FLUTTERS and CHAMELEONS

Photo: W. v. Klinckowstroem Photo: W. v. Klinckowstroem

A.R.D. Mathias Leeds virtual logic seminar Thursday June 25, 2020

The infinitary Ramsey principle $\omega \longrightarrow (\omega)_k^{\omega}$, where $\omega =_{df} \{0, 1, 2, ...\}$ and $2 \leq k < \omega$, says that if $\pi : [\omega]^\omega \longrightarrow k$ then for some infinite $X \subseteq \omega$, π is constant on the set $[X]^{\omega}$ of infinite subsets of X.

Solovay, in famous work soon after Cohen's invention of forcing, used a strongly inaccessible cardinal to construct a model of $ZF + DC$ in which various principles hold which contradict AC:

LM: every set of real numbers is Lebesgue measurable;

PB: every set of real numbers has the property of Baire;

UP: every uncountable set of real numbers has a perfect subset.

Mathias showed in 1968 that in Solovay's model, this principle holds:

RAM: all colourings are Ramsey; in symbols, $\omega \longrightarrow (\omega)^{\omega}$;

and in 1969 that using a Mahlo cardinal, the Solovay model satisfies NoMAD: no maximal infinite AD family of infinite subsets of ω .

DIGRESSION

PROPOSITION There is an arithmetical subset N of the square $[\omega]^\omega \times [\omega]^\omega$ such that for each A, $\{B \mid_B (A, B) \in N\}$ is CR^+ and for each B $\{A \mid_A$ $(A, B) \in N$ is CR^- .

COROLLARY There is no analogue for the Ellentuck topology to the theorems of Fubini and Kuratowski–Ulam.

Proof: Let us say that A is much denser than B if

$$
\lim \overline{A \cap [\tilde{B}(n), \tilde{B}(n+1))} = \infty,
$$

where $B : \omega \longrightarrow \omega$ is the monotonic enumeration of B. Let $N =_{df}$ $\{\langle A, B \rangle |_{A,B} A$ is much denser than $B\}$ End of digression

It is natural to ask whether these large cardinals are necessary; in some cases the answer is known:

Specker had shown in the 1950s that UP implies that the true ω_1 is strongly inaccessible in L and in each $L[\alpha]$ for α a real; Shelah showed that LM implies the same thing, but, surprisingly, PB does not.

More recently Törnquist has shown that NoMAD holds in Solovay's original model; Shelah and Horowitz have extended his work to show that even that inaccessible is unnecessary to get a model of NoMAD; Törnquist and Schrittesser have shown that if all sets are Ramsey then NoMAD.

But it is still open, even after fifty years whether RAM implies that ω_1 is inaccessible to reals.

Let Ω be a countably infinite set: in this paper, it will usually be either $\omega, \omega \times \mathbb{Z}$ or $\mathbb{Z} \times \mathbb{Z}$.

We define equivalence relations on $\mathcal{P}(\Omega)$:

 $B \sim_{\ast} C \iff_{\text{df}} B \triangle C$ is finite; $B \sim_k C \iff_{\rm df}$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $B \sim_{*} C \& B \setminus C = C \setminus B$ if $k = 0$, $B \sim_* C \& B \setminus C \equiv C \setminus B \mod k \text{ if } k > 1;$

REMARK All those equivalence relations have the property that if $B \sim C$ then $\Omega \setminus B \sim \Omega \setminus C$.

WARNING Many authors write E_0 for the equivalence relation \sim_{*} , but our notation fits better with our other equivalence relations.

DEFINITION If R and S are equivalence relations on Ω with every Rclass being a union of S-classes—when we say S is nested in R— then an (R, S, Ω) -selector is a function that chooses from each R-class an S-class.

REMARK Many of the above equivalence relations are nested; in this notation an E_0 -selector is an $(\sim_*, =, \Omega)$ selector. The equality relation on $[\omega]^\omega$ is nested in the relation \sim_k which is nested in \sim_k for each $k = 0, 2, 3, \ldots$ EXAMPLE A ($\sim_{*}, \sim_{k}, \Omega$)-selector is a function choosing one \sim_{k} -class from each \sim_{*} -class on Ω .

PROPOSITION
$$
A \sim_{\mathbb{Z}} B \Longleftrightarrow \forall^{\infty} k A \sim_k B \Longleftrightarrow \exists^{\infty} k A \sim_k B
$$
.

EXPLANATION Here $\exists^{\infty} k$ means "there are infinitely many k" and $\forall^{\infty} k$ "for all but finitely many k "; so $\forall^{\infty} k \Phi(k)$ is equivalent to $\neg \exists^{\infty} k \neg \Phi(k)$. REMARK As Ω is countably infinite, each \sim_{*} -class is a disjoint union of \aleph_0 ∼₀-classes, and for each $k \ge 2$, of exactly $k \sim_k$ -classes.

Let us write $sel(T, S)$ to mean that S is nested in T and there is a function that selects from each T class an S-class.

PROPOSITION Suppose that R is nested in S and S in T. The following are easily checked:

- i) sel(T, S) & sel(S, R) \implies sel(T, R);
- ii) $sel(T, R) \implies sel(T, S);$
- iii) sel (T, R) need not imply sel (S, R) .

PROPOSITION $sel(\sim_*) \implies sel(\sim_k, =) \text{ for each } k = 0, 2, 3, \ldots$

Proof : Let F be an E_0 -selector. Let $X \in [\omega]^\omega$, with $\omega \setminus X$ infinite. Let $Y = F(X)$. From Y we may define, for positive n, Y_n to be Y together with the first n elements of $\omega \setminus Y$, and Y_{-n} to be Y minus its first n elements. Now let $m = \overline{X \setminus Y} - \overline{Y \setminus X}$; then $Y_m \sim_0 X$, and so for every $k > 1$, $Y_m \sim_k X$. ⊣

DEFINITION For $k = 0, 2, 3, ...$ we write \mathbb{Z}_k for the ring $\mathbb{Z}/k\mathbb{Z}$; we identify \mathbb{Z}_0 and \mathbb{Z} . A k-chameleon is a map $\chi : \mathcal{P}(\omega) \longrightarrow \mathbb{Z}_k$ such that

$$
n \notin A \subseteq \omega \implies \chi(A \cup \{n\}) = \chi(A) + 1
$$

Notice the cyclicity: the additive group of \mathbb{Z}_k is cyclic, generated by 1, and is of order k when $k > 1$, infinite when $k = 0$.

PROPOSITION (ZF) For $k = 0, 2, 3, \ldots$, the existence of a k-chameleon is equivalent to the existence of a (\sim, \sim_k, ω) -selector.

Proof : Given such a selector, let $(B)_{\sim_k}$ be the chosen member of $(A)_{\sim_k}$ and define

$$
\chi(A) = \begin{cases} \overline{A \setminus B} - \overline{B \setminus A} & \text{if } k = 0, \\ \overline{\overline{A \setminus B}} - \overline{B \setminus A} & \text{mod } k \quad \text{if } k > 1. \end{cases}
$$

Given a k-chameleon, define a $(\sim_\ast, \sim_k, \omega)$ -selector by choosing from each \sim_{\ast} class the set of its members assigned value 0 by the chameleon. ⊣

A *Z*-*chameleon* is an alternative name for a 0-chameleon.

COROLLARY If there is a $(\sim_*, =, \omega)$ selector, there is a Z-chameleon.

REMARK Plainly the existence of selectors, and therefore of chameleons, is guaranteed by the Axiom of Choice. For $k > 1$, the Axiom of Choice for families of sets of size k (commonly notated C_k) will be enough, for using C_k , one may choose one \sim_k -class from the k of them into which any \sim_{*} -class splits. Further, C_{k} for finite k follows from the principle that each set has a linear ordering.

Constructing a $(\sim_{*}, \sim_{\mathbb{Z}}, \omega)$ selector seems to require a stronger form of AC: for implications between the existence of \mathbb{Z} -chameleons (in a more general setting) and weak forms of the axiom of choice, see [Mo].

The Belgian economist Luc Lauwers and the set theorists Giorgio Laguzzi and his collaborators have established serious links between \mathbb{Z} chameleons and the social welfare relations of mathematical economics.

THEOREM Let \sim be an analytic equivalence relation on $\mathcal{P}(\omega)$ with all classes countable. Then for some infinite $a \subseteq \omega$, $\sim \mid [a]^{\omega}$ is hyperfinite.

Suppose that \sim is $\Sigma_1^1(d)$ where d is a real parameter.

LEMMA If $X \sim Y$ then $\langle X, d \rangle = H_{\rm I}(\langle Y, d \rangle)$.

Proof: if $X \sim Y$ then $X \in \{Z \mid Z \sim Y\}$, a countable set that is $\Sigma_1^1(d, Y)$; by Harrison all members are HYP in d and Y. Use symmetry \vdash

Now let M be a countable transitive model of enough set theory, with d in M. Let a be Mathias generic over M. (To be more precise, suppose that F is in M a selective ultrafilter and that a is (M, \mathbb{P}_F) generic.)

PROPOSITION If b and c are in $[a]^\omega$ and $b \sim c$ then $b \triangle c$ is finite.

Proof : by the Lemma, if $b \sim c$ then b is HYP in c and d, so $b \cup c$ is HYP in c and d; But $b \cup c$ is also Mathias generic over M; by arguments as in the proof of Theorem 8.2 of Happy Families, it cannot be HYP in d and a subset of itself from which its difference is infinite. So $b \setminus c$ is finite. By symmetry, $c \setminus b$ is finite. Hence the result. \vdash

Proof of the Theorem: by the Proposition we know that on $[a]^{\omega}$, $b \sim$ $c \implies b \triangle c$ is finite. So define $b \sim_n c$ to hold if $b \sim c$ and $b \triangle c \subseteq n$. Each \sim_n is an equivalence relation with finite classes and the union of these relations, which increase with *n*, is \sim . ⊣

REMARK Since $b\Delta c$ finite implies that $b =_{\text{Turing }} c$, the result shows that if \sim is =_{Turing} then restricted to $[a]$ ^ω the equivalence relation is exactly \sim_{*} ; the same conclusion holds for $=_{HYP}$, even though that is a co-analytic but not analytic relation, as the Lemma (but not its proof) still applies.

EXAMPLE The relation \approx where $X \approx Y$ if the symmetric difference is not only finite but of even cardinality, is hyperfinite: for each n say that $X \approx_n Y$ if X results from Y by making an even number of changes, all less than *n*. But on no $[a]^{\omega}$ is \approx exactly \sim_{*} .

Photo: W. v. Klinckowstroem

A.R.D. Mathias Leeds virtual logic seminar Thursday June 25, 2020

The Baumgartner method

Another method for constructing chameleons emerged in correspondence in 1973 between Mathias and Baumgartner. Fix an integer $k \geqslant 2$. For an infinite subset A of ω , and $0 \leq i \leq k$ define

$$
\mathfrak{b}_i^k(A) = \{ n \in \omega \mid \overline{n \cap A} \equiv i \pmod{k} \},
$$

then $\bigcup_i \mathfrak{b}_i^k(A) = \omega$ and for $i < j < k$, $\mathfrak{b}_i^k(A) \cap \mathfrak{b}_j^k(A) = \varnothing$.

REMARK $A \sim_k B \Longleftrightarrow \forall i < k \; \mathfrak{b}_i^k(A) \sim_* \mathfrak{b}_i^k(B)$.

A filter on ω is *feeble* if there is a partition of ω into disjoint finite intervals s_i such that every $X \in F$ meets all but finitely many s_i 's. PROPOSITION ($[M3]$) Suppose that there is a non-feeble filter on ω . Then there is a non-Ramsey set.

Jalali-Naini [J-N] and Talagrand [T] later showed that a filter on ω is feeble if and only if it is meagre; so if PB, every filter on ω is feeble.

PROPOSITION Let U be a free ultrafilter and let $2 \leq k \leq \omega$. Then there is a k-chameleon.

Proof : Let $X \in [\omega]^\omega$. Then ω being the disjoint union of the k infinite sets $\mathfrak{b}_0^k(X), \mathfrak{b}_1^k(X), \ldots \mathfrak{b}_{k-1}^k(X)$, exactly one of them, say $\mathfrak{b}_j^k(X)$, is in U. We define $\pi_k^U(X)$ to be that j. If $X = Y'$ then for $i \geq 1$, $\mathfrak{b}_i^k(Y) = \mathfrak{b}_{i+1}^k(X)$, and for $i = 0$, $\mathfrak{b}_0^k(Y) = \mathfrak{b}_1^k(X)$ plus a finite set. Hence $\pi_k^U(X) = \pi_k^U(Y) + 1$. ⊣

Call $\rho : [\omega]^\omega \longrightarrow 2$ invariant if $A \sim_{\ast} B \implies \rho(A) = \rho(B)$. Write $\omega \stackrel{\triangle}{\longrightarrow} (\omega)^\omega$ to mean that all invariant colourings are Ramsey. Then from his 2012 Singapore thesis:

THEOREM (Dongxu Shao) (AD+ DC) If $\omega \stackrel{\triangle}{\longrightarrow} (\omega)^{\omega}$ then $\omega \longrightarrow (\omega)^{\omega}$.

The proof in (M3) extends to prove:

THEOREM (ZF) If $\omega \stackrel{\triangle}{\longrightarrow} (\omega)^{\omega}$ and there is a non-feeble filter, then there is a 2-chameleon.

Power series, partitions and more equivalences

An algebraic k-chameleon is a map $\bar{\chi}: \mathbb{Z}_k[[X]] \longrightarrow \mathbb{Z}_k$ such that

$$
\bar{\chi}(P + X^n) = \bar{\chi}(P) + 1
$$

We write $c_n(P)$ for the coefficient of X^n in the member P of the formal power series ring $\mathbb{Z}_k[[X]]$, so that P may be written $\sum_{n\in\omega} c_n(P)X^n$ or $\sum_n c_n(P)X^n$; and then for $r \in \mathbb{Z}_k$ we define $A_r(P) = \{n \mid c_n(P) = r\}.$

We write S for the formal power series $\sum_{n} X^{n}$. Remember that in $\mathbb{Z}_k[[X]], (1-X)S = 1.$

We consider polynomials to be series with almost all coefficients 0.

For series P and Q in $\mathbb{Z}[[X]]$ or $\mathbb{Z}_k[[X]]$ define

$$
P \sim^* Q \iff_{\text{df}} P - Q \text{ is a polynomial}
$$

$$
P \sim^0 Q \iff_{\text{df}} P \sim^* Q \& (P - Q)(1) = 0
$$

$$
P \sim^k Q \iff_{\text{df}} P \sim^* Q \& (P - Q)(1) \equiv 0 \mod k
$$

A k-partition is a sequence $\langle A_g | g \in \mathbb{Z}_k \rangle$ of possibly empty subsets of ω , with $\bigcup_{g\in\mathbb{Z}_k}A_g=\omega$ and $A_g\cap A_h=\varnothing$ whenever $g\neq h$.

Write P_k for the set of all k-partitions.

A bijective correspondence between partitions and series Given $P \in \mathbb{Z}_k[[X]]$ let $\mathcal{A}_P = \langle A_r(P) |_r r \in \mathbb{Z}_k \rangle$. Given $\mathcal{B} \in \mathbf{P}_k$, let $P_{\mathcal{B}} = \sum_{g \in \mathbb{Z}_k}$ $\sum_{n\in B_g} gX^n$

Photo: W. v. Klinckowstroem

A.R.D. Mathias Leeds virtual logic seminar Thursday June 25, 2020

The shift of a partition

If $\mathcal{A} = \langle A_q |_q g \in \mathbb{Z}_k \rangle$, $\mathfrak{s}(\mathcal{A}) =_{\text{df}} \langle A_{q-1} |_g g \in \mathbb{Z}_k \rangle$. PROPOSITION $\mathfrak{s}(\mathcal{A}_P) = \mathcal{A}_{P+S}.$

An equivalence relation on partitions

$$
\mathcal{A}^* \sim \mathcal{B} \iff_{\mathrm{df}} P_{\mathcal{A}} \sim^* P_{\mathcal{B}}
$$

Thus if $\mathcal{A}^* \sim \mathcal{B}$ and $k > 1$, $A_g \sim_* B_g$ for each of the finitely many $g \in \mathbb{Z}_k$; if $k = 0$, then $A_q \sim_{\ast} B_q$ for finitely many g and $A_q = B_q$ for the rest.

A k-flutter is a map $\phi : \mathbf{P}_k \longrightarrow \mathbb{Z}_k$ such that

$$
\mathcal{A}^* \sim \mathcal{B} \implies \phi(\mathcal{A}) = \phi(\mathcal{B})
$$

$$
\phi(\mathfrak{s}(\mathcal{A})) = \phi(\mathcal{A}) + 1
$$

The first condition on $\bar{\phi}$ may be weakened to $\bar{\phi}(P + X^n) = \bar{\phi}(P)$.

An algebraic k-flutter is a map $\overline{\phi}: \mathbb{Z}_k[[X]] \longrightarrow \mathbb{Z}_k$ such that

$$
P \sim^* Q \implies \bar{\phi}(P) = \bar{\phi}(Q)
$$

$$
\bar{\phi}(P+S) = \bar{\phi}(P) + 1
$$

THEOREM (ZF) For each $k = 0, 2, 3, \ldots$ the following are equivalent:

- i) there exists a k-chameleon
- ii) there exists an algebraic k-chameleon
- iii) there exists an algebraic k-flutter
- iv) there exists a k-flutter

The Henle method

DEFINITION For each $x \in [\omega]^\omega$, let \tilde{x} be the monotonic enumeration of x; let $x' = \{\tilde{x}(n) \mid 0 \leq n \in \omega\}$, (often called the *shift* of x) so that for χ a k-chameleon, $\chi(x') = \chi(x) - 1$ mod k; and for $2 < k < \omega$ and $\ell < k$ let $\mathfrak{h}_{\ell}^{k}(x) = \{ \tilde{x}(kn+\ell) \mid n \in \omega \}.$

REMARK Note that if $b = a'$, then $\mathfrak{h}_0^3(b) = \mathfrak{h}_1^3(a)$, $\mathfrak{h}_1^3(b) = \mathfrak{h}_2^3(a)$ and $\mathfrak{h}_2^3(b) = (\mathfrak{h}_0^3(a))'.$

More generally, $\mathfrak{h}_i^k(b) = \mathfrak{h}_{i+1}^k(a)$ for $i < k-1$, and $\mathfrak{h}_{k-1}^k(b) = (\mathfrak{h}_0^k(a))'$. LEMMA Let $K \subseteq [\omega]^\omega$ be such that for all $A \in [\omega]^\omega$, $A \in K \Longleftrightarrow A' \in K$. Then $D \sim_{*} E \in K \implies D \in K$.

Proof : If $D \sim_{*} E$ there are m, n and B such that $D^{(m)} = B = E^{(n)}$. Then $E \in K \implies B \in K \implies D \in K$. \dashv

A barren extension [HMW] is one which adds no new maps from an ordinal into the ground model.

THEOREM If $\omega \stackrel{\triangle}{\longrightarrow} (\omega)^{\omega}$, then the Hausdorff extension is barren.

Proof : a modest refinement of the argument in [HMW]. We write conditions as (p) , where $p \in [\omega]^\omega$, and (p) is its ~_{*}-class. Suppose that κ is an ordinal and that $(p_0) \Vdash \dot{f} : \hat{\kappa} \longrightarrow \hat{V}$. For $p \in [p_0]^\omega$, define $\psi(p)$ to be the least ordinal ζ such that for no $x \in V$ does (p) force $\dot{f}(\hat{\zeta}) = \hat{x}$.

Define

$$
\pi(p) = \begin{cases} 0 & \text{if } \psi(\mathfrak{h}_0^2(p)) = \psi(\mathfrak{h}_1^2(p)) \\ 1 & \text{if } \psi(\mathfrak{h}_0^2(p)) \neq \psi(\mathfrak{h}_1^2(p)) \end{cases}
$$

Note that π is invariant. So let $\bar{p} \in [p_0]^\omega$ be homogeneous for it, and let $\eta = \psi(\bar{p}).$

Let u, v be two disjoint members of $[\bar{p}]^{\omega}$ such that for two distinct members a, b of the ground model $(u) \Vdash \dot{f}(\hat{\eta}) = \hat{a}$ and $(v) \Vdash \dot{f}(\hat{\eta}) = b$.

Note that any infinite subset x of \bar{p} which has infinite intersection with both u and v will have $\psi(x) = \eta$, but that any infinite subset y of either u or v will have $\psi(y) > \eta$.

Now let q be an infinite subset of \bar{p} whose members come in turn from $u, u, v, v, u, u, v, v, \ldots$ Then $\psi(\mathfrak{h}_0^2(q)) = \eta = \psi(\mathfrak{h}_1^2(q))$, so that $\pi(q) = 0$.

But let r be an infinite subset of \bar{p} whose members come in turn from $u, u, u, v, u, u, v, \ldots$ Then $\mathfrak{h}_0^2(r) \subseteq u$ so $\psi(\mathfrak{h}_0^2(r)) > \eta = \psi(\mathfrak{h}_1^2(r))$, and $\pi(r)=1.$

Thus \bar{p} is not homogeneous for π , which contradiction shows that no such f exists and that the extension is therefore barren. \vdash

There has been much work on inner models of the form $L(\mathbb{R})[\mathfrak{U}]$ when they are barren extensions of $L(\mathbb{R})$ by a generic for the Hausdorff extension, by di Prisco, Todorcevic, Dobrinen, Hathaway, Larson, Zapletal, Raghavan and their collaborators.

New chameleons for old

PROPOSITION (ZF) If there is a k-chameleon and either $k = 0$ or ℓ divides $k > 0$, then there is an ℓ -chameleon.

PROPOSITION (ZF) If χ is a k-chameleon and ψ is an ℓ -chameleon and $k > 1$ and $\ell > 1$ are co-prime, then $A \mapsto (\chi(A), \psi(A))$ is a kl-chameleon.

PROPOSITION (ZF). Let p be prime, $n > 0$. Suppose that there is a p^n -chameleon, χ . Then there is a p^{n+1} -chameleon.

We could prove more if we assumed that all invariant colourings are Ramsey: indeed by early June 2013 we had the following:

THEOREM Let k and ℓ be integers > 1. Then assuming $\omega \stackrel{\triangle}{\longrightarrow} (\omega)^{\omega}$, there is a k-chameleon iff there is an ℓ -chameleon.

That result inspired the following result of Nathan Bowler, proved in mid-June 2013:

COROLLARY If $\omega \stackrel{\triangle}{\longrightarrow} (\omega)^{\omega}$, there is no 2-chameleon.

To sum up:

THEOREM If $\omega \stackrel{\triangle}{\longrightarrow} (\omega)^{\omega}$ all filters on ω are feeble and there is no chameleon of any kind.

Prof. A.R.D. Mathias Sc.D. (Cantab.), Université de la Réunion

A.R.D. Mathias Leeds virtual logic seminar Thursday June 25, 2020