Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions

Constructing The Constructible Universe Constructively

Richard Matthews

University of Leeds

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
●0000000		00000000	0000	000
History				

- The constructible universe was developed by Gödel in papers published in 1939 and 1940 to show the consistency of the Axiom of Choice and the Generalised Continuum Hypothesis with ZF.
- $\bullet\,$ There are 2 main approaches to building L both of which are formalisable in KP^1 :
 - Syntactically as the set of definable subsets of *M* (See Devlin *Constructibility*)
 - Using Gödel functions (See Barwise Admissible Sets) or
 - Using Rudimentary Functions (See Gandy, Jensen, Mathias)
- The syntactic approach was then modified for IZF by Lubarsky (*Intuitionistic L* 1993)
- And then for IKP by Crosilla (*Realizability models for* constructive set theories with restricted induction 2000)

¹In fact significantly weaker systems - see Mathias: *Weak Systems of Gandy, Jensen and Devlin,* 2006

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
○●○○○○○○		00000000	0000	000
Non-const	ructive Princin	es		

- $\bullet \ \varphi \vee \neg \varphi$
- $\neg \neg \varphi \rightarrow \varphi$
- $(\varphi \to \psi) \to (\neg \varphi \lor \psi)$
- Foundation: $\forall a (\exists x (x \in a) \rightarrow \exists x \in a \ \forall y \in a (y \notin x))$
- Axiom of Choice / Well Ordering Principle
- Definition by cases which differentiate between successor and limit ordinals

Remark

 $\neg \varphi$ is interpreted as $\varphi \rightarrow (0 = 1)$.

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
0000000		0000000	0000	000
Ordinals				

An ordinal is a transitive set of transitive sets.

Remarks

- If α is an ordinal then so is $\alpha + 1 := \alpha \cup \{\alpha\}$.
- If X is a set of ordinals then $\bigcup X$ is an ordinal.

•
$$\beta \in \alpha \not\Rightarrow \beta + 1 \in \alpha + 1.$$

• $\forall \alpha \ (0 \in \alpha + 1)$ implies excluded middle!

Trichotomy

- α is trichotomous $\forall \beta \in \alpha \ \forall \gamma \in \alpha \ (\beta \in \gamma \lor \beta = \gamma \lor \gamma \in \beta).$
- It is consistent with IZF that the collection of trichotomous ordinals is a set!

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		0000000	0000	000
Ordinals				

An ordinal is a transitive set of transitive sets.

Remarks

- If α is an ordinal then so is $\alpha + 1 := \alpha \cup \{\alpha\}$.
- If X is a set of ordinals then $\bigcup X$ is an ordinal.

•
$$\beta \in \alpha \not\Rightarrow \beta + 1 \in \alpha + 1.$$

• $\forall \alpha \ (0 \in \alpha + 1)$ implies excluded middle!

Definition

An ordinal α is a weak additive limit if $\forall \beta \in \alpha \ \exists \gamma \in \alpha \ (\beta \in \gamma)$.

An ordinal α is a strong additive limit if $\forall \beta \in \alpha \ (\beta + 1 \in \alpha)$.

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		0000000	0000	000
Formula (Complexity			

The collection of Σ_0 formulae is the smallest collection of formulae closed under conjunction, disjunction, implication, negation and bounded quantification.

A formula is Σ_1 (Π_1) if it is of the form $\exists x \varphi(x) (\forall x \varphi(x))$ for some Σ_0 formula $\varphi(v)$.

The collection of Σ formulae is the smallest collection containing the Σ_0 formulae which is closed under conjunction, disjunction, bounded quantification and unbounded existential quantification.

Example

 $\forall x \in a \exists b \ (Trans(b) \land x \in b) \text{ is } \Sigma \text{ but not } \Sigma_1.$

Preliminaries 00000●00	Gödel Functions	Constructibility 0000000	L in IZF 0000	Additions 000
IKP				
Definitio	on (IKP*)			

- Extensionality
- Empty Set

- PairingUnions
- Set Induction (For any formula $\varphi(u)$, $\forall a(\forall x \in a \ \varphi(x) \rightarrow \varphi(a)) \rightarrow \forall a \ \varphi(a))$
- Bounded Collection (For any Σ₀ formula φ(u, v) and set a, ∀x ∈ a ∃y φ(x, y) → ∃b ∀x ∈ a ∃y ∈ b φ(x, y))
- Bounded Separation (For any Σ_0 formula $\varphi(u)$ and set a, $\{x \in a : \varphi(x)\}$ is a set)

Definition (IKP)

IKP is IKP^{*} plus strong infinity $(\exists a (Ind(a) \land \forall b (Ind(b) \rightarrow \forall x \in a(x \in b))))^2.$

 2 Ind(a) $\equiv \emptyset \in a \land \forall x \in a \ (x \cup \{x\} \in a)$

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
000000●0		00000000	0000	000
Basic Pro	perties of IKP°	k		

•
$$\forall a, b \exists c, d \ (c = \langle a, b \rangle \land d = a \times b)$$

• (Σ -Reflection) For any Σ formula φ ,

$$\mathrm{IKP}^* \vdash \varphi \leftrightarrow \exists a \varphi^{(a)} \exists \varphi^{(a)} \exists$$

• (Strong Σ -Collection) For any Σ formula $\varphi(u, v)$ and set *a*,

$$\begin{split} \mathrm{IKP}^* \vdash \forall x \in \mathsf{a} \; \exists y \; \varphi(x,y) \to \quad \exists b \; \forall x \in \mathsf{a} \; \exists y \in b \; \varphi(x,y) \; \land \\ \forall y \in b \; \exists x \in \mathsf{a} \; \varphi(x,y) \end{split}$$

Remark

 Δ separation; the assertion that whenever $\forall x \in a \ (\varphi(x) \leftrightarrow \psi(x))$ holds for φ a Σ formula and ψ a Π formula, $\{x \in a : \varphi(x)\}$ is a set, is not provable in IKP.

 ${}^3arphi^{(a)}$ is the result of replacing each unbound quantifier with bounded by a.

Preliminaries 0000000●	Gödel Functions	Constructibility 00000000	L in IZF 0000	Additions
Notation				

•
$$x \times y \coloneqq \{ \langle u, v \rangle : u \in x \land v \in y \},$$

•
$$1^{st}(x) \coloneqq \{u : \exists v \langle u, v \rangle \in x\},\$$

•
$$2^{nd}(x) \coloneqq \{v : \exists u \langle u, v \rangle \in x\},\$$

•
$$\langle x, y, z \rangle \coloneqq \langle x, \langle y, z \rangle \rangle.$$

•
$$x''\{u\} \coloneqq \{v : v \in 2^{nd}(x) \land \langle u, v \rangle \in x\}$$

Gödel Fur			0000	000
Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions

- $\mathcal{F}_p(x,y) \coloneqq \{x,y\},$
- $\mathcal{F}_{\cap}(x,y) \coloneqq x \cap \bigcap y$
- $\mathcal{F}_{\cup}(x, y) \coloneqq \bigcup x$,
- $\mathcal{F}_{\setminus}(x, y) \coloneqq x \setminus y$,
- $\mathcal{F}_{\times}(x,y) \coloneqq x \times y$,
- $\mathcal{F}_{\rightarrow}(x,y) \coloneqq x \cap \{z \in 2^{nd}(y) : y \text{ is an ordered pair} \land z \in 1^{st}(y)\},$

```
• \mathcal{F}_{\forall}(x,y) \coloneqq \{x''\{z\} : z \in y\},
```

Preliminaries 00000000	Gödel Functions 00000000	Constructibility 0000000	L in IZF 0000	Additions 000
Gödel Fur	nctions			

•
$$\mathcal{F}_{dom}(x,y) \coloneqq dom(x) = \{1^{st}(z) : z \in x \land z \text{ is an ordered pair}\},$$

•
$$\mathcal{F}_{ran}(x,y) \coloneqq ran(x) = \{2^{nd}(z) : z \in x \land z \text{ is an ordered pair}\},$$

•
$$\mathcal{F}_{123}(x,y) \coloneqq \{ \langle u, v, w \rangle : \langle u, v \rangle \in x \land w \in y \},$$

•
$$\mathcal{F}_{132}(x,y) \coloneqq \{ \langle u, w, v \rangle : \langle u, v \rangle \in x \land w \in y \},$$

•
$$\mathcal{F}_{=}(x, y) \coloneqq \{ \langle v, u \rangle \in y \times x : u = v \},$$

•
$$\mathcal{F}_{\in}(x,y) \coloneqq \{ \langle v, u \rangle \in y \times x : u \in v \}.$$

Remark

Let $\ensuremath{\mathcal{I}}$ be the finite set indexing the above operations.

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000	00●000000	00000000	0000	
Generating	Constructible	Sets		

Lemma (Barwise: Admissible Sets, Lemma II.6.1)

For every Σ_0 formula $\varphi(v_1, \ldots, v_n)$ with free variables among v_1, \ldots, v_n , there is a term \mathcal{F}_{φ} built up from the Gödel functions such that

$$\mathrm{IKP} \vdash \mathcal{F}_{\varphi}(a_1, \ldots, a_n) = \{ \langle x_n, \ldots, x_1 \rangle \in a_n \times \ldots \times a_1 : \varphi(x_1, \ldots, x_n) \}.$$

Proof.

- Call a formula $\varphi(x_1, \ldots, x_n)$ a termed-formula or *t*-formula if there is a term \mathcal{F}_{φ} such that the conclusion of the lemma holds.
- Proceed by induction on Σ_0 formulae to show that every such formula is a t-formula.

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		0000000	0000	000
\land . \lor . \rightarrow	& ¬			

Suppose that $\varphi(v_1, \ldots, v_n)$ and $\psi(v_1, \ldots, v_n)$ are t-formulae.

$$\mathcal{F}_{\psi}(\mathsf{a}_1,\ldots,\mathsf{a}_n) = \{ \langle x_n,\ldots,x_1 \rangle \in \mathsf{a}_n \times \ldots \times \mathsf{a}_1 : \psi(x_1,\ldots,x_n) \}$$

$$\varphi \wedge \psi$$

$$\begin{split} \mathcal{F}_{\varphi \wedge \psi}(\mathsf{a}_1, \dots, \mathsf{a}_n) &= \mathcal{F}_{\varphi}(\mathsf{a}_1, \dots, \mathsf{a}_n) \cap \mathcal{F}_{\psi}(\mathsf{a}_1, \dots, \mathsf{a}_n) \\ &= \mathcal{F}_{\cap}(\mathcal{F}_{\varphi}, \mathcal{F}_{p}(\mathcal{F}_{\psi}, \mathcal{F}_{\psi})) \end{split}$$

$\varphi \vee \psi$

$$\begin{aligned} \mathcal{F}_{\varphi \lor \psi}(a_1, \ldots, a_n) &= \mathcal{F}_{\varphi}(a_1, \ldots, a_n) \cup \mathcal{F}_{\psi}(a_1, \ldots, a_n) \\ &= \mathcal{F}_{\cup}(\mathcal{F}_{\varphi}(\mathcal{F}_{\varphi}, \mathcal{F}_{\psi}), \mathcal{F}_{\varphi}) \end{aligned}$$

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		00000000	0000	000
$\land, \lor, \rightarrow \delta$	& ¬			

$$\varphi \to \psi$$

$$\{\langle x_n \dots, x_1 \rangle \in a_n \times \dots \times a_1 : \varphi(x_1, \dots, x_n) \to \psi(x_1, \dots, x_n)\} = \\ \{a_1 \times \dots \times a_n\} \cap \{z \in \mathcal{F}_{\psi}(a_1, \dots, a_n) : z \in \mathcal{F}_{\varphi}(a_1, \dots, a_n)\} = \\ \mathcal{F}_{\to} \left(a_n \times \dots \times a_1, \ \langle \mathcal{F}_{\varphi}(a_1, \dots, a_n), \mathcal{F}_{\psi}(a_1, \dots, a_n) \rangle \right)$$

$\neg \varphi$

$$\neg \varphi(\mathbf{v}_1,\ldots,\mathbf{v}_n) \equiv (\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_n) \to \mathbf{0} = 1)$$

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		00000000	0000	000
Existentials				

Suppose that $\psi(v_1, \ldots, v_{n+1})$ is a t-formula.

$$\mathcal{F}_{\psi}(a_1,\ldots,a_n) = \{ \langle x_n,\ldots,x_1 \rangle \in a_n \times \ldots \times a_1 : \psi(x_1,\ldots,x_n) \}$$

$\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_n)\equiv\exists \mathbf{v}_{n+1}\in\mathbf{v}_j\ \psi(\mathbf{v}_1,\ldots,\mathbf{v}_{n+1})$

- Let $\theta(v_1, \ldots, v_n) \equiv v_{n+1} \in v_j$.
- Then $\psi \wedge \theta$ is a t-formula.

•
$$\mathcal{F}_{\psi \wedge \theta}(a_1, \ldots, a_n, \bigcup a_j) =$$

$$\begin{cases} \langle x_{n+1}, x_n \ldots x_1 \rangle : & \forall i \in [1, n] \ x_i \in a_i \ \land \ x_{n+1} \in x_j \\ \land \ \psi(x_1, \ldots, x_{n+1}) \end{cases} \end{cases}$$
• $\mathcal{F}_{\varphi}(a_1, \ldots, a_n) = \mathcal{F}_{ran}(\mathcal{F}_{\psi \wedge \theta}(a_1, \ldots, a_n, \bigcup a_j), \mathcal{F}_{\backslash}(a_1, a_1)).$

Universals		0000000	0000	000
Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions

Suppose that $\psi(v_1, \ldots, v_{n+1})$ is a t-formula. $\mathcal{F}_{\psi}(a_1, \ldots, a_n) = \{\langle x_n, \ldots, x_1 \rangle \in a_n \times \ldots \times a_1 : \psi(x_1, \ldots, x_n) \}$

$\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_n,b) \equiv \forall \mathbf{v}_{n+1} \in b \ \psi(\mathbf{v}_1,\ldots,\mathbf{v}_{n+1}), \ b \notin \{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$

First note that
$$\mathcal{F}_{\forall}(\mathcal{F}_{\psi}(a_1, \dots, a_n, b), b) =$$

{ $ran(\mathcal{F}_{\psi}(a_1, \dots, a_n, \{z\})) : z \in b$ }.
Therefore $\mathcal{F}_{\varphi}(a_1, \dots, a_n, b)$ can be expressed as
{ $\langle x_n, \dots, x_1 \rangle \in a_n \times \dots \times a_1 : \forall x_{n+1} \in b \ \psi(x_1, \dots, x_n)$
 $= (a_n \times \dots \times a_1) \cap$
{ $w : \forall x_{n+1} \in b \ \langle x_{n+1}, w \rangle \in \mathcal{F}_{\psi}(a_1, \dots, a_n, \{x_{n+1}\})$ }
 $= (a_n \times \dots \times a_1) \cap$
 $\bigcap \{ran(\mathcal{F}_{\psi}(a_1, \dots, a_n, \{x_{n+1}\})) : x_{n+1} \in b\}$
 $= \mathcal{F}_{\cap}(a_n \times \dots \times a_1, \ \mathcal{F}_{\forall}(\mathcal{F}_{\psi}(a_1, \dots, a_n, b), b)).$

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
	000000000			

$\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_n)\equiv\forall\mathbf{v}_{n+1}\in\mathbf{v}_j\ \psi(\mathbf{v}_1,\ldots,\mathbf{v}_{n+1})$

Let $\theta(v_1, \ldots, v_n, b) \equiv \forall v_{n+1} \in b \ (v_{n+1} \in v_j \rightarrow \psi(v_1, \ldots, v_{n+1}))$ which is a t-formula. Then

$$\{\langle x_n, \ldots, x_1 \rangle \in a_n \times \ldots \times a_1 : \forall x_{n+1} \in x_j \ \psi(x_1, \ldots, x_{n+1})\} \\ = \{\langle x_n, \ldots, x_1 \rangle \in a_n \times \ldots \times a_1 : \theta(x_1, \ldots, x_n, \bigcup a_j)\}.$$

	Separation	0000000	0000	000
Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions

Theorem (Barwise: Corollary 6.2)

For any Σ_0 formula $\varphi(v_1, \ldots, v_n)$ with free variables among $v_1, \ldots v_n$ there is a term \mathcal{F}_{φ} of n arguments built from the Gödel functions such that:

$$\begin{aligned} \mathrm{IKP}^* \vdash \mathcal{F}_{\varphi}(\mathbf{a}, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) \\ &= \{x_i \in \mathbf{a} : \varphi(x_1, \dots, x_n)\}. \end{aligned}$$

Proof.

- Let \mathcal{F}_{φ} be such that IKP^* deduces that $\mathcal{F}_{\varphi}(a_1, \ldots, a_n) = \{ \langle x_n, \ldots, x_1 \rangle \in a_n \times \ldots \times a_1 : \varphi(x_1, \ldots, x_n) \}$
- Then our required set can be built from

$$\mathcal{F}_{\varphi}(\{x_1\},\ldots,\{x_{i-1}\},a_i,\{x_{i+1}\},\ldots,\{x_n\})$$

by using $\mathcal{F}_{ran} n - i$ times and then \mathcal{F}_{dom} .

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		●0000000	0000	000
Ĺ.				

For a set
$$b$$
, $\mathcal{D}(b) := b \cup \{\mathcal{F}_i(x, y) : x, y \in b \land i \in \mathcal{I}\}.$

Definition

For
$$\alpha$$
 an ordinal, $\mathcal{L}_{\alpha} := \bigcup_{\beta \in \alpha} \mathcal{D}(\mathcal{L}_{\beta} \cup \{\mathcal{L}_{\beta}\}).$

$$\mathcal{L} \coloneqq \bigcup_{\alpha} \mathcal{L}_{\alpha}.$$

Remarks

•
$$\mathcal{L}_{\alpha+1} = \mathcal{D}(\mathcal{L}_{\alpha} \cup \{\mathcal{L}_{\alpha}\}).$$

• If α is a strong additive limit then $\mathcal{L}_{\alpha} = \bigcup_{\beta \in \alpha} \mathcal{L}_{\beta}$.

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		0●000000	0000	000
Basic Pro	perties			

Lemma

For any ordinals α, β ;

• If
$$\beta \subseteq \alpha$$
 then $\mathcal{L}_{\beta} \subseteq \mathcal{L}_{\alpha}$,

2
$$\mathcal{L}_{lpha} \in \mathcal{L}_{lpha+1}$$
,

● If $x, y \in \mathcal{L}_{\alpha}$ then for any $i \in \mathcal{I}$, $\mathcal{F}_i(x, y) \in \mathcal{L}_{\alpha+1}$,

• If for all $\beta \in \alpha$, $\beta + 1 \in \alpha$ then \mathcal{L}_{α} is transitive,

\bigcirc \mathcal{L} is transitive.

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		0000000	0000	000
IKP in $\mathcal L$				

Theorem

For every axiom, φ , of IKP^{*}, IKP^{*} $\vdash \varphi^{\mathcal{L}}$. Moreover, IKP^{*} + "strong infinity" \vdash (strong infinity)^{\mathcal{L}}.

Proof of Σ_0 -Collection.

- Suppose that $\varphi(x, y, z)$ is a Σ_0 formula.
- Assume that $a, z \in \mathcal{L}$ and $\forall x \in a \exists y \in \mathcal{L} (\varphi(x, y, z))^{\mathcal{L}}$.
- Then $\forall x \in a \exists \alpha \ (\exists y \in \mathcal{L}_{\alpha} \ \varphi(x, y, z)).$
- By Σ-collection in V, there is a β such that ∀x ∈ a ∃α ∈ β (∃y ∈ L_α φ(x, y, z)).
- So $\forall x \in a \exists y \in \mathcal{L}_{\beta} \varphi(x, y, z)$.

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		000●0000	0000	000
IKP in $\mathcal L$				

Theorem

For every axiom, φ , of IKP^{*}, IKP^{*} $\vdash \varphi^{\mathcal{L}}$. Moreover, IKP^{*} + "strong infinity" \vdash (strong infinity)^{\mathcal{L}}.

Proof of Strong Infinity.

• For all $n \in \omega$, $n + 1 = \mathcal{F}_{\cup}(n, \mathcal{F}_p(n, n)) \in \mathcal{L}_{2n+3}$.

So

$$\omega = \{ n \in \mathcal{L}_{\omega} : n = \emptyset \lor \exists m \in n \ (n = m \cup \{m\}) \}$$

is in \mathcal{L} by bounded separation.

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000	00000000	0000●000	0000	000
Axiom of	Constructibility			

We want to prove that $(V = \mathcal{L})^{\mathcal{L}}$. But, $\mathcal{L} = \bigcup_{\alpha \in ORD \cap V} \mathcal{L}_{\alpha}$ and we don't know if $ORD \cap \mathcal{L} = ORD \cap V$. However, $(V = \mathcal{L})^{\mathcal{L}}$ will be immediate from the following:

Lemma (Lubarsky)

For every ordinal α there is an ordinal $\alpha^* \in \mathcal{L}$ such that $\mathcal{L}_{\alpha} = \mathcal{L}_{\alpha^*}$

Definition (Hereditary Addition)

For ordinals α and $\gamma,$ $\mathit{hereditary}$ addition is defined inductively on α as

$$\alpha +_{H} \gamma \coloneqq \left(\bigcup \{ \beta +_{H} \gamma : \beta \in \alpha \} \cup \{ \alpha \} \right) + \gamma$$

where "+" is the usual ordinal addition. Also

$$(\alpha +_H \gamma)^- \coloneqq \left(\bigcup \{ \beta +_H \gamma : \beta \in \alpha \} \cup \{ \alpha \} \right)$$

Preliminaries	Gödel Functions	Constructibility 00000●00	L in IZF 0000	Additions 000
_ *				

Lemma (Lubarsky)

For every ordinal α there is an ordinal $\alpha^* \in \mathcal{L}$ such that $\mathcal{L}_{\alpha} = \mathcal{L}_{\alpha^*}$

Proof.

(X

- Proof by induction on α .
- Fix $k \in \omega$ such that for all ordinals α and τ ,

$$\{\gamma\in\mathcal{L}_{ au}:\mathcal{D}(\mathcal{L}_{\gamma}\cup\{\mathcal{L}_{\gamma}\})\subseteq\mathcal{L}_{lpha}\}\in\mathcal{L}_{ au+k}.$$

- $\alpha^* := \{\gamma \in \mathcal{L}_{(\alpha+_Hk)^-} : \mathcal{D}(\mathcal{L}_{\gamma} \cup \{\mathcal{L}_{\gamma}\}) \subseteq \mathcal{L}_{\alpha}\} \in \mathcal{L}_{\alpha+_Hk}.$
- Claim: If $\beta \in \alpha$ then $\beta^* \in \alpha^*$.
- Therefore $\mathcal{L}_{\alpha} = \bigcup_{\beta \in \alpha} \mathcal{D}(\mathcal{L}_{\beta} \cup \{\mathcal{L}_{\beta}\}) = \bigcup_{\beta \in \alpha} \mathcal{D}(\mathcal{L}_{\beta^{*}} \cup \{\mathcal{L}_{\beta^{*}}\})$ $\subseteq \bigcup_{\gamma \in \alpha^{*}} \mathcal{D}(\mathcal{L}_{\gamma} \cup \{\mathcal{L}_{\gamma}\}) = \mathcal{L}_{\alpha^{*}}.$

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		000000●0	0000	000
Alternative	Definition of [Definability I		

Definition (IKP)

For a set b, $Def(b) := \bigcup_{n \in \omega} \mathcal{D}^n(b \cup \{b\})$. For α an ordinal, $L_{\alpha} := \bigcup_{\beta \in \alpha} Def(L_{\beta})$ $L := \bigcup_{\alpha} L_{\alpha}.$

Proposition (IKP)

For all ordinals α, β :

• If
$$\beta \in \alpha$$
 then $L_{\beta} \subseteq L_{\alpha}$,

2
$$L_{\alpha} \in L_{\alpha+1}$$
,

③ L_{α} is a transitive model of Σ_0 separation,

$$\bullet \ \mathcal{L}_{\alpha} = \mathcal{L}_{\omega \cdot \alpha}.$$

Preliminaries Goder Functions Constructionity L III 12F Additions 00000000 00000000 00000000 00000 00000 0000	A 1	e Definition of	D.C. J.P. H		
	Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions

Definition (IKP)

Say that a set x is definable over $\langle M, \in \rangle$ if there exists a formula φ and $a_1, \ldots, a_n \in M$ such that

$$\mathbf{x} = \{ \mathbf{y} \in \mathbf{M} : \langle \mathbf{M}, \in \rangle \models \varphi[\mathbf{y}, \mathbf{a}_1, \dots, \mathbf{a}_n] \}.$$

We can then define the collection of definable subsets of M as

$$def(M) \coloneqq \{x \subseteq M : x \text{ is definable over } \langle M, \in \rangle\}.$$

Theorem (IKP)

For every transitive set M:

$$def(M) = Def(M) \cap \mathcal{P}(M) = \bigcup_{n \in \omega} \mathcal{D}^n(M) \cap \mathcal{P}(M).$$

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000	00000000	0000000	●000	000
Collection				

Idea

 IZF is the theory ZF with intuitionistic logic instead of classical logic.

Definition

Let IZF_{rep} denote the theory IKP plus full separation plus the full replacement scheme.

 $(\forall x \in a \exists ! y \ \varphi(x, y, z) \rightarrow \exists b \ \forall x \in a \ \exists y \in b \ \varphi(x, y, z))$

Let IZF denote the theory IKP plus full separation plus the full collection scheme.

 $(\forall x \in a \exists y \ \varphi(x, y, z) \rightarrow \exists b \ \forall x \in a \ \exists y \in b \ \varphi(x, y, z))$

Let $\mathrm{IZF}_{\mathit{ref}}$ denote the theory IKP plus full separation plus the reflection scheme.

(For any formula φ and set x there is a transitive set M such that $x \subseteq M$ and φ is absolute between M and V.)

External (Jumulative Hier	rarchy		
Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		0000000	o●oo	000

Let $M \subseteq N$. We say that M has an external cumulative hierarchy (e.c.h.) in N if there exists a sequence $\langle M_{\alpha} : \alpha \in ORD \cap N \rangle$ (which is definable in N) such that;

- $\forall \alpha \in \text{Ord} \cap N \ M_{\alpha} \in M$,
- $M = \bigcup_{\alpha \in \operatorname{Ord} N} M_{\alpha}$,
- If $\beta \in \alpha$ then $M_{\beta} \subseteq M_{\alpha}$.

Remarks

- When N = V we will just say that M has an e.c.h.
- If *M* is a model of IZF containing all of the ordinals then its rank hierarchy is an e.c.h.
- By construction $\langle L_{\alpha} : \alpha \in ORD \rangle$ is an e.c.h. for L.

e.c.h.'s cla				
Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions

Proposition

Suppose that $M \subseteq N$ are transitive models of ZF ⁵. If M has an e.c.h. in N then $ORD \cap M = ORD \cap N$.

Proof.

- Let $\langle M_{\alpha} : \alpha \in ORD \cap N \rangle$ be an e.c.h.
- Prove inductively that $\forall \gamma \in N \ \exists \beta \in N \ (\gamma \subseteq M_{\beta}).$
 - Working in N, $\forall \alpha \in \gamma \ \exists \tau_{\alpha} \in N \ (\alpha \in M_{\tau_{\alpha}}).$
 - Using collection and the cumulative nature of the hierarchy, $\exists \beta \in N \ \forall \alpha \in \gamma \ (\alpha \in M_{\beta}).$
- Since $M_{\beta} \in M$ and M is transitive, either $\gamma = M_{\beta} \cap \text{ORD}$ or $\gamma \in M_{\beta} \cap \text{ORD}$.
- Either of which yields that $\gamma \in ORD \cap M$.

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		00000000	000●	000
Submodels				

Let $M \subseteq N$. We say that M is almost universal in N if for any $x \in N$, if $x \subseteq M$ then there exists some $y \in M$ such that $x \subseteq y$.

Theorem

Suppose that N is a model of IZF and $M \subseteq N$ is a transitive (proper) class with an external cumulative hierarchy in N. Then M is a model of IZF iff M is closed under Gödel functions and is almost universal in N.

Remarks

- The e.c.h. is not necessary for the right to left implication.
- It is needed to show that *M* is almost universal in *N*:
 - If $a \in N$, $a \subseteq M$ then $\exists \beta \in \operatorname{Ord} \cap N$ $(a \subseteq \bigcup_{\alpha \in \beta} \operatorname{V}_{\alpha}^{M})$.
 - If $\beta \notin M$, why should this union be in M?

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		00000000	0000	●00
Open Que	estions			

- Does IZF_{ref} prove $(IZF_{ref})^{L}$?
- **2** Does IZF_{rep} prove $(IZF_{rep})^{L}$?
- Does L have any nice additional properties? For example,
 Is P(ω) ⊆ L_{ω1}?
 - $\bullet~\mbox{Does }L$ satisfy some form of condensation?
- Which large set axioms (intuitionistic versions of large cardinals axioms) are downwards absolute to L?
- $Is Ord \cap V = Ord \cap L?$

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		00000000	0000	○●○
Strange Ord	inals - An app	roach to addi	ng ordinals	

Claim

There is a model, *M*, of $(IZF + V = L)^6$ containing a sequence $\langle \alpha_n : n \in \omega \rangle$ such that:

- Each α_n is a distinct ordinal,
- If $n \neq m$ then $\alpha_n \notin \alpha_m$.
- Let $\langle \alpha_n : n \in \omega \rangle$ be such a sequence.
- For $f: \omega \to 2$, let $\delta_f := \bigcup_n (\alpha_n \cup f(n))$.
- Then $\{\delta_f : f \in {}^{\omega}2\}$ is an encoding of ${}^{\omega}2$ by ordinals.
- So, if $M \subseteq N$ are models of IZF and $\langle \alpha_n : n \in \omega \rangle \in M$, then $\operatorname{ORD} \cap M = \operatorname{ORD} \cap N \Rightarrow {}^{\omega}2 \cap M = {}^{\omega}2 \cap N.$
- So, if we add a Cohen real to M we add a new function from ω to 2 and therefore new ordinals.

⁶Possibly Kleene's first realizability model?

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000		00000000	0000	00●
Strange Ord	inals - An appi	roach to addi	ng ordinals	

Claim

There is a model, *M*, of $(IZF + V = L)^7$ containing a sequence $\langle \alpha_n : n \in \omega \rangle$ such that:

- Each α_n is a distinct ordinal,
- If $n \neq m$ then $\alpha_n \notin \alpha_m$.

Conclusions

- $\operatorname{ORD}\cap V$ need not equal $\operatorname{ORD}\cap L!$
- Forcing can add ordinals!

⁷Possibly Kleene's first realizability model?