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Surreal numbers

I No := 2<On =
⋃
α∈On 2α (a surreal number is a functionα→ 2 = {0, 1})

I x <s y if x ( y (we shall say “x is simpler than y”)
I x < y if x(β) < y(β) on the minimum β such that x(β) 6= y(β)

(where 0 < ⊥ < 1, and “x(β) = ⊥” when β /∈ dom(x))
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Arithmetic operations – refresher on ordinals
Classical ordinal arithmetic
S(α) := min{β > α} α� β := sup{S((α� β′)⊕ α′) : β′ < β,α′ < α}
α⊕ β := sup{α, S(α⊕ β′) : β′ < β} αβ := sup{1, S(αβ′ � α′ ⊕ γ) : β′ < β,α′ < α, γ < αβ

′}
These are all increasing in the second argument, but not commutative, e.g. 1⊕ ω = ω < ω ⊕ 1.

Hessenberg natural arithmetic
α+ β := sup{S(α+ β′), S(α′ + β) : β′ < β,α′ < α}
α · β = αβ := min{γ : γ + α′β′ > α′β + αβ′ for α′ < α, β′ < β}
These are all increasing in both arguments, and are commutative 1 + ω = ω + 1 = ω ⊕ 1 = S(ω).
Moreover, ωα+β = ωαωβ .

Degree and Cantor Normal Form
deg(α) := sup{β : ωβ ≤ α} (and deg(0) := −∞). That’s always a maximum.

α = ωβ1k1 + ωβ2k2 + . . .+ ωβnkn (Cantor Normal Form)
for unique β1 > β2 > . . . > βn and k1, . . . , kn ∈ N 6=0 (where β1 = deg(α)).
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Arithmetic operations – surreal numbers
Hessenberg natural arithmetic – alternative characterisation
Let≤ be the natural partial order onOnn. Given f , g : Onn → On, say that f ≤ g if for every−→α minimal
such that f(−→α ) 6= g(−→α ) we have f(−→α ) < g(−→α ).
I + is the≤-least function that is strictly increasing in both arguments
I · is the≤-least function such that αβ + α′β′ > α′β + αβ′ for α′ < α, β′ < β

I α 7→ ωα is the≤-least function such that ωα > ωα
′
k, 0 for α′ < α, k ∈ N

Remark. The partial order≤ onOnn is well founded, but≤ on the functionsOnn → On is not.

Surreal arithmetic
Let≤s be the natural partial order onNon. Given f , g : Non → No, say that f≤sg if for every−→x minimal
such that f(−→x ) 6= g(−→x ) we have f(−→x )<sg(−→x ).
I + is the≤s-least function that is strictly increasing in both arguments
I · is the≤s-least function such that xy + x′y′ > x′y + xy′ for x′ < x, y′ < y
I x 7→ ωx is the≤s-least function such that ωx > ωx

′
k, 0 for x′ < x, k ∈ N

Remark. The partial order≤s onNon is well founded, but≤s on the functionsNon → No is not.

Theorem (Conway). (No, <,+, ·) is a (saturated) real closed field.
No contains a canonical (i.e. “≤s-least”) copy of R and ofOn.
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Other surreal functions
f ...is≤s-least such that:

+ x + z < y + z, z + x < z + y for x < y (more restrictively: (No, <,+) is an ordered group) [Conway ’76]

· xy + x′y′ > x′y + xy′ for x′ < x, y′ < y (more restrictively: (No, <,+, ·) is an ordered ring) [Conway ’76]

exp
exp : (No,+, <) ∼−→ (No>0, ·, <), exp(r) = er for r ∈ R, exp(x) > xn for x > N, n ∈ N
exp(ε) = 1 + ε+ . . .+ εn

n! + o(εn) for ε ≺ 1 and n ∈ N [Gonshor ’80]

f�[−1,1]k
restricted

analytic

for k = 1, define x 7→ (f(x), f ′(x), f ′′(x), . . .) ∈ Noω ; [ok, for k > 1 I can’t fit it on this slide.]

f(x+ ε) = f(x) + f ′(x)ε+ . . .+ f (n)(x)
n! εn + o(εn) for x � 1, ε ≺ x, n ∈ N [Neumann ’49+Alling ’87]

∂
∂(x + y) = ∂x + ∂y, ∂(xy) = ∂x · y + x · ∂y, ∂R = 0, ∂ exp(x) = exp(x) · ∂x
and if x > N, then ∂x > 0 (≡ ∂ is an exp-compatible H-field derivation with ker(∂) = R) [Berarducci-M ’18]

Lω
Lω(exp(x)) = Lω(x)+1; Lω(x) < log(. . . (log(x))); Lω(x+ε) = Lω(x)+ 1

x log(x) log(log(x))···ε+. . .
[Bagayoko-van der Hoeven-M]

ωx ωx > ωx
′
k for x′ < x and k ∈ N [Conway ’76]

b·c bxc ≤ x < bxc+ 1 for all x [Conway ’76] (See also Costin-Ehrlich-Friedman, Berarducci-M ’19 for EB-summable functions.)
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First order theory of surreal functions

Theorem (Conway ’76). (No, <,+, ·) is a real closed field.

Theorem (van den Dries-Ehrlich ’01). (No, <,+, ·, exp, f)f restricted analytic is a model of
Th(R, <,+, ·, exp, f)f restricted analytic.

Theorem (Aschenbrenner-van den Dries-van der Hoeven ’19). (No, <,+, ·, ∂) is a model of the theory of
LE-series (which is model complete in the language of ordered valued di�erential fields).

Theorem (∼Shepherdson ’64). (Oz≥0, <,+, ·) is a model of Open Induction (whereOz = bNoc).
But it’s not a model of Peano Arithmetic: the fraction field is real closed (it’s No!).

We do not know much about EB-summable functions, and definitely nothing about Lω .



7/12

What’s so special about the simplest functions?

Definition. Call A ⊆ No initial if for all x ∈ A, y ∈ No, y ≤s x implies y ∈ A (so A is≤s-downward closed).

Theorem (Ehrlich 2001, Fornasiero 2006). If A ⊆ No is initial, then theL-structure generated by A,
denoted by 〈A〉L, is initial for the following languages:
I L = {+,−} (hence 〈A〉L = the group generated by A);
I L = {+,−, 1

n ·} (hence 〈A〉L = the divisible group generated by A);
I L = {+,−, ·} (hence 〈A〉L = the ring generated by A);
I L = {+,−, ·, (·)−1} (hence 〈A〉L = the field generated by A);
I L = {+,−, ·, (·)−1, f}f restricted algebraic (hence 〈A〉L = the real closed field generated by A);
I L = {+,−, ·, (·)−1, f}f restricted analytic; L = {+,−, ·, (·)−1, f , exp}f restricted analytic;
I (added by Ehrlich-Kaplan ’20)L = {+,−, ·, (·)−1, exp, f}f in a convergent Weierstrass systemW .

Remark. This is not true if we skip some functions. For instance, A = {0, 1, 2} is initial, but
〈0, 1, 2〉{·} = {0, 1, 2, 4, . . .} is not.
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Proof sketch

Proposition. If A ⊆ No is initial, then the closure of A under + is initial.
Proof. Pick (x, y) ∈ A2 ≤s-minimal such that x + y /∈ A.
I Let z ∈ No such that z /∈ A and z ≤s x + y.
I By definition of<, a < z⇔ a < x + y for all a ∈ A.
I Let A′ = {x′, y′, x′ + y′ : (x′, y′) <s (x, y)}. Note that A′ ⊆ A, x, y ∈ A′.
I Now take an automorphism σ of (No, <) fixing A′ and such that σ(x + y) = z.
I Define z +σ w := σ(σ−1(z) + σ−1(w)). Then (x, y) is≤s-minimal such that x + y 6= x +σ y.
I Since + ≤s +σ , we have x + y ≤s x +σ y = z ≤s x + y, hence x + y = z.
I Therefore, A ∪ {x + y} is initial. Now continue by induction.

General case. For the languageL = {+,−}, first close A under +, and change the definition of A′ so that
it is closed under + as well. Likewise forL = {+,−, ·}. In general, work by induction on the size of the
language (as long as you remember to enumerate +, · first!).
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Initial substructures
Theorem (Fornasiero 2006, Ehrlich-Kaplan 2020). If A ⊆ No is initial, then 〈A〉L is initial for:
I L = {+,−, 1

n ·} (hence 〈A〉L = the divisible group generated by A);
I L = {+,−, ·, (·)−1, f}f restricted algebraic (hence 〈A〉L = the real closed field generated by A);
I L = {+,−, ·, (·)−1, exp?, f}f in a convergent Weierstrass systemW .

Corollary. IfM |= T, then there is an embedding ι : M→ Nowith ι(M) initial, for T the theory of divisible
ordered groups, real closed fields, or Tan, Tan,exp, TW,exp.
Proof. WriteM =

⋃
α Mα whereMα+1 = Mα〈xα〉L. We may assume that eachMα is a model (add 1

n ·
and/or the algebraic functions toL if necessary: we just needMα〈xα〉L = dclL(Mαxα)).
I Given ια : Mα → Nowith ια(Mα) initial, and the cut satisfied by xα overMα, map xα to the simplest

yα in the corresponding cut over ια(Mα).
I Then ια(Mα) ∪ {yα} is initial and yα has the same type as xα by o-minimality.
I Therefore,Mα+1 ∼= ια(Mα)〈yα〉L, and the latter is initial.

Remark. We used (1) ThL(No) o-minimal, (2) 〈A〉L model of T for all A, (3) 〈A〉L initial for all A initial.
Question. LetL be such that 〈A〉L is initial for all A initial. Let CL be the class of theL-structures with
initial embeddings intoNo. Is CL elementary? Does CL have the amalgamation property?
Remark. Ehrlich, Ehrlich-Kaplan give some algebraic characterisation for CL for someL.
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Existence of simplest functions

The existence of≤s-minimum functions is ad hoc for each case. One builds a very plausible candidate,
then verifies that it is correct.

For the traditional +, ·, exp, Conway and Gonshor use “recursive” or “genetic” definition. These are
roughly equivalent to taking the simplest function satisfying a collection of strict inequalities.

f ...is≤s-least such that:
+ x + z < y + z, z + x < z + y for x < y (drop “+” is a group operation)
· xy + x′y′ > x′y + xy′ for x′ < x, y′ < y

exp ... does not fit here

Conway proceeds by transfinite recursion. Pick x, y ∈ No. Let x + y be the simplest value that fits the
conditions just w.r.t. x′ + y′ for (x′, y′) <s (x, y). One verifies that such value always exist (here strict
inequalities really help), and that the resulting function satisfies the requirements.

One then verifies that x + y = y + x (easy by symmetry), x + (y + z) = (x + y) + z, the existence of
inverses, divisibility. . .
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Simplest derivation
The genetic approach does not scale well. As of now, there is no genetic definition of ∂.

f ...is≤s-least such that:

∂
∂(x + y) = ∂x + ∂y, ∂(xy) = ∂x · y + x · ∂y, ∂R = 0, ∂ exp(x) = exp(x) · ∂x
and if x > N, then ∂x > 0 (≡ ∂ is an exp-compatible H-field derivation with ker(∂) = R)

The construction of ∂ goes as follows:
I Write each x ∈ No in normal form x =

∑
i<α riω

yi =
∑

i<α rie
γi .

I Require ∂x =
∑

i<α rie
γi∂γi.

I Iterate and impose ∂x =
∑

i1,i2,...,in ri1si1 i2 . . . e
γi1 eµi1 i2 . . . ∂λi1 i2...in , where for each i1 . . . in we take n

minimum such that λi1 i2...in is log-atomic: its normal form is eλ
′
, and λ′ is log-atomic too.

I Then (1) define ∂ on the log-atomics as the simplest satisfying some inequalities.
I And (2) verify that the summands range in an anti-well ordered set (or more precisely, form a

‘Noetherian’ family), and thus can be summed.
Step (2) uses the simplicity of exp in a crucial way: one proves that certain manipulations of the normal
form

∑
i<α rie

γi (such as truncating the tail) move surreal numbers downward for≤s, and thus they can
only be applied finitely many times.
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Further questions

Question. Suppose T is some o-minimal theory in a languageLwith no relation symbols beyond<, with
quantifier elimination and universal axiomatisation (or similar). EnumerateL = {<, f0, f1, . . .}. Is there
anL-structure onNo such that each fα is the≤s-minimum function that makesNo a model of
T �{<,fβ}β<α?

And can this be done for other theories such as Th(No, <,+, ·, ∂) (which is only “o-minimal at infinity”)?

Question. Does every model of Th(No, <,+, ·, ∂) with ker(∂) ∼= R embed initially intoNo?


