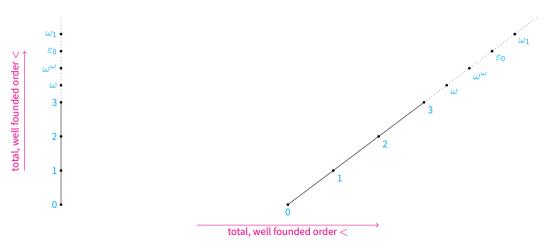
Surreal numbers and Simplicity

Vincenzo Mantova

University of Leeds

Leeds-Ghent Virtual Logic Seminar, 25th February 2021

Surreal numbers



Surreal numbers

- ▶ No := $2^{<On} = \bigcup_{\alpha \in On} 2^{\alpha}$ (a surreal number is a function $\alpha \rightarrow 2 = \{0, 1\}$)
- $x <_{s} y$ if $x \subsetneq y$ (we shall say "x is simpler than y")
- x < y if $x(\beta) < y(\beta)$ on the minimum β such that $x(\beta) \neq y(\beta)$

(where $0 < \bot < 1$, and " $x(\beta) = \bot$ " when $\beta \notin dom(x)$)



Arithmetic operations - refresher on ordinals

Classical ordinal arithmetic

$$\begin{split} \mathbf{S}(\alpha) &:= \min\{\beta > \alpha\} & \alpha \odot \beta := \sup\{\mathbf{S}((\alpha \odot \beta') \oplus \alpha') : \beta' < \beta, \alpha' < \alpha\} \\ \alpha \oplus \beta &:= \sup\{\alpha, \mathbf{S}(\alpha \oplus \beta') : \beta' < \beta\} & \alpha^{\beta} := \sup\{\mathbf{1}, \mathbf{S}(\alpha^{\beta'} \odot \alpha' \oplus \gamma) : \beta' < \beta, \alpha' < \alpha, \gamma < \alpha^{\beta'}\} \\ \end{split}$$
These are all increasing in the second argument, but not commutative, e.g. $\mathbf{1} \oplus \omega = \omega < \omega \oplus \mathbf{1}$.

Hessenberg natural arithmetic

$$\begin{aligned} \alpha + \beta &:= \sup\{S(\alpha + \beta'), S(\alpha' + \beta) : \beta' < \beta, \alpha' < \alpha\}\\ \alpha \cdot \beta &= \alpha\beta := \min\{\gamma : \gamma + \alpha'\beta' > \alpha'\beta + \alpha\beta' \text{ for } \alpha' < \alpha, \beta' < \beta\}\\ \text{These are all increasing in both arguments, and are commutative } \mathbf{1} + \omega &= \omega + \mathbf{1} = \omega \oplus \mathbf{1} = S(\omega).\\ \text{Moreover, } \omega^{\alpha + \beta} &= \omega^{\alpha} \omega^{\beta}. \end{aligned}$$

Degree and Cantor Normal Form

 $deg(\alpha) := \sup\{\beta : \omega^{\beta} \leq \alpha\}$ (and $deg(0) := -\infty$). That's always a maximum.

 $\alpha = \omega^{\beta_1} k_1 + \omega^{\beta_2} k_2 + \ldots + \omega^{\beta_n} k_n \text{ (Cantor Normal Form)}$ for unique $\beta_1 > \beta_2 > \ldots > \beta_n$ and $k_1, \ldots, k_n \in \mathbb{N}^{\neq 0}$ (where $\beta_1 = \deg(\alpha)$).

Arithmetic operations - surreal numbers

Hessenberg natural arithmetic – alternative characterisation

Let \leq be the natural partial order on **On**^{*n*}. Given f, g :**On**^{*n*} \rightarrow **On**, say that $f \leq g$ if for every $\overrightarrow{\alpha}$ minimal such that $f(\overrightarrow{\alpha}) \neq g(\overrightarrow{\alpha})$ we have $f(\overrightarrow{\alpha}) < g(\overrightarrow{\alpha})$.

- $\blacktriangleright \ +$ is the \leq -least function that is strictly increasing in both arguments
- ▶ \cdot is the ≤-least function such that $\alpha\beta + \alpha'\beta' > \alpha'\beta + \alpha\beta'$ for $\alpha' < \alpha$, $\beta' < \beta$
- $\blacktriangleright \ \alpha \mapsto \omega^{\alpha} \text{ is the } \leq \text{-least function such that } \omega^{\alpha} > \omega^{\alpha'} \textit{k}, \texttt{0 for } \alpha' < \alpha, \textit{k} \in \mathbb{N}$

Remark. The partial order \leq on **On**ⁿ is well founded, but \leq on the functions **On**ⁿ \rightarrow **On** is not. Surreal arithmetic

Let \leq_s be the natural partial order on Noⁿ. Given $f, g : No^n \to No$, say that $f \leq_s g$ if for every \overrightarrow{x} minimal such that $f(\overrightarrow{x}) \neq g(\overrightarrow{x})$ we have $f(\overrightarrow{x}) <_s g(\overrightarrow{x})$.

- \blacktriangleright + is the \leq_s -least function that is strictly increasing in both arguments
- is the \leq_s -least function such that xy + x'y' > x'y + xy' for x' < x, y' < y
- ► $x \mapsto \omega^x$ is the \leq_s -least function such that $\omega^x > \omega^{x'}k$, 0 for x' < x, $k \in \mathbb{N}$

Remark. The partial order \leq_s on Noⁿ is well founded, but \leq_s on the functions Noⁿ \rightarrow No is not. Theorem (Conway). (No, $<, +, \cdot$) is a (saturated) real closed field. No contains a canonical (i.e. " \leq_s -least") copy of \mathbb{R} and of On.

Other surreal functions

f	is \leq_s -least such that:
+	x + z < y + z, z + x < z + y for $x < y$ (more restrictively: (No, $<, +$) is an ordered group) [Conway '76]
	$xy + x'y' > x'y + xy'$ for $x' < x$, $y' < y$ (more restrictively: (No, $<, +, \cdot$) is an ordered ring) [Conway '76]
exp	$\exp: (\mathbf{No}, +, <) \xrightarrow{\sim} (\mathbf{No}^{>0}, \cdot, <), \exp(r) = e^r \text{ for } r \in \mathbb{R}, \exp(x) > x^n \text{ for } x > \mathbb{N}, n \in \mathbb{N}$ $\exp(\varepsilon) = 1 + \varepsilon + \ldots + \frac{\varepsilon^n}{n!} + o(\varepsilon^n) \text{ for } \varepsilon \prec 1 \text{ and } n \in \mathbb{N}$ [Gonshor '80]
f _{[[−1,1]^k restricted analytic}	for $k = 1$, define $x \mapsto (f(x), f'(x), f''(x), \ldots) \in \mathbf{No}^{\omega}$; [ok, for $k > 1$ can't fit it on this slide.] $f(x + \varepsilon) = f(x) + f'(x)\varepsilon + \ldots + \frac{f^{(n)}(x)}{n!}\varepsilon^n + o(\varepsilon^n)$ for $x \leq 1, \varepsilon \prec x, n \in \mathbb{N}$ [Neumann '49+Alling '87]
∂	$\partial(x + y) = \partial x + \partial y, \ \partial(xy) = \partial x \cdot y + x \cdot \partial y, \ \partial \mathbb{R} = 0, \ \partial \exp(x) = \exp(x) \cdot \partial x$ and if $x > \mathbb{N}$, then $\partial x > 0 (\equiv \partial \text{ is an exp-compatible } H\text{-field derivation with } \ker(\partial) = \mathbb{R})$ [Berarducci-M '18]
L_ω	$L_{\omega}(\exp(x)) = L_{\omega}(x) + 1; L_{\omega}(x) < \log(\dots(\log(x))); L_{\omega}(x+\varepsilon) = L_{\omega}(x) + \frac{1}{x \log(x) \log(\log(x)) \cdots} \varepsilon + \dots$ [Bagayoko-van der Hoeven-M]
ω^{x}	$\omega^x > \omega^{x'} k$ for $x' < x$ and $k \in \mathbb{N}$ [Conway '76]
$\lfloor \cdot \rfloor$	$ [x] \le x < [x] + 1$ for all x [Conway '76] (See also Costin-Ehrlich-Friedman, Berarducci-M '19 for EB-summable functions.)

First order theory of surreal functions

Theorem (Conway '76). (No, <, +, \cdot) is a real closed field.

Theorem (van den Dries-Ehrlich '01). (No, <, +, \cdot , exp, f)_{f restricted analytic} is a model of $Th(\mathbb{R}, <$, +, \cdot , exp, f)_{f restricted analytic}.

Theorem (Aschenbrenner-van den Dries-van der Hoeven '19). (**No**, <, +, \cdot , ∂) is a model of the theory of *LE*-series (which is model complete in the language of ordered valued differential fields).

Theorem (~Shepherdson '64). ($Oz^{\geq 0}, <, +, \cdot$) is a model of Open Induction (where $Oz = \lfloor No \rfloor$). But it's not a model of Peano Arithmetic: the fraction field is real closed (it's **No**!).

We do not know much about *EB*-summable functions, and definitely nothing about L_{ω} .

What's so special about the simplest functions?

Definition. Call $A \subseteq$ **No** initial if for all $x \in A$, $y \in$ **No**, $y \leq_s x$ implies $y \in A$ (so A is \leq_s -downward closed).

Theorem (Ehrlich 2001, Fornasiero 2006). If $A \subseteq \mathbf{No}$ is initial, then the \mathcal{L} -structure generated by A, denoted by $\langle A \rangle_{\mathcal{L}}$, is initial for the following languages:

- $\mathcal{L} = \{+, -\}$ (hence $\langle A \rangle_{\mathcal{L}} =$ the group generated by *A*);
- $\mathcal{L} = \{+, -, \frac{1}{n} \cdot\}$ (hence $\langle A \rangle_{\mathcal{L}} =$ the divisible group generated by *A*);
- $\mathcal{L} = \{+, -, \cdot\}$ (hence $\langle A \rangle_{\mathcal{L}} =$ the ring generated by *A*);
- ▶ $\mathcal{L} = \{+, -, \cdot, (\cdot)^{-1}\}$ (hence $\langle A \rangle_{\mathcal{L}} =$ the field generated by *A*);
- $\mathcal{L} = \{+, -, \cdot, (\cdot)^{-1}, f\}_{f \text{ restricted algebraic}}$ (hence $\langle A \rangle_{\mathcal{L}} =$ the real closed field generated by A);
- $\blacktriangleright \mathcal{L} = \{+, -, \cdot, (\cdot)^{-1}, f\}_{f \text{ restricted analytic}}; \quad \mathcal{L} = \{+, -, \cdot, (\cdot)^{-1}, f, \exp\}_{f \text{ restricted analytic}};$
- (added by Ehrlich-Kaplan '20) $\mathcal{L} = \{+, -, \cdot, (\cdot)^{-1}, \exp, f\}_{f \text{ in a convergent Weierstrass system } W$.

Remark. This is *not* true if we skip some functions. For instance, $A = \{0, 1, 2\}$ is initial, but $(0, 1, 2)_{\{\cdot\}} = \{0, 1, 2, 4, \ldots\}$ is not.

Proof sketch

Proposition. If $A \subseteq No$ is initial, then the closure of A under + is initial. Proof. Pick $(x, y) \in A^2 \leq_s$ -minimal such that $x + y \notin A$.

- Let $z \in No$ such that $z \notin A$ and $z \leq_s x + y$.
- ▶ By definition of <, $a < z \Leftrightarrow a < x + y$ for all $a \in A$.
- ▶ Let $A' = \{x', y', x' + y' : (x', y') <_s (x, y)\}$. Note that $A' \subseteq A, x, y \in A'$.
- Now take an automorphism σ of (No, <) fixing A' and such that $\sigma(x + y) = z$.
- ▶ Define $z + \sigma w := \sigma(\sigma^{-1}(z) + \sigma^{-1}(w))$. Then (x, y) is \leq_s -minimal such that $x + y \neq x + \sigma y$.
- Since $+\leq_s +^{\sigma}$, we have $x + y \leq_s x +^{\sigma} y = z \leq_s x + y$, hence x + y = z.
- Therefore, $A \cup \{x + y\}$ is initial. Now continue by induction.

General case. For the language $\mathcal{L} = \{+, -\}$, first close *A* under +, and change the definition of *A'* so that it is closed under + as well. Likewise for $\mathcal{L} = \{+, -, \cdot\}$. In general, work by induction on the size of the language (as long as you remember to enumerate +, \cdot first!).

Initial substructures

Theorem (Fornasiero 2006, Ehrlich-Kaplan 2020). If $A \subseteq No$ is initial, then $\langle A \rangle_{\mathcal{L}}$ is initial for:

- $\mathcal{L} = \{+, -, \frac{1}{n} \cdot\}$ (hence $\langle A \rangle_{\mathcal{L}} =$ the divisible group generated by *A*);
- $\mathcal{L} = \{+, -, \cdot, (\cdot)^{-1}, f\}_{f \text{ restricted algebraic}}$ (hence $\langle A \rangle_{\mathcal{L}} =$ the real closed field generated by A);
- $\mathcal{L} = \{+, -, \cdot, (\cdot)^{-1}, \exp?, f\}_{f \text{ in a convergent Weierstrass system } W$

Corollary. If $M \models T$, then there is an embedding $\iota : M \to \mathbf{No}$ with $\iota(M)$ initial, for T the theory of divisible ordered groups, real closed fields, or T_{an} , $T_{an,exp}$, $T_{W,exp}$. Proof. Write $M = \bigcup_{\alpha} M_{\alpha}$ where $M_{\alpha+1} = M_{\alpha} \langle x_{\alpha} \rangle_{\mathcal{L}}$. We may assume that each M_{α} is a model (add $\frac{1}{n}$ · and/or the algebraic functions to \mathcal{L} if necessary: we just need $M_{\alpha} \langle x_{\alpha} \rangle_{\mathcal{L}} = \operatorname{dcl}_{\mathcal{L}}(M_{\alpha}x_{\alpha})$).

- Given $\iota_{\alpha} : M_{\alpha} \to \mathbf{No}$ with $\iota_{\alpha}(M_{\alpha})$ initial, and the cut satisfied by x_{α} over M_{α} , map x_{α} to the simplest y_{α} in the corresponding cut over $\iota_{\alpha}(M_{\alpha})$.
- Then $\iota_{\alpha}(M_{\alpha}) \cup \{y_{\alpha}\}$ is initial and y_{α} has the same type as x_{α} by o-minimality.
- Therefore, $M_{\alpha+1} \cong \iota_{\alpha}(M_{\alpha})\langle y_{\alpha} \rangle_{\mathcal{L}}$, and the latter is initial.

Remark. We used (1) $\operatorname{Th}_{\mathcal{L}}(\mathbf{No})$ o-minimal, (2) $\langle A \rangle_{\mathcal{L}}$ model of *T* for all *A*, (3) $\langle A \rangle_{\mathcal{L}}$ initial for all *A* initial. Question. Let \mathcal{L} be such that $\langle A \rangle_{\mathcal{L}}$ is initial for all *A* initial. Let $\mathcal{C}_{\mathcal{L}}$ be the class of the \mathcal{L} -structures with initial embeddings into **No**. Is $\mathcal{C}_{\mathcal{L}}$ elementary? Does $\mathcal{C}_{\mathcal{L}}$ have the amalgamation property? Remark. Ehrlich, Ehrlich-Kaplan give some algebraic characterisation for $\mathcal{C}_{\mathcal{L}}$ for some \mathcal{L} .

Existence of simplest functions

The existence of \leq_s -minimum functions is ad hoc for each case. One builds a very plausible candidate, then verifies that it is correct.

For the traditional $+, \cdot, exp$, Conway and Gonshor use "recursive" or "genetic" definition. These are roughly equivalent to taking the simplest function satisfying a collection of strict inequalities.

f	is \leq_s -least such that:
+	x + z < y + z, z + x < z + y for $x < y$ (drop "+" is a group operation)
•	x + z < y + z, z + x < z + y for $x < y$ (drop "+" is a group operation) xy + x'y' > x'y + xy' for $x' < x, y' < y$
exp	does not fit here

Conway proceeds by transfinite recursion. Pick $x, y \in No$. Let x + y be the simplest value that fits the conditions just w.r.t. x' + y' for $(x', y') <_s (x, y)$. One verifies that such value always exist (here strict inequalities really help), and that the resulting function satisfies the requirements.

One then verifies that x + y = y + x (easy by symmetry), x + (y + z) = (x + y) + z, the existence of inverses, divisibility...

Simplest derivation

The genetic approach does not scale well. As of now, there is no genetic definition of ∂ .

- $\begin{array}{c|c|c|c|c|c|c|}\hline f & ... is \leq_{s} \text{-least such that:} \\ \hline \partial & \partial(x+y) = \partial x + \partial y, \ \partial(xy) = \partial x \cdot y + x \cdot \partial y, \ \partial \mathbb{R} = 0, \ \partial \exp(x) = \exp(x) \cdot \partial x \end{array}$ and if $x > \mathbb{N}$, then $\partial x > 0$ ($\equiv \partial$ is an exp-compatible *H*-field derivation with ker(∂) = \mathbb{R})

The construction of ∂ goes as follows:

- Write each $x \in \mathbf{No}$ in normal form $x = \sum_{i < \alpha} r_i \omega^{y_i} = \sum_{i < \alpha} r_i e^{\gamma_i}$.
- Require $\partial x = \sum_{i < \alpha} r_i e^{\gamma_i} \partial \gamma_i$.
- Iterate and impose $\partial x = \sum_{i_1, i_2, \dots, i_n} r_{i_1} s_{i_1 i_2} \dots e^{\gamma_{i_1}} e^{\mu_{i_1 i_2}} \dots \partial \lambda_{i_1 i_2 \dots i_n}$, where for each $i_1 \dots i_n$ we take nminimum such that $\lambda_{i,j_{i-1}}$ is log-atomic: its normal form is $e^{\lambda'}$, and λ' is log-atomic too.
- \blacktriangleright Then (1) define ∂ on the log-atomics as the simplest satisfying some inequalities.
- And (2) verify that the summands range in an anti-well ordered set (or more precisely, form a 'Noetherian' family), and thus can be summed.

Step (2) uses the simplicity of exp in a crucial way: one proves that certain manipulations of the normal form $\sum_{i < \alpha} r_i e^{\gamma_i}$ (such as truncating the tail) move surreal numbers downward for \leq_s , and thus they can only be applied finitely many times.

Question. Suppose *T* is some o-minimal theory in a language \mathcal{L} with no relation symbols beyond <, with quantifier elimination and universal axiomatisation (or similar). Enumerate $\mathcal{L} = \{<, f_0, f_1, \ldots\}$. Is there an \mathcal{L} -structure on **No** such that each f_{α} is the \leq_s -minimum function that makes **No** a model of $T \upharpoonright_{\{<, f_{\beta}\}_{\beta < \alpha}}$?

And can this be done for other theories such as $Th(No, <, +, \cdot, \partial)$ (which is only "o-minimal at infinity")?

Question. Does every model of $Th(No, <, +, \cdot, \partial)$ with ker $(\partial) \cong \mathbb{R}$ embed initially into No?