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Why Monads?

When dealing with algebraic structures we usually have the following
picture:

Mon Ab

Set Set

...U U

UF UF

All these forgetful functors have a left adjoint given by the
free-constructions.

Looking at the properties that all the UF satisfy we can generalise this
notion.
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Theorem

Mon is complete and cocomplete.

Theorem

Ab is complete and cocomplete.

Thanks to monads we can prove these theorems all at once with:

Theorem

If U : D→ C is “monadic”, then:

• If C is complete, then D is complete;

• If C is cocomplete and D has reflexive coequalizers, then D is
cocomplete.
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Definition

Let C be a category. A monad (S , m, s) on C consists of:

• A functor S : C→ C;

• Natural transformations m : S2 → S and s : 1C → S s.t.

S3 S2

S2 S

Sm

mS m

m

S S2

S

S
Ss

1S

m

1S

sS

Example: If F a G , then (GF , GεF , η) is a monad.
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Algebras for a Monad

S : C→ C monad, an S-algebra is an object A ∈ C with a structural
map a : SA→ A s.t.

S2A SA

SA A

“ s2 · (s1 · x) = s2s1 · x ”

Sa

mA a

a

A SA

A

“ 1S · x = x ”

sA

1A

a
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Let a : SA→ A and b : SB → B be two S-algebras. An algebra
morphism is a map f : A→ B s.t.

SA SB

A B

Sf

a b

f

⇒ we get a category of S-algebras S-Alg.

Theorem (Eilenberg-Moore)

For any monad S : C→ C, there is an adjunction C S-Alg⊥ that

induces exactly S as monad.
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Examples

S(X ) Algebras

Set Mon⊥ Underlying set of the free monoid
generated by X

Monoids

Set Ab⊥ Underlying set of the free abelian
group generated by X

Abelian
Groups

Power set P(X ) Suplattices
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Distributive Laws

Definition (Beck)

Let (S , m, s) and (T , n, t) be monads on C. A distributive law of T
over S consists of a natural transformation d : ST → TS such that:

S2T

ST

STS

TS

TS2

Sd //

d
//

mT

��

dS

��

Tm

��

T ST

TS

Ts

��

sT //

d

��

ST 2

T 2S

ST

TS

TST

Sn //

nS
//

dT

��
d

��
Td

��
S

ST

TS
tS
//

St

BB

d

��

Relative Distributive Laws
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Distributive Laws

Definition (Beck)

Let (S , m, s) and (T , n, t) be monads on C. A distributive law of T
over S consists of a natural transformation d : ST → TS making four
diagrams commutative.

Lemma (Beck)

Given a distributive law d of T on S, then there is a monad structure on
TS given by

TSTS
TdS−−→ T 2S2 nS−→ TS2 Tm−−→ TS 1C

s−→ S
tS−→ TS
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Example

T = power set monad, S = monad of monoids.

For X ∈ Set
SX = {x1 · · · xn | xi ∈ X , n ∈ N}

TX = P(X ) = {A | A ⊆ X}

⇒ a distributive law d : ST → TS of T on S :

dX : STX TSX

A1...An {a1...an | ai ∈ Ai} .
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Theorem (Beck)

Let S and T be two monads on C. TFAE

(i) a distributive law d : ST =⇒ TS;

(ii) a lifting of T to S-algebras T̂ : S-Alg→ S-Alg;

(iii) an extension S̃ : Kl(T )→ Kl(T ) of S to the Kleisli category Kl(T );

(iv) A monad structure on TS that is compatible with S and T .

Corollary

• There exists a lifting P̂ : Mon→Mon of the power set monad P;

• There exists an extension S̃ : Rel→ Rel of the monoid monad S to
the category Rel of sets and relations;

• There exists a monad structure on
TSX := P(SX ) = {A | A ⊆ SX}.
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Why Relative Monads?

Problem: Let C be a small category, then P(C) := Cat(Cop, Set) is just
locally small.

P : Cat −→ CAT

Relative Monads generalise the concept of monad to functors defined on
a subcategory.

Aim: Have a new version of Beck’s Theorem explaining Day’s
convolution product.

Mon

Cat

MON

CAT

P̂

P
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An Example

P = power set monad.

• Kl(P) = category of sets and relations;

• P-Alg= sup-semilatices.

What if we want to consider relations/sup-semilatices with an upper
bound on cardinality of sets? Or even a set theory where PX is a class?

Problem: P : Set≤κ → Set is not an endofunctor.

Solution: Relative monads!
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Relative Monads

Definition

A relative monad T over I : C0 → C consists of:

• TX ∈ C, for every X ∈ C0;

• functions (−)†X ,Y : C(IX , TY )→ C(TX , TY ) for X , Y ∈ C0;

• morphisms tX : IX → TX in C for X ∈ C0;

such that:
Associativity: (g† · f )† = g† · f † (for f : IX → TY , g : IY → TZ);

Left Unity: f = f † · tX (for f : IX → TY );

Right Unity: t†X = 1TX (for X ∈ C0).
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Examples

1. I : Set≤κ ↪→ Set inclusion, T := P : Set≤κ → Set power set,

tX : IX −→ PX f : IX −→ PY

x 7−→ {x} f † : PX −→ PY

J 7−→
⋃

j∈J f (j)

2. I : Fin ↪→ Set inclusion, Tn := Set(In, R) with R ring,

tn : In −→ Set(In, R) f : In −→ Set(Im, R)

i 7−→ δi f † : Tn −→ Set(Im, R)

α 7−→
∑

i∈n α(i) · f (i)(−)
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Relative Monads generalise Monads

Relative Monads with I = 1 Monads

(−)†X ,Y : C(X , SY )→ C(SX , SY ) m : S2 → S

(g† · f )† = g† · f † Associativity

f = f † · sX and s†X = 1SX Left/Right Unit Law

Proof.

(⇐) For any f : X → SY , we define f † as mY · Sf : SX → SY ;

(⇒) Given an extension (−)† we define mX as (1SX )† : S2X → SX ;

Using unity, and axioms for a relative monad we can prove that these
constructions are inverse of each other.
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constructions are inverse of each other.
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Relative Algebras

Definition

I , T : C0 → C relative monad. A relative T-algebra consists of A ∈ C

with maps (−)AX : C(IX , A)→ C(TX , A)

satisfying the following axioms for h : IX → A and k : IX ′ → TX:

IX TX

A

tX

hA

h

TX ′ TX

A

k†

hA

(hA · k)A

Theorem (Altenkirch, Chapman and Uustalu)

Relative monads ⇔ Relative adjuctions
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When can we talk about relative distributive laws?

We want a relative monad I , T : C0 → C and a monad S : C→ C that
restrict nicely to C0, i.e.

Definition

Let I : C0 → C be a functor. We define a compatible monad with I as
a pair of monads S0 : C0 → C0 and S : C→ C such that SI = IS0,
mI = Im0 and sI = Is0.

We will define a relative distributive law of a relative monad T on a
compatible monad (S , S0) with I .
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Relative Distributive Laws

Distributive Laws

Definition

I ,T : C0 → C relative monad, (S , S0) compatible with I . A relative
distributive law of T over (S , S0) is a transformation d : ST → TS0
satisfying four axioms (for any f : IX → TY ):

S2T STS0

TS2
0

ST TS0

mT

Sd

d

dS0

Tm0

T ST

TS0

d

sT

Ts0

STX STY

TS0X TS0Y

dX

Sf †T

(dY · Sf )†T

dY

SI

IS0

ST

TS0

d

St

tS0
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Example

T = power set relative monad, S = monad of monoids, Sκ = S � Set≤k .

For X ∈ Set≤k and Y ∈ Set

SY = {y1 · · · yn | yi ∈ Y , n ∈ N}

SκX = {x1 · · · xn | xi ∈ X , n ∈ N}

TX = P(X ) = {A | A ⊆ X}

⇒ a relative distributive law d : ST → TS of T on (S , Sk):

dX : STX TSkX

A1...An {a1...an | ai ∈ Ai} .

Gabriele Lobbia 11 June 2020
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Theorem (Lobbia)

Given a relative monad I ,T : C0 → C and a compatible monad (S , S0)
with I , TFAE:

(1) A relative distributive law d : ST → TS0;

(2) A lifting T̂ : S0-Alg→ S-Alg of T to the algebras of S0 and S;

(3) An extension S̃ : Kl(T )→ Kl(T ) of S to the Kleisli of T .

Corollary

There is a lifting of the power set relative monad to Mon≤κ ↪→Mon.

There exists an extension of the free monoid monad to the category of
relations over sets with cardinality ≤ κ.
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Future Work

• Prove that a relative distributive law of T over (S , S0) is equivalent
to a relative monad structure on TS0 compatible with T and
(S , S0);

• Extend this work to relative pseudomonads;

• Possible connection with Lawvere Theories,
MEMO: Lawvere Theories are equivalent to finitary monads.
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