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History

@ The constructible universe was developed by Godel in papers
published in 1939 and 1940 to show the consistency of the
Axiom of Choice and the Generalised Continuum Hypothesis
with ZF.

@ There are 2 main approaches to building L. both of which are
formalisable in KP?! :

e Syntactically as the set of definable subsets of M (See Devlin -
Constructibility)
o Using Godel functions (See Barwise - Admissible Sets) or
o Using Rudimentary Functions (See Gandy, Jensen, Mathias)
@ The syntactic approach was then modified for IZF by
Lubarsky (Intuitionistic L - 1993)

@ And then for IKP by Crosilla (Realizability models for
constructive set theories with restricted induction - 2000)

Yn fact significantly weaker systems - see Mathias: Weak Systems of
Gandy, Jensen and Devlin, 2006
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Non-constructive Principles

o V-
] —|—|(70—)S0

° (p =) = (mp V)

e Foundation: Va(dx(x € a) = 3x € aVy € a(y € x))

@ Axiom of Choice / Well - Ordering Principle

Definition by cases which differentiate between successor and
limit ordinals

- is interpreted as ¢ — (0 = 1).
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Ordinals

Definition
An ordinal is a transitive set of transitive sets.

RENEIS

e If o is an ordinal then so is a + 1 := a U {a}.
o If X is a set of ordinals then |J X is an ordinal.
e fecaAHpP+lea+l

e Vo (0 € a+ 1) implies excluded middle!

Trichotomy
@ « is trichotomous V3 € aVy e a (B €yV B =vV~yEPpP).

@ It is consistent with IZF that the collection of trichotomous
ordinals is a set!
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Ordinals

Definition
An ordinal is a transitive set of transitive sets.

RENEIS

e If o is an ordinal then so is a + 1 := a U {a}.
o If X is a set of ordinals then |J X is an ordinal.
e fecaAHpP+lea+l

e Vo (0 € a+ 1) implies excluded middle!

Definition
An ordinal « is a weak additive limit if V3 € a« 3y € a (B € 7).

| 5\

An ordinal « is a strong additive limit if V3 € a (41 € a).
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Formula Complexity

Definition

The collection of ¥ formulae is the smallest collection of formulae
closed under conjunction, disjunction, implication, negation and
bounded quantification.

A formula is X3 (M) if it is of the form Ixp(x) (¥xp(x)) for some
Yo formula ¢(v).

The collection of ¥ formulae is the smallest collection containing
the X formulae which is closed under conjunction, disjunction,
bounded quantification and unbounded existential quantification.

v

Vx € a b (Trans(b) A x € b) is X but not X;.
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IKP

Definition (IKP*)

@ Extensionality @ Pairing

o Empty Set @ Unions

@ Set Induction (For any formula ¢(u),
Va(Vx € a o(x) — ¢(a)) = Va ¢(a))

@ Bounded Collection (For any ¥g formula ¢(u, v) and set a,
Vx € ady o(x,y) = 3bVx € adycbop(x,y))

e Bounded Separation (For any X formula ¢(u) and set a,
{x €a:p(x)}is a set)

A\

Definition (IKP)

IKP is IKP* plus strong infinity
(3a (Ind(a) A Vb (Ind(b) — Vx € a(x € b))))?.

2Ind(a) =0 €a A Vx € a(xU{x}€a)




Preliminaries
000000e0

Basic Properties of IKP*

e Va,bJc,d (c=(a,b) N d=axb)
@ (X-Reflection) For any ¥ formula ¢,
IKP* I o < Ja (@ 3
@ (Strong X-Collection) For any X formula ¢(u, v) and set a,

IKP*FVx € ady o(x,y) = IbVxeadyebep(x,y) A
Vy € b3x € a p(x,y)

A separation; the assertion that whenever Vx € a (¢(x) <> ¥(x))
holds for ¢ a ¥ formula and ¢ a I formula, {x € a: p(x)} is a
set, is not provable in IKP.

30(@ s the result of replacing each unbound quantifier with bounded by a.
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Notation

o xxy ={(uv):uex A vEeEy}

@ For x an ordered pair
o 15(x) = {u:3v (u,v) € x},

o 2" (x) = {v:3u (u,v) € x},

o (x,y,2) = (x,(y,2)).

o x"{u} ={v:ve2M(x) A (uv)€Ex}
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Godel Functions

={x,y},

o Fu(x,y) =xxy,

® F(x,y)=xnN{ze€2(y):yis an ordered pair
Az e l¥(y)}

o Fu(x,y) ={x"{z}:z€y},
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Godel Functions

° -Fdom(X7Y) = dom(x) = {1“(2) 1ZEXN
z is an ordered pair},

0 Fran(x,y) = ran(x) = {2"(z) : z € x A
z is an ordered pair},

o Fiaz(x,y) = {{u,v,w) : (u,v) €Ex A w €y},
o Fiznn(x,y) = {{u,w,v): (u,v) €Ex N wey},
5 b ) = i) €37 3203 =

o Fe(x,y) ={(v,u) €y xx:ue€ v}

Let Z be the finite set indexing the above operations.
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Generating Constructible Sets

Lemma (Barwise: Admissible Sets, Lemma 11.6.1)

For every ¥o formula ¢(vi,. .., vy,) with free variables among
Vi,...,Vp, there is a term F, built up from the Gédel functions
such that

IKP F Fy(at, ... an) = {(Xn,...,x1) €an X ... X a1 :@(X1,...,%n)}

e Call a formula ¢(x,...,x,) a termed-formula or t-formula if
there is a term F, such that the conclusion of the lemma
holds.

@ Proceed by induction on ¥y formulae to show that every such
formula is a t-formula.

Ol
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AV, = & —

Suppose that ¢(v1,...,v,) and ¥(vy,...

Fylars - yan) = {(n, .o, X1) € ap X ...

X ap i P(xg, . xn)}

, V) are t-formulae.

fw\w(al, 500y a,,)

.sz(al, .. .,a,,) ﬁ}“¢(31, ..

FFor FolFy, Fp))

,an)

.sz(al, .. .,a,,) U.Fw(al, ..

‘FU(‘FP(‘F;PPF;/J)?‘FZP)

,an)

N
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AV, = & —

{(Xn...,x1) €apx ... xa1:0(X1,...,%Xn) = V(x1,...,%n)}

(a1 x ... xan)N{z € Fy(ar,...,an) : z € Fy(ar,...,an)}

T (a,, X ... X ai, <F¢(al,...,an),.7:¢(al,...,a,,)>>

\

—p
(v, ..y vn) = (p(va, ... vp) = 0=1)

A\




Gédel Functions

00000e000

Existentials

Suppose that ¥(v1,...,Vvy41) is a t-formula.

Fyplar, .-, ap) = {(xn, -, x1) € an X ... X ap s P(xe, ., xn)}

(v, .

o Let O(vi,...,Vvp) = Vat1 € ;.
@ Then ¥ A6 is a t-formula.
° ]:1/1/\9(317" '7an7Uaj) =
) Vi e [1,n] Xi € @i N\ Xpt1 € X
{<X”“’X”“‘X1> A0 i)
° ]:go(ala 000 an) = ]:ran(]:d)/\e(ala co0y anaUaj)a]:\(alv 31)).
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Universals

Suppose that ¥(v1,...,Vvy41) is a t-formula.
]:10(31 ,,,,, an) = {(xp, ..., X1) € ap X ...xaYP(xg,..., xn)}

.y Vn}

First note that Fy(Fy(a1, ..., an, b), b) =

{ran(Fy(a1,...,an {z})) : z € b}.
Therefore Fy (a1, ..., an, b) can be expressed as

{{Xpy...,x1) €an X ...x a1 :V¥p41 € b Y(x1,...%n)}
= (apx...xa)N

{w :Vxp11 € b (Xpp1,w) € Fy(ar, ..., an {xnt1})}
= (apx...xa1)N

ﬂ {ran(Fy(a1, ..., an, {xnt1})) : Xn+1 € b}

= }"m(a,, X ... X a1, fv(Fw(al,...,an,b),b))
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o(vi, ..., V) =VVpy1 € V; Y(vi, ..., Vat1)

Let O(vi,...,Vn, b) =VVpt1 € b (Vop1 € vj = (v, ..., Vat1))
which is a t-formula. Then

{(Xny ...y X1) €an X ... X a1 VXpp1 € X (X1, ..., Xny1)}
={(Xny...,x1) €Eap X ... X al:ﬁ(xl,...,xn,Uaj)}.
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Bounded Separation

Theorem (Barwise: Corollary 6.2)

For any X formula o(vi, ..., vy) with free variables among
Vi,...V, there is a term F, of n arguments built from the Gédel
functions such that:

IKP* b Fp(a, X1, -+ Xim1, Xig1s - - - Xn)
= {XI € a: (p(Xla 0oo ,Xn)}‘

o Let F, be such that IKP* deduces that
Fo(ar,...,an) ={(Xn,...,x1) €ap X ... X a1 :o(x1,...,Xn)}
@ Then our required set can be built from
‘F;P({Xl}7 O {Xi—l}v aj, {XI'+1}’ oo {X"})

by using F,a, n — i times and then Fgom.

A




Constructibility

90000000

Definition
For a set b, D(b) == bU{Fi(x,y): x,y €b N i €T}

For a an ordinal, L, = Ugeo D(Ls U {L3s}).
L= Uﬁa.

Remarks
@ Lot1 =D(LoU{Ly}).
o If a is a strong additive limit then L, = Uﬁea Lg.

| A

A
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Basic Properties

Lemma

For any ordinals «, 3;
Q If 5 C athen Lg C L,,

(2} ﬁa € ﬁoz—&—l;
@ If x,y € L, then for any i € Z, Fi(x,y) € Lot1,

Q Ifforall B €, B+1¢€ athen L, is transitive,

@ L is transitive.
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IKP in £

For every axiom, ¢, of IKP*, IKP* - ©*. Moreover,
IKP* + “strong infinity" & (strong infinity)~.

Proof of X o-Collection.

@ Suppose that ¢(x, y, z) is a £y formula.
o Assume that a,z € £ and Vx € a 3y € L (¢(x, y, 2))~.
@ Then Vx € a 3a (y € L4 p(x,y, 2)).

@ By Y -collection in V, there is a 8 such that
Vx € adae p (Jy € Lo w(x,y,2)).

@ SoVx €adyeLsp(x,y,z).
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IKP in £

For every axiom, ¢, of IKP*, IKP* - ©*. Moreover,
IKP* + “strong infinity" & (strong infinity)~.

v

Proof of Strong Infinity.

e Forall n€w, n+1=Fy(n, Fp(n,n)) € Lont3.

e So
w={neLl,:n=0V Imen(n=muU{m})}

is in £ by bounded separation.

A
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Axiom of Constructibility

We want to prove that (V = £)*. But, £ = Uycompny Lo and we
don't know if ORD N £ = ORD N'V. However, (V = £)* will be
immediate from the following:

Lemma (Lubarsky)

For every ordinal « there is an ordinal o € £ such that £, = L*

Definition (Hereditary Addition)

For ordinals o and ~y, hereditary addition is defined inductively on
o as

a4y = (U{5+H725€O¢}U{0‘})+7

where “+" is the usual ordinal addition. Also

@+u7)" = (UiB+u7: 6 € a}Ufa}).
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Lemma (Lubarsky)

For every ordinal « there is an ordinal o € £ such that £, = L.*

@ Proof by induction on a.

@ Fix k € w such that for all ordinals & and T,
{ve L : DL, U{Ly}) C Lo} € Ltk

e of = {’7 € ‘C(a—i-Hk)— : D([ﬂy U {,ny}) - ,Ca} € ‘Ca-‘er'

o Claim: If 5 € a then g* € a*.

@ Therefore £, = U D(LgU{Lg}) = U D(Lg~U{Ls+})
BEa BEa

C U pLyu{L,}) = Lo O

yeE*
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Alternative Definition of Definability |

Definition (IKP)
For a set b, Def(b) := U, P"(bU {b}). For a an ordinal,
Lo = Ugea Def(Lg)

L= JLa.

Proposition (IKP)

For all ordinals «, 3:
Q If B € athen Lg C L,,
2] La € Loz—l—l.
© L, is a transitive model of ¥ separation,
Q L,=Lya
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Alternative Definition of Definability Il

Definition (IKP)
Say that a set x is definable over (M, €) if there exists a formula ¢
and ai,...,a, € M such that

X:{ye M <M7€> )Zgo[y,ah...,a,,]}-
We can then define the collection of definable subsets of M as

def(M) := {x € M : x is definable over (M, €)}.

Theorem (IKP)

For every transitive set M:

def(M) = Def(M)NP(M)
= U D"(M)nP(M).

new




Collection

IZF is the theory ZF with intuitionistic logic instead of classical
logic.

Definition

Let IZF /ep denote the theory IKP plus full separation plus the full
replacement scheme.
(Vx € adly p(x,y,z) > 3IbVx € ady € b p(x,y,2))

Let IZF denote the theory IKP plus full separation plus the full
collection scheme.
(Vx € a3y o(x,y,z) = IbVx € ady € b p(x,y,z))

Let IZF ,r denote the theory IKP plus full separation plus the
reflection scheme.
(For any formula ¢ and set x there is a transitive set M
such that x C M and ¢ is absolute between M and V.)




External Cumulative Hierarchy

Let M C N. We say that M has an external cumulative hierarchy
(e.c.h.) in N if there exists a sequence (M, : « € ORD N N)

(which is definable in N) such that;
e Va c ORDNN M, € M,

o M= UaGORDﬂN M,
o If 3 € a then Mg C M,.

@ When N =V we will just say that M has an e.c.h.

@ If M is a model of IZF containing all of the ordinals then its
rank hierarchy is an e.c.h.

e By construction (L, : @ € ORD) is an e.c.h. for L.




e.c.hs classically

Proposition

Suppose that M C N are transitive models of ZF . If M has an
e.c.h. in N then ORDN M = OrRD N N.

Proof.
o Let (M, : @ € ORDN N) be an e.c.h.

o Prove inductively that Vy € N 35 € N (y C Mp).
o Working in N, Vo € v 31, € N (w € M.).
e Using collection and the cumulative nature of the hierarchy,
3B € NVa € v (a € Mpg).
@ Since Mg € M and M is transitive, either v = Mg N ORD or
v € Mg N ORD.

@ Either of which yields that v € ORD N M.

5Much less than this is needed



Submodels

Definition
Let M C N. We say that M is almost universal in N if for any
x € N, if x C M then there exists some y € M such that x C y.

Theorem

Suppose that N is a model of 1ZF and M C N is a transitive
(proper) class with an external cumulative hierarchy in N. Then M
is a model of 1ZF iff M is closed under Gédel functions and is
almost universal in N.

Remarks
@ The e.c.h. is not necessary for the right to left implication.
@ It is needed to show that M is almost universal in N:

o lfacN,aC Mthen 3B ORDNN (aC U,eps V).
o If B ¢ M, why should this union be in M?

N
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Open Questions

@ Does IZF e prove (IZF f)"?

@ Does IZF e, prove (IZF,ep)L?

© Does L have any nice additional properties? For example,
o Is P(w) C Ly,?
e Does L satisfy some form of condensation?

@ Which large set axioms (intuitionistic versions of large
cardinals axioms) are downwards absolute to L?

Q@ IsORDNV =0ORDNL?
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Strange Ordinals - An approach to adding ordinals

There is a model, M, of (IZF + V = L)® containing a sequence
(ap © n € w) such that:

@ Each «, is a distinct ordinal,
@ If n# m then ap, & ap,.

Let (ap : n € w) be such a sequence.
For f:w — 2, let §r .= U, (an U f(n)).
Then {0f : f € “2} is an encoding of “2 by ordinals.

So, if M C N are models of IZF and (o, : n € w) € M, then
ORDNM=0ORDNN=“2NM=“2NN.

@ So, if we add a Cohen real to M we add a new function from
w to 2 and therefore new ordinals.

®Possibly Kleene's first realizability model?
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Strange Ordinals - An approach to adding ordinals

There is a model, M, of (IZF +V = L) containing a sequence
(ap © n € w) such that:

@ Each «, is a distinct ordinal,
@ If n# m then ap, & ap,.

v

Conclusions

@ ORD NV need not equal OrRD N L!

@ Forcing can add ordinals!

\

"Possibly Kleene's first realizability model?
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