a monad structure on $TSX := P(SX) = \{A \mid A \subseteq SX\}.$

<ロト <回ト < 回ト < 回ト

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	000000

Let S and T be two monads on \mathbb{C} . TFAE

- (i) a distributive law $d: ST \implies TS$;
- (ii) a lifting of T to S-algebras \hat{T} : S-Alg \rightarrow S-Alg;
- (iii) an extension $\tilde{S} : Kl(T) \to Kl(T)$ of S to the Kleisli category Kl(T);

(iv) A monad structure on TS that is compatible with S and T.

Corollary

- There exists a lifting \hat{P} : **Mon** \rightarrow **Mon** of the power set monad P;
- There exists an extension S
 : Rel → Rel of the monoid monad S to the category Rel of sets and relations;
- There exists a monad structure on $TSX := P(SX) = \{A \mid A \subseteq SX\}.$

イロト イヨト イヨト イヨト

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	000000

Let S and T be two monads on \mathbb{C} . TFAE

- (i) a distributive law $d: ST \implies TS$;
- (ii) a lifting of T to S-algebras \hat{T} : S-Alg \rightarrow S-Alg;
- (iii) an extension $\tilde{S} : Kl(T) \to Kl(T)$ of S to the Kleisli category Kl(T);
- (iv) A monad structure on TS that is compatible with S and T.

Corollary

- There exists a lifting \hat{P} : Mon \rightarrow Mon of the power set monad P;
- There exists an extension S
 : Rel → Rel of the monoid monad S to the category Rel of sets and relations;
- There exists a monad structure on $TSX := P(SX) = \{A \mid A \subseteq SX\}.$

3

イロト 不得下 イヨト イヨト

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	000000

Let S and T be two monads on \mathbb{C} . TFAE

- (i) a distributive law $d: ST \implies TS$;
- (ii) a lifting of T to S-algebras \hat{T} : S-Alg \rightarrow S-Alg;
- (iii) an extension $\tilde{S} : Kl(T) \to Kl(T)$ of S to the Kleisli category Kl(T);
- (iv) A monad structure on TS that is compatible with S and T.

Corollary

- There exists a lifting \hat{P} : **Mon** \rightarrow **Mon** of the power set monad P;
- There exists an extension S
 [°]: Rel → Rel of the monoid monad S to the category Rel of sets and relations;
- There exists a monad structure on $TSX := P(SX) = \{A \mid A \subseteq SX\}.$

イロト 不得 トイヨト イヨト 二日

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	•00000	000000

Why **Relative** Monads?

Problem: Let \mathbb{C} be a small category, then $P(\mathbb{C}) := \text{Cat}(\mathbb{C}^{op}, \text{Set})$ is just locally small.

$P: \mathbf{Cat} \longrightarrow \mathbf{CAT}$

Relative Monads generalise the concept of monad to functors defined on a subcategory.

Aim: Have a new version of Beck's Theorem explaining Day's convolution product.

Sac

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

Why **Relative** Monads?

Problem: Let \mathbb{C} be a small category, then $P(\mathbb{C}) := \text{Cat}(\mathbb{C}^{op}, \text{Set})$ is just locally small.

$P: \mathbf{Cat} \longrightarrow \mathbf{CAT}$

Relative Monads generalise the concept of monad to functors defined on a subcategory.

Aim: Have a new version of Beck's Theorem explaining Day's convolution product.

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

Why **Relative** Monads?

Problem: Let \mathbb{C} be a small category, then $P(\mathbb{C}) := \text{Cat}(\mathbb{C}^{op}, \text{Set})$ is just locally small.

$$P: Cat \longrightarrow CAT$$

Relative Monads generalise the concept of monad to functors defined on a subcategory.

Aim: Have a new version of Beck's Theorem explaining Day's convolution product.

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

P = power set monad.

- Kl(P) = category of sets and relations;
- *P*-Alg= sup-semilatices.

What if we want to consider relations/sup-semilatices with an *upper bound* on cardinality of sets? Or even a set theory where *PX* is a class?

Problem: P : **Set**_{$\leq \kappa$} \rightarrow **Set** is not an endofunctor.

Solution: Relative monads!

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

- P = power set monad.
 - Kl(P) = category of sets and relations;
 - *P*-Alg= sup-semilatices.

What if we want to consider relations/sup-semilatices with an *upper bound* on cardinality of sets? Or even a set theory where *PX* is a class?

Problem: P : **Set**_{$\leq \kappa$} \rightarrow **Set** is not an endofunctor.

Solution: Relative monads!

<ロト < 回 ト < 三 ト < 三 ト - 三</p>

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

- P =power set monad.
 - Kl(P) = category of sets and relations;
 - *P*-Alg= sup-semilatices.

What if we want to consider relations/sup-semilatices with an *upper* bound on cardinality of sets? Or even a set theory where *PX* is a class?

Problem: P : **Set** $_{<\kappa} \rightarrow$ **Set** is not an endofunctor.

Solution: Relative monads!

Sac

イロト イロト イヨト イヨト 二日

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

- P = power set monad.
 - Kl(P) = category of sets and relations;
 - *P*-Alg= sup-semilatices.

What if we want to consider relations/sup-semilatices with an *upper bound* on cardinality of sets? Or even a set theory where *PX* is a class?

Problem: $P : \mathbf{Set}_{<\kappa} \to \mathbf{Set}$ is not an endofunctor.

Solution: Relative monads!

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

- P = power set monad.
 - Kl(P) = category of sets and relations;
 - *P*-Alg= sup-semilatices.

What if we want to consider relations/sup-semilatices with an *upper bound* on cardinality of sets? Or even a set theory where *PX* is a class?

Problem: $P : \mathbf{Set}_{<\kappa} \to \mathbf{Set}$ is not an endofunctor.

Solution: Relative monads!

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

Definition

A relative monad T over $I : \mathbb{C}_0 \to \mathbb{C}$ consists of:

- $TX \in \mathbb{C}$, for every $X \in \mathbb{C}_0$;
- functions $(-)_{X,Y}^{\dagger} : \mathbb{C}(IX, TY) \to \mathbb{C}(TX, TY)$ for $X, Y \in \mathbb{C}_{0}$;
- morphisms $t_X : IX \to TX$ in \mathbb{C} for $X \in \mathbb{C}_0$;

such that:

Associativity: $(g^{\dagger} \cdot f)^{\dagger} = g^{\dagger} \cdot f^{\dagger}$ (for $f : IX \to TY$, $g : IY \to TZ$); Left Unity: $f = f^{\dagger} \cdot t_X$ (for $f : IX \to TY$); Right Unity: $t_X^{\dagger} = 1_{TX}$ (for $X \in \mathbb{C}_0$).

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

Definition

A relative monad T over $I : \mathbb{C}_0 \to \mathbb{C}$ consists of:

- $TX \in \mathbb{C}$, for every $X \in \mathbb{C}_0$;
- functions $(-)_{X,Y}^{\dagger} : \mathbb{C}(IX, TY) \to \mathbb{C}(TX, TY)$ for $X, Y \in \mathbb{C}_{0}$;
- morphisms $t_X : IX \to TX$ in \mathbb{C} for $X \in \mathbb{C}_0$;

such that:

Associativity: $(g^{\dagger} \cdot f)^{\dagger} = g^{\dagger} \cdot f^{\dagger}$ (for $f : IX \to TY$, $g : IY \to TZ$);Left Unity: $f = f^{\dagger} \cdot t_X$ (for $f : IX \to TY$);Right Unity: $t_X^{\dagger} = 1_{TX}$ (for $X \in \mathbb{C}_0$).

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

Definition

A relative monad T over $I : \mathbb{C}_0 \to \mathbb{C}$ consists of:

- $TX \in \mathbb{C}$, for every $X \in \mathbb{C}_0$;
- functions $(-)_{X,Y}^{\dagger} : \mathbb{C}(IX, TY) \to \mathbb{C}(TX, TY)$ for $X, Y \in \mathbb{C}_0$;
- morphisms $t_X : IX \to TX$ in \mathbb{C} for $X \in \mathbb{C}_0$;

such that:

Associativity: $(g^{\dagger} \cdot f)^{\dagger} = g^{\dagger} \cdot f^{\dagger}$ (for $f : IX \to TY$, $g : IY \to TZ$);Left Unity: $f = f^{\dagger} \cdot t_X$ (for $f : IX \to TY$);Right Unity: $t_X^{\dagger} = 1_{TX}$ (for $X \in \mathbb{C}_0$).

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

Definition

A relative monad T over $I : \mathbb{C}_0 \to \mathbb{C}$ consists of:

- $TX \in \mathbb{C}$, for every $X \in \mathbb{C}_0$;
- functions $(-)_{X,Y}^{\dagger} : \mathbb{C}(IX, TY) \to \mathbb{C}(TX, TY)$ for $X, Y \in \mathbb{C}_{0}$;
- morphisms $t_X : IX \to TX$ in \mathbb{C} for $X \in \mathbb{C}_0$;

such that:

 $\begin{array}{ll} \textbf{Associativity:} & (g^{\dagger} \cdot f)^{\dagger} = g^{\dagger} \cdot f^{\dagger} \ (\textit{for } f : IX \to TY, \ g : IY \to TZ); \\ \textbf{Left Unity:} & f = f^{\dagger} \cdot t_X \ (\textit{for } f : IX \to TY); \\ \textbf{Right Unity:} & t_X^{\dagger} = 1_{TX} \ (\textit{for } X \in \mathbb{C}_0). \end{array}$

< ロト < 団 ト < 三 ト < 三 ト 三 三 二</p>

Introduction O	Monads 000000	Distributive Laws	Relative Monads	Relative Distributive Laws
Examples				

1. $I : \mathbf{Set}_{\leq \kappa} \hookrightarrow \mathbf{Set}$ inclusion, $T := P : \mathbf{Set}_{\leq \kappa} \to \mathbf{Set}$ power set,

2. *I* : **Fin** \hookrightarrow **Set** inclusion, *Tn* := **Set**(*In*, *R*) with *R* ring,

 $\begin{array}{cccc} t_n: & In & \longrightarrow & \mathbf{Set}(In, R) \\ & i & \longmapsto & \delta_i \end{array} & \begin{array}{c} f: In & \longrightarrow & \mathbf{Set}(Im, R) \\ & f^{\dagger}: Tn & \longrightarrow & \mathbf{Set}(Im, R) \\ & & \alpha & \longmapsto & \sum_{i \in n} \alpha(i) \cdot f(i)(-) \end{array}$

11 June 2020

Introduction O	Monads 000000	Distributive Laws	Relative Monads	Relative Distributive Laws
Examples				

1. $I : \mathbf{Set}_{\leq \kappa} \hookrightarrow \mathbf{Set} \text{ inclusion, } T := P : \mathbf{Set}_{\leq \kappa} \to \mathbf{Set} \text{ power set,}$ $t_X : IX \longrightarrow PX \qquad f : IX \longrightarrow PY$ $x \longmapsto \{x\} \qquad f^{\dagger} : PX \longrightarrow PY$ $J \longmapsto \bigcup_{i \in J} f(j)$

2. *I* : **Fin** \hookrightarrow **Set** inclusion, Tn := **Set**(*In*, *R*) with *R* ring,

$$\begin{array}{cccc} t_n : & In & \longrightarrow & \mathbf{Set}(In, R) & & f : In & \longrightarrow \mathbf{Set}(Im, R) \\ & i & \longmapsto & \delta_i & & f^{\dagger} : Tn & \longrightarrow \mathbf{Set}(Im, R) \\ & & & \alpha & \longmapsto \sum_{i \in n} \alpha(i) \cdot f(i)(-) \end{array}$$

Introduction O	Monads 000000	Distributive Laws 000	Relative Monads	Relative Distributive Laws
Examples				

1. $I : \mathbf{Set}_{\leq \kappa} \hookrightarrow \mathbf{Set} \text{ inclusion, } T := P : \mathbf{Set}_{\leq \kappa} \to \mathbf{Set} \text{ power set,}$ $t_X : IX \longrightarrow PX \qquad f : IX \longrightarrow PY$ $x \longmapsto \{x\} \qquad f^{\dagger} : PX \longrightarrow PY$ $J \longmapsto \bigcup_{j \in J} f(j)$

2. *I* : **Fin** \hookrightarrow **Set** inclusion, Tn := **Set**(*In*, *R*) with *R* ring,

$$\begin{array}{cccc} t_n : & In & \longrightarrow & \mathbf{Set}(In, R) & & f : In & \longrightarrow \mathbf{Set}(Im, R) \\ & i & \longmapsto & \delta_i & & f^{\dagger} : Tn & \longrightarrow \mathbf{Set}(Im, R) \\ & & & \alpha & \longmapsto \sum_{i \in n} \alpha(i) \cdot f(i)(-) \end{array}$$

11 June 2020

Introduction O	Monads 000000	Distributive Laws	Relative Monads	Relative Distributive Laws
Examples				

1. $I : \mathbf{Set}_{\leq \kappa} \hookrightarrow \mathbf{Set}$ inclusion, $T := P : \mathbf{Set}_{\leq \kappa} \to \mathbf{Set}$ power set,

2. *I* : **Fin** \hookrightarrow **Set** inclusion, Tn := **Set**(*In*, *R*) with *R* ring,

$$\begin{array}{cccc} t_n : & In & \longrightarrow & \mathbf{Set}(In, R) & & f : In & \longrightarrow \mathbf{Set}(Im, R) \\ & i & \longmapsto & \delta_i & & f^{\dagger} : Tn & \longrightarrow \mathbf{Set}(Im, R) \\ & & & \alpha & \longmapsto \sum_{i \in n} \alpha(i) \cdot f(i)(-) \end{array}$$

11 June 2020

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
O	000000	000	000●00	
Examples				

1. $I : \mathbf{Set}_{\leq \kappa} \hookrightarrow \mathbf{Set}$ inclusion, $T := P : \mathbf{Set}_{\leq \kappa} \to \mathbf{Set}$ power set,

2. *I* : **Fin** \hookrightarrow **Set** inclusion, Tn := **Set**(*In*, *R*) with *R* ring,

$$\begin{array}{ccccc} t_n : & In & \longrightarrow & \mathbf{Set}(In, R) & \underline{f : In & \longrightarrow \mathbf{Set}(Im, R)} \\ & i & \longmapsto & \delta_i & \overline{f^{\dagger} : Tn & \longrightarrow \mathbf{Set}(Im, R)} \\ & & \alpha & \longmapsto \sum_{i \in n} \alpha(i) \cdot f(i)(-) \end{array}$$

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive
0	000000	000	000000	000000

Relative Monads with
$$l = 1$$
Monads $(-)_{X,Y}^{\dagger} : \mathbb{C}(X, SY) \rightarrow \mathbb{C}(SX, SY)$ $m : S^2 \rightarrow S$ $(g^{\dagger} \cdot f)^{\dagger} = g^{\dagger} \cdot f^{\dagger}$ Associativity $f = f^{\dagger} \cdot s_X$ and $s_X^{\dagger} = 1_{SX}$ Left/Right Unit Law

Proof.

 (\Leftarrow) For any $f: X \to SY$, we define f^{\dagger} as $m_Y \cdot Sf: SX \to SY$;

 (\Rightarrow) Given an extension $(-)^{\dagger}$ we define m_X as $(1_{SX})^{\dagger}: S^2X \to SX$;

Using unity, and axioms for a relative monad we can prove that these constructions are inverse of each other.

<ロト <回ト < 回ト < 回ト -

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Lav
0	000000	000	000000	000000

Relative Monads with
$$l = 1$$
Monads $(-)_{X,Y}^{\dagger} : \mathbb{C}(X, SY) \rightarrow \mathbb{C}(SX, SY)$ $m : S^2 \rightarrow S$ $(g^{\dagger} \cdot f)^{\dagger} = g^{\dagger} \cdot f^{\dagger}$ Associativity $f = f^{\dagger} \cdot s_X$ and $s_X^{\dagger} = 1_{SX}$ Left/Right Unit Law

Proof.

(\Leftarrow) For any $f: X \to SY$, we define f^{\dagger} as $m_Y \cdot Sf: SX \to SY$;

 (\Rightarrow) Given an extension $(-)^{\dagger}$ we define m_X as $(1_{SX})^{\dagger}: S^2X \to SX$;

Using unity, and axioms for a relative monad we can prove that these constructions are inverse of each other.

<ロト <回ト < 三ト < 三ト

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Lav
0	000000	000	000000	000000

Relative Monads with
$$l = 1$$
Monads $(-)_{X,Y}^{\dagger} : \mathbb{C}(X, SY) \rightarrow \mathbb{C}(SX, SY)$ $m : S^2 \rightarrow S$ $(g^{\dagger} \cdot f)^{\dagger} = g^{\dagger} \cdot f^{\dagger}$ Associativity $f = f^{\dagger} \cdot s_X$ and $s_X^{\dagger} = 1_{SX}$ Left/Right Unit Law

Proof.

(\Leftarrow) For any $f: X \to SY$, we define f^{\dagger} as $m_Y \cdot Sf: SX \to SY$;

 (\Rightarrow) Given an extension $(-)^{\dagger}$ we define m_X as $(1_{SX})^{\dagger}: S^2X \to SX;$

Using unity, and axioms for a relative monad we can prove that these constructions are inverse of each other.

イロン イロン イヨン イヨン

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Law
0	000000	000	000000	000000

Relative Monads with
$$l = 1$$
Monads $(-)_{X,Y}^{\dagger} : \mathbb{C}(X, SY) \rightarrow \mathbb{C}(SX, SY)$ $m : S^2 \rightarrow S$ $(g^{\dagger} \cdot f)^{\dagger} = g^{\dagger} \cdot f^{\dagger}$ Associativity $f = f^{\dagger} \cdot s_X$ and $s_X^{\dagger} = 1_{SX}$ Left/Right Unit Law

Proof.

(\Leftarrow) For any $f: X \to SY$, we define f^{\dagger} as $m_Y \cdot Sf: SX \to SY$;

 (\Rightarrow) Given an extension $(-)^{\dagger}$ we define m_X as $(1_{SX})^{\dagger}: S^2X \to SX$;

Using unity, and axioms for a relative monad we can prove that these constructions are inverse of each other.

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

Definition

 $I,\ T:\mathbb{C}_0\to\mathbb{C}$ relative monad. A relative T-algebra consists of $A\in\mathbb{C}$

with maps $(-)_X^A : \mathbb{C}(IX, A) \to \mathbb{C}(TX, A)$

satisfying the following axioms for $h : IX \to A$ and $k : IX' \to TX$:

イロン イロン イヨン イヨン

Theorem (Altenkirch, Chapman and Uustalu)

Relative monads \Leftrightarrow *Relative adjuctions*

SAC

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

Definition

I, $T : \mathbb{C}_0 \to \mathbb{C}$ relative monad. A relative T-algebra consists of $A \in \mathbb{C}$ with maps $(-)_X^A : \mathbb{C}(IX, A) \to \mathbb{C}(TX, A)$

satisfying the following axioms for $h : IX \to A$ and $k : IX' \to TX$:

イロン イロン イヨン イヨン

Theorem (Altenkirch, Chapman and Uustalu)

Relative monads \Leftrightarrow *Relative adjuctions*

Э

SAC

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

Definition

I, $T : \mathbb{C}_0 \to \mathbb{C}$ relative monad. A relative T-algebra consists of $A \in \mathbb{C}$ with maps $(-)_X^A : \mathbb{C}(IX, A) \to \mathbb{C}(TX, A)$

satisfying the following axioms for $h: IX \to A$ and $k: IX' \to TX$:

Theorem (Altenkirch, Chapman and Uustalu)

Relative monads \Leftrightarrow Relative adjuctions

イロト イヨト イヨト イヨト

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	00000	000000

Definition

I, $T : \mathbb{C}_0 \to \mathbb{C}$ relative monad. A relative **T**-algebra consists of $A \in \mathbb{C}$ with maps $(-)_X^A : \mathbb{C}(IX, A) \to \mathbb{C}(TX, A)$

satisfying the following axioms for $h: IX \rightarrow A$ and $k: IX' \rightarrow TX$:

Theorem (Altenkirch, Chapman and Uustalu)

Relative monads \Leftrightarrow Relative adjuctions

When can we talk about **relative** distributive laws?

We want a relative monad $I, T : \mathbb{C}_0 \to \mathbb{C}$ and a monad $S : \mathbb{C} \to \mathbb{C}$ that restrict nicely to \mathbb{C}_0 , i.e.

Definition

Let $I : \mathbb{C}_0 \to \mathbb{C}$ be a functor. We define a compatible monad with I as a pair of monads $S_0 : \mathbb{C}_0 \to \mathbb{C}_0$ and $S : \mathbb{C} \to \mathbb{C}$ such that $SI = IS_0$, $mI = Im_0$ and $sI = Is_0$.

We will define a relative distributive law of a relative monad T on a compatible monad (S, S_0) with I.

イロト イヨト イヨト

When can we talk about **relative** distributive laws?

We want a relative monad $I, T : \mathbb{C}_0 \to \mathbb{C}$ and a monad $S : \mathbb{C} \to \mathbb{C}$ that restrict nicely to \mathbb{C}_0 , i.e.

Definition

Let $I : \mathbb{C}_0 \to \mathbb{C}$ be a functor. We define a compatible monad with I as a pair of monads $S_0 : \mathbb{C}_0 \to \mathbb{C}_0$ and $S : \mathbb{C} \to \mathbb{C}$ such that $SI = IS_0$, $mI = Im_0$ and $sI = Is_0$.

We will define a relative distributive law of a relative monad T on a compatible monad (S, S_0) with I.

イロン イロン イヨン イヨン

When can we talk about **relative** distributive laws?

We want a relative monad $I, T : \mathbb{C}_0 \to \mathbb{C}$ and a monad $S : \mathbb{C} \to \mathbb{C}$ that restrict nicely to \mathbb{C}_0 , i.e.

Definition

Let $I : \mathbb{C}_0 \to \mathbb{C}$ be a functor. We define a compatible monad with I as a pair of monads $S_0 : \mathbb{C}_0 \to \mathbb{C}_0$ and $S : \mathbb{C} \to \mathbb{C}$ such that $SI = IS_0$, $mI = Im_0$ and $sI = Is_0$.

We will define a relative distributive law of a relative monad T on a compatible monad (S, S_0) with I.

イロト 不得下 イヨト イヨト

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
0	000000	000	000000	00000

Relative Distributive Laws

Distributive Laws

Definition

 $I, T : \mathbb{C}_0 \to \mathbb{C}$ relative monad, (S, S_0) compatible with I. A relative distributive law of T over (S, S_0) is a transformation $d : ST \to TS_0$ satisfying four axioms (for any $f : IX \to TY$):

Introduction O	Monads 000000	Distributive Laws	Relative Monads 000000	Relative Distributive Laws
Example				

T = power set relative monad, S = monad of monoids, $S_{\kappa} = S \upharpoonright \mathbf{Set}_{\leq k}$. For $X \in \mathbf{Set}_{\leq k}$ and $Y \in \mathbf{Set}$

 $SY = \{y_1 \cdots y_n \mid y_i \in Y, n \in \mathbb{N}\}$

$$b_{\kappa}X = \{x_1 \cdots x_n \mid x_i \in X, n \in \mathbb{N}\}$$
$$TX = P(X) = \{A \mid A \subseteq X\}$$

 \Rightarrow a *relative* distributive law $d : ST \rightarrow TS$ of T on (S, S_k) :

$$d_X : STX \longrightarrow TS_k X$$
$$A_1...A_n \longmapsto \{a_1...a_n \mid a_i \in A_i\}$$

11 June 2020

Introduction O	Monads 000000	Distributive Laws	Relative Monads	Relative Distributive Laws 00●000

T = power set relative monad, S = monad of monoids, $S_{\kappa} = S \upharpoonright \mathbf{Set}_{\leq k}$. For $X \in \mathbf{Set}_{\leq k}$ and $Y \in \mathbf{Set}$

 $SY = \{y_1 \cdots y_n \mid y_i \in Y, n \in \mathbb{N}\}$ $S_{\kappa}X = \{x_1 \cdots x_n \mid x_i \in X, n \in \mathbb{N}\}$ $TX = P(X) = \{A \mid A \subseteq X\}$

 \Rightarrow a *relative* distributive law $d : ST \rightarrow TS$ of T on (S, S_k) :

$$d_X : STX \longrightarrow TS_k X$$
$$A_1...A_n \longmapsto \{a_1...a_n \mid a_i \in A_i\}$$

Example

Introduction O	Monads 000000	Distributive Laws 000	Relative Monads 000000	Relative Distributive Laws

T = power set relative monad, S = monad of monoids, $S_{\kappa} = S \upharpoonright \mathbf{Set}_{\leq k}$. For $X \in \mathbf{Set}_{\leq k}$ and $Y \in \mathbf{Set}$

$$SY = \{y_1 \cdots y_n \mid y_i \in Y, n \in \mathbb{N}\}$$
$$S_{\kappa}X = \{x_1 \cdots x_n \mid x_i \in X, n \in \mathbb{N}\}$$
$$TX = P(X) = \{A \mid A \subseteq X\}$$

 \Rightarrow a *relative* distributive law $d : ST \rightarrow TS$ of T on (S, S_k) :

$$d_X : STX \longrightarrow TS_k X$$
$$A_1...A_n \longmapsto \{a_1...a_n \mid a_i \in A_i\}$$

Example

Introduction O	Monads 000000	Distributive Laws	Relative Monads 000000	Relative Distributive Laws

Theorem (Lobbia)

Given a relative monad I, $T : \mathbb{C}_0 \to \mathbb{C}$ and a compatible monad (S, S_0) with I, TFAE:

- (1) A relative distributive law $d: ST \rightarrow TS_0$;
- (2) A lifting \hat{T} : S_0 -Alg \rightarrow S-Alg of T to the algebras of S_0 and S;
- (3) An extension \tilde{S} : $Kl(T) \to Kl(T)$ of S to the Kleisli of T.

Corollary

There is a lifting of the power set relative monad to $\mathsf{Mon}_{\leq\kappa} \hookrightarrow \mathsf{Mon}.$

There exists an extension of the free monoid monad to the category of relations over sets with cardinality $\leq \kappa$.

Introduction O	Monads 000000	Distributive Laws	Relative Monads 000000	Relative Distributive Laws

Theorem (Lobbia)

Given a relative monad I, $T : \mathbb{C}_0 \to \mathbb{C}$ and a compatible monad (S, S_0) with I, TFAE:

- (1) A relative distributive law $d: ST \rightarrow TS_0$;
- (2) A lifting \hat{T} : S_0 -Alg \rightarrow S-Alg of T to the algebras of S_0 and S;
- (3) An extension \tilde{S} : $Kl(T) \to Kl(T)$ of S to the Kleisli of T.

Corollary

There is a lifting of the power set relative monad to $Mon_{\leq \kappa} \hookrightarrow Mon$.

There exists an extension of the free monoid monad to the category of relations over sets with cardinality $\leq \kappa$.

Introduction O	Monads 000000	Distributive Laws	Relative Monads 000000	Relative Distributive Laws

Future Work

- Prove that a relative distributive law of *T* over (*S*, *S*₀) is equivalent to a relative monad structure on *TS*₀ compatible with *T* and (*S*, *S*₀);
- Extend this work to relative **pseudo**monads;
- Possible connection with Lawvere Theories, MEMO: Lawvere Theories are equivalent to finitary monads.

イロト イロト イヨト イヨト 二日 …

Introduction	Monads	Distributive Laws	Relative Monads	Relative Distributive Laws
O	000000	000	000000	

F. Marmolejo and R.J. Wood Monads as extensions systems – no iteration is necessary.

Theory and Applications of Categories, 24(4):84–113 2791, 2010.

- T. Altenkirch, J. Chapman and T. Uustalu Monads need not be endofunctors. Logical Methods in Computer Science, Volume 11, Issue 1, 2015.
- M. Fiore, N. Gambino, M. Hyland and G. Winskel Relative pseudomonads, Kleisli bicategories, and substitution monoidal structures.

Selecta Mathematica New Series, 24: 2791, 2018.

E. R. Hernández.

Another characterization of no-iteration distributive laws. preprint, 2020, arXiv:1910.06531v2.

イロト 不得 トイヨト イヨト