

Constructing The Constructible Universe Constructively

Richard Matthews

University of Leeds

- The constructible universe was developed by Gödel in papers published in 1939 and 1940 to show the consistency of the Axiom of Choice and the Generalised Continuum Hypothesis with ZF.
- There are 2 main approaches to building L both of which are formalisable in KP^1 :
	- Syntactically as the set of definable subsets of M (See Devlin -Constructibility)
	- Using Gödel functions (See Barwise Admissible Sets) or
	- Using Rudimentary Functions (See Gandy, Jensen, Mathias)
- \bullet The syntactic approach was then modified for IZF by Lubarsky (Intuitionistic L - 1993)
- And then for IKP by Crosilla (Realizability models for constructive set theories with restricted induction - 2000)

 1 In fact significantly weaker systems - see Mathias: *Weak Systems of* Gandy, Jensen and Devlin, 2006

- *ϕ* ∨ ¬*ϕ*
- ¬¬*ϕ* → *ϕ*
- \bullet $(\varphi \to \psi) \to (\neg \varphi \lor \psi)$
- Foundation: $\forall a(\exists x(x \in a) \rightarrow \exists x \in a \forall y \in a(y \notin x))$
- Axiom of Choice / Well Ordering Principle
- Definition by cases which differentiate between successor and limit ordinals

Remark

 $\neg \varphi$ is interpreted as $\varphi \to (0 = 1)$.

An ordinal is a transitive set of transitive sets.

Remarks

- **•** If α is an ordinal then so is $\alpha + 1 := \alpha \cup \{\alpha\}$.
- If X is a set of ordinals then $\bigcup X$ is an ordinal.
- $\theta \beta \in \alpha \not\Rightarrow \beta + 1 \in \alpha + 1.$
- $\bullet \ \forall \alpha \ (0 \in \alpha + 1)$ implies excluded middle!

Trichotomy

- *α* is trichotomous ∀*β* ∈ *α* ∀*γ* ∈ *α* (*β* ∈ *γ* ∨ *β* = *γ* ∨ *γ* ∈ *β*).
- \bullet It is consistent with IZF that the collection of trichotomous ordinals is a set!

An ordinal is a transitive set of transitive sets.

Remarks

- **•** If α is an ordinal then so is $\alpha + 1 := \alpha \cup \{\alpha\}.$
- If X is a set of ordinals then $\bigcup X$ is an ordinal.

$$
\bullet \ \beta \in \alpha \not\Rightarrow \beta + 1 \in \alpha + 1.
$$

 $\bullet \ \forall \alpha \ (0 \in \alpha + 1)$ implies excluded middle!

Definition

An ordinal α is a *weak additive limit* if $\forall \beta \in \alpha \exists \gamma \in \alpha$ ($\beta \in \gamma$).

An ordinal α is a *strong additive limit* if $\forall \beta \in \alpha$ ($\beta + 1 \in \alpha$).

The collection of Σ_0 formulae is the smallest collection of formulae closed under conjunction, disjunction, implication, negation and bounded quantification.

A formula is Σ_1 (Π_1) if it is of the form $\exists x \varphi(x)$ ($\forall x \varphi(x)$) for some Σ⁰ formula *ϕ*(v).

The collection of Σ formulae is the smallest collection containing the Σ_0 formulae which is closed under conjunction, disjunction, bounded quantification and unbounded existential quantification.

Example

 $\forall x \in a \exists b$ (Trans(b) $\land x \in b$) is Σ but not Σ_1 .

Definition (IKP^{*})

- **•** Extensionality
- Empty Set
- **•** Pairing
- Unions
- Set Induction For any formula *ϕ*(u), ∀a(∀x ∈ a *ϕ*(x) → *ϕ*(a)) → ∀a *ϕ*(a)
- Bounded Collection (For any Σ_0 formula $\varphi(u,v)$ and set *a*, ∀x ∈ a ∃y *ϕ*(x*,* y) → ∃b ∀x ∈ a ∃y ∈ b *ϕ*(x*,* y)
- Bounded Separation (For any Σ_0 formula $\varphi(u)$ and set *a*, ${x \in a : \varphi(x)}$ is a set)

Definition (IKP)

IKP is IKP^{*} plus strong infinity $(\exists a \; (Ind(a) \; \wedge \; \forall b \; (Ind(b) \rightarrow \forall x \in a(x \in b))))^2$.

 ${}^{2}Ind(a) \equiv \emptyset \in a \ \wedge \ \forall x \in a \ (x \cup \{x\} \in a)$

•
$$
\forall a, b \exists c, d \ (c = \langle a, b \rangle \land d = a \times b)
$$

(Σ-Reflection) For any Σ formula *ϕ*,

$$
IKP^* \vdash \varphi \leftrightarrow \exists a \; \varphi^{(a)} \; \; \text{3}
$$

• (Strong Σ-Collection) For any Σ formula $\varphi(u, v)$ and set a,

$$
IKP^* \vdash \forall x \in a \exists y \ \varphi(x, y) \rightarrow \exists b \ \forall x \in a \ \exists y \in b \ \varphi(x, y) \ \land \ \forall y \in b \ \exists x \in a \ \varphi(x, y)
$$

Remark

 Δ separation; the assertion that whenever $\forall x \in a$ ($\varphi(x) \leftrightarrow \psi(x)$) holds for φ a Σ formula and ψ a Π formula, $\{x \in a : \varphi(x)\}\)$ is a set, is not provable in IKP*.*

 $^3\varphi^{(a)}$ is the result of replacing each unbound quantifier with bounded by *a*.

$$
\bullet \ \ x \times y := \{ \langle u, v \rangle : u \in x \ \land \ v \in y \},
$$

• For
$$
x
$$
 an ordered pair

$$
\bullet \; 1^{st}(x) \coloneqq \{u : \exists v \, \langle u, v \rangle \in x\},
$$

$$
\bullet \; 2^{nd}(x) \coloneqq \{v : \exists u \, \langle u, v \rangle \in x\},
$$

$$
\bullet \langle x,y,z\rangle\coloneqq\langle x,\langle y,z\rangle\rangle.
$$

$$
\bullet \; x''\{u\} \coloneqq \{v : v \in 2^{nd}(x) \; \wedge \; \langle u, v \rangle \in x\}
$$

- \bullet $\mathcal{F}_p(x, y) := \{x, y\},\,$
- $\mathcal{F}_{\cap}(x,y) \coloneqq x \cap \bigcap y$
- $\mathcal{F}_{\cup}(x,y) \coloneqq \bigcup x,$
- $\mathcal{F}_{\backslash}(x,y) \coloneqq x \setminus y,$
- \bullet $\mathcal{F}_{\times}(x, y) := x \times y$,
- $\mathcal{F}_\rightarrow(\mathsf{x},\mathsf{y}) \coloneqq \mathsf{x} \cap \{ \mathsf{z} \in 2^\mathsf{nd}(\mathsf{y}) : \mathsf{y} \text{ is an ordered pair }$ \wedge z $\in 1^{st}(y)$,
- $\mathcal{F}_{\forall}(x, y) := \{x''\{z\} : z \in y\},\$

•
$$
\mathcal{F}_{dom}(x, y) := dom(x) = \{1^{st}(z) : z \in x \land z \text{ is an ordered pair}\},
$$

•
$$
\mathcal{F}_{ran}(x, y) := ran(x) = \{2^{nd}(z) : z \in x \land z \text{ is an ordered pair}\},
$$

$$
\bullet \ \mathcal{F}_{123}(x,y) \coloneqq \{ \langle u,v,w \rangle : \langle u,v \rangle \in x \ \land \ w \in y \},
$$

$$
\bullet \ \mathcal{F}_{132}(x,y) := \{ \langle u, w, v \rangle : \langle u, v \rangle \in x \ \land \ w \in y \},
$$

$$
\bullet \ \mathcal{F}_{=}(x,y) := \{ \langle v,u \rangle \in y \times x : u = v \},\
$$

$$
\bullet \ \mathcal{F}_{\in}(x,y) := \{ \langle v, u \rangle \in y \times x : u \in v \}.
$$

Remark

Let $\mathcal I$ be the finite set indexing the above operations.

Lemma (Barwise: Admissible Sets, Lemma II.6.1)

For every Σ_0 formula $\varphi(v_1,\ldots,v_n)$ with free variables among v_1, \ldots, v_n , there is a term \mathcal{F}_{φ} built up from the Gödel functions such that

$$
IKP \vdash \mathcal{F}_{\varphi}(a_1,\ldots,a_n) = \{ \langle x_n,\ldots,x_1 \rangle \in a_n \times \ldots \times a_1 : \varphi(x_1,\ldots,x_n) \}.
$$

Proof.

- Call a formula $\varphi(x_1, \ldots, x_n)$ a termed-formula or *t-formula* if there is a term \mathcal{F}_{φ} such that the conclusion of the lemma holds.
- Proceed by induction on Σ_0 formulae to show that every such formula is a t-formula.

Suppose that $\varphi(v_1, \ldots, v_n)$ and $\psi(v_1, \ldots, v_n)$ are t-formulae.

$$
\mathcal{F}_{\psi}(a_1,\ldots,a_n)=\{\langle x_n,\ldots,x_1\rangle\in a_n\times\ldots\times a_1:\psi(x_1,\ldots,x_n)\}\
$$

ϕ ∧ *ψ*

$$
\mathcal{F}_{\varphi \wedge \psi}(a_1,\ldots,a_n) = \mathcal{F}_{\varphi}(a_1,\ldots,a_n) \cap \mathcal{F}_{\psi}(a_1,\ldots,a_n)
$$

=
$$
\mathcal{F}_{\cap}(\mathcal{F}_{\varphi},\mathcal{F}_{\rho}(\mathcal{F}_{\psi},\mathcal{F}_{\psi}))
$$

ϕ ∨ *ψ*

$$
\mathcal{F}_{\varphi \vee \psi}(a_1,\ldots,a_n) = \mathcal{F}_{\varphi}(a_1,\ldots,a_n) \cup \mathcal{F}_{\psi}(a_1,\ldots,a_n) \n= \mathcal{F}_{\cup}(\mathcal{F}_{p}(\mathcal{F}_{\varphi},\mathcal{F}_{\psi}),\mathcal{F}_{\varphi})
$$

Preliminaries	Gödel Functions	Constructibility	L in IZF	Additions
00000000	0000	0000	0000	
$\Lambda, \nu, \rightarrow \& \neg$	00000000	0000	000	

$$
\varphi \to \psi
$$
\n
$$
\{(x_n \dots, x_1) \in a_n \times \dots \times a_1 : \varphi(x_1, \dots, x_n) \to \psi(x_1, \dots, x_n)\}
$$
\n
$$
=
$$
\n
$$
(a_1 \times \dots \times a_n) \cap \{z \in \mathcal{F}_{\psi}(a_1, \dots, a_n) : z \in \mathcal{F}_{\varphi}(a_1, \dots, a_n)\}
$$
\n
$$
=
$$
\n
$$
\mathcal{F}_{\rightarrow}(a_n \times \dots \times a_1, \langle \mathcal{F}_{\varphi}(a_1, \dots, a_n), \mathcal{F}_{\psi}(a_1, \dots, a_n)\rangle)
$$

¬*ϕ*

$$
\neg \varphi(v_1,\ldots,v_n)\equiv (\varphi(v_1,\ldots,v_n)\rightarrow 0=1)
$$

Suppose that $\psi(v_1, \ldots, v_{n+1})$ is a t-formula.

$$
\mathcal{F}_{\psi}(a_1,\ldots,a_n)=\{\langle x_n,\ldots,x_1\rangle\in a_n\times\ldots\times a_1:\psi(x_1,\ldots,x_n)\}\
$$

$\overline{\varphi}(v_1,\ldots,v_n)\equiv \exists v_{n+1}\in v_j\ \psi(v_1,\ldots,v_{n+1})$

• Let
$$
\theta(v_1, \ldots, v_n) \equiv v_{n+1} \in v_j
$$
.

Then *ψ* ∧ *θ* is a t-formula.

\n- \n
$$
\mathcal{F}_{\psi \wedge \theta}(a_1, \ldots, a_n, \bigcup a_j) =\n \begin{cases}\n \langle x_{n+1}, x_n \ldots x_1 \rangle : \forall i \in [1, n] \ x_i \in a_i \ \wedge \ x_{n+1} \in x_j \\
 \wedge \psi(x_1, \ldots, x_{n+1})\n \end{cases}
$$
\n
\n- \n
$$
\mathcal{F}_{\varphi}(a_1, \ldots, a_n) = \mathcal{F}_{\text{ran}}(\mathcal{F}_{\psi \wedge \theta}(a_1, \ldots, a_n, \bigcup a_j), \mathcal{F}_{\setminus}(a_1, a_1)).
$$
\n
\n

Suppose that $\psi(v_1,\ldots,v_{n+1})$ is a t-formula. $\mathcal{F}_{\psi}(a_1, \ldots, a_n) = \{ \langle x_n, \ldots, x_1 \rangle \in a_n \times \ldots \times a_1 : \psi(x_1, \ldots, x_n) \}$

$\varphi(v_1, ..., v_n, b) \equiv \forall v_{n+1} \in b \ \psi(v_1, ..., v_{n+1}), b \notin \{v_1, ..., v_n\}$

First note that
$$
\mathcal{F}_{\forall}(\mathcal{F}_{\psi}(a_1,..., a_n, b), b) =
$$

\n{ $ran(\mathcal{F}_{\psi}(a_1,..., a_n, \{z\})) : z \in b$ }.
\nTherefore $\mathcal{F}_{\varphi}(a_1,..., a_n, b)$ can be expressed as
\n{ $\langle x_n,..., x_1 \rangle \in a_n \times ... \times a_1 : \forall x_{n+1} \in b \psi(x_1,..., x_n) \}$
\n= $(a_n \times ... \times a_1) \cap$
\n{ $w : \forall x_{n+1} \in b \langle x_{n+1}, w \rangle \in \mathcal{F}_{\psi}(a_1,..., a_n, \{x_{n+1}\})$ }
\n= $(a_n \times ... \times a_1) \cap$
\n $\bigcap \{ran(\mathcal{F}_{\psi}(a_1,..., a_n, \{x_{n+1}\})) : x_{n+1} \in b\}$
\n= $\mathcal{F}_{\cap}(a_n \times ... \times a_1, \mathcal{F}_{\forall}(\mathcal{F}_{\psi}(a_1,..., a_n, b), b))$.

$\varphi(v_1,\ldots,v_n)\equiv \forall v_{n+1}\in v_j \ \psi(v_1,\ldots,v_{n+1})$

Let $\theta(v_1, \ldots, v_n, b) \equiv \forall v_{n+1} \in b \ (v_{n+1} \in v_i \rightarrow \psi(v_1, \ldots, v_{n+1}))$ which is a t-formula. Then

$$
\{\langle x_n,\ldots,x_1\rangle\in a_n\times\ldots\times a_1:\forall x_{n+1}\in x_j\ \psi(x_1,\ldots,x_{n+1})\}
$$

= $\{\langle x_n,\ldots,x_1\rangle\in a_n\times\ldots\times a_1:\theta(x_1,\ldots,x_n,\bigcup a_j)\}.$

Theorem (Barwise: Corollary 6.2)

For any Σ_0 formula $\varphi(v_1,\ldots,v_n)$ with free variables among $v_1, \ldots v_n$ there is a term \mathcal{F}_{φ} of n arguments built from the Gödel functions such that:

$$
\begin{aligned} \text{IKP*} & \vdash \mathcal{F}_{\varphi}(a, x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \\ & = \{x_i \in a : \varphi(x_1, \ldots, x_n)\}.\end{aligned}
$$

Proof.

- Let \mathcal{F}_{φ} be such that IKP^* deduces that $\mathcal{F}_{\varphi}(a_1, \ldots, a_n) = \{ \langle x_n, \ldots, x_1 \rangle \in a_n \times \ldots \times a_1 : \varphi(x_1, \ldots, x_n) \}$
- Then our required set can be built from

$$
\mathcal{F}_{\varphi}(\{x_1\},\ldots,\{x_{i-1}\},a_i,\{x_{i+1}\},\ldots\{x_n\})
$$

by using \mathcal{F}_{ran} n − i times and then \mathcal{F}_{dom} .

For a set
$$
b
$$
, $\mathcal{D}(b) := b \cup \{\mathcal{F}_i(x, y) : x, y \in b \land i \in \mathcal{I}\}.$

Definition

For
$$
\alpha
$$
 an ordinal, $\mathcal{L}_{\alpha} := \bigcup_{\beta \in \alpha} \mathcal{D}(\mathcal{L}_{\beta} \cup \{\mathcal{L}_{\beta}\})$.

$$
\mathcal{L}\coloneqq \bigcup_{\alpha} \mathcal{L}_{\alpha}.
$$

Remarks

$$
\bullet\ \mathcal L_{\alpha+1}=\mathcal D(\mathcal L_\alpha\cup\{\mathcal L_\alpha\}).
$$

If α is a strong additive limit then $\mathcal{L}_{\alpha} = \bigcup_{\beta \in \alpha} \mathcal{L}_{\beta}$.

Lemma

For any ordinals *α, β*;

- **1** If $\beta \subseteq \alpha$ then $\mathcal{L}_{\beta} \subseteq \mathcal{L}_{\alpha}$,
- \bullet $\mathcal{L}_{\alpha} \in \mathcal{L}_{\alpha+1}$,
- **3** If $x, y \in \mathcal{L}_{\alpha}$ then for any $i \in \mathcal{I}$, $\mathcal{F}_i(x, y) \in \mathcal{L}_{\alpha+1}$,
- **4** If for all $\beta \in \alpha$, $\beta + 1 \in \alpha$ then \mathcal{L}_{α} is transitive,

6 \mathcal{L} is transitive.

Theorem

For every axiom, φ , of IKP^* , $\text{IKP}^* \vdash \varphi^{\mathcal{L}}$. Moreover, IKP* + "*strong infinity*" \vdash (*strong infinity*)^{\mathcal{L}}.

Proof of Σ_0 -Collection.

- Suppose that $\varphi(x, y, z)$ is a Σ_0 formula.
- Assume that $a, z \in \mathcal{L}$ and $\forall x \in a \exists y \in \mathcal{L}$ $(\varphi(x, y, z))^{\mathcal{L}}$.
- \bullet Then $\forall x \in a \exists \alpha$ ($\exists y \in \mathcal{L}_{\alpha}$ $\varphi(x, y, z)$).
- By Σ-collection in V, there is a *β* such that $\forall x \in \mathbf{a} \exists \alpha \in \beta \ (\exists y \in \mathcal{L}_{\alpha} \ \varphi(x, y, z)).$
- \bullet So $\forall x \in a \exists y \in \mathcal{L}_\beta \varphi(x, y, z)$.

Theorem

For every axiom, φ , of IKP^* , $\text{IKP}^* \vdash \varphi^{\mathcal{L}}$. Moreover, IKP* + "*strong infinity*" \vdash (*strong infinity*)^{\mathcal{L}}.

Proof of Strong Infinity.

• For all $n \in \omega$, $n+1 = \mathcal{F}_{\square}(n, \mathcal{F}_{n}(n, n)) \in \mathcal{L}_{2n+3}$.

• So

$$
\omega = \{ n \in \mathcal{L}_{\omega} : n = \emptyset \ \lor \ \exists m \in n \ (n = m \cup \{ m \}) \}
$$

is in $\mathcal L$ by bounded separation.

We want to prove that $(\mathrm{V}=\mathcal{L})^\mathcal{L}$. But, $\mathcal{L}=\bigcup_{\alpha\in\mathrm{ORD}\cap\mathrm{V}}\mathcal{L}_\alpha$ and we don't know if $\mathrm{ORD} \cap \mathcal{L} = \mathrm{ORD} \cap \mathrm{V}.$ However, $(\mathrm{V} = \mathcal{L})^\mathcal{L}$ will be immediate from the following:

Lemma (Lubarsky)

For every ordinal α there is an ordinal $\alpha^* \in \mathcal{L}$ such that $\mathcal{L}_{\alpha} = \mathcal{L}_{\alpha^*}$

Definition (Hereditary Addition)

For ordinals *α* and *γ*, hereditary addition is defined inductively on $α$ as

$$
\alpha + H \gamma := \left(\bigcup \{ \beta + H \gamma : \beta \in \alpha \} \cup \{ \alpha \} \right) + \gamma
$$

where $+$ " is the usual ordinal addition. Also

$$
(\alpha +_{H} \gamma)^{-} := \bigg(\bigcup \{\beta +_{H} \gamma : \beta \in \alpha\} \cup \{\alpha\}\bigg).
$$

α

Lemma (Lubarsky)

For every ordinal α there is an ordinal $\alpha^* \in \mathcal{L}$ such that $\mathcal{L}_\alpha = \mathcal{L}_{\alpha^*}$

Proof.

- Proof by induction on *α*.
- **•** Fix $k \in \omega$ such that for all ordinals α and τ .

$$
\{\gamma\in\mathcal{L}_{\tau}:\mathcal{D}(\mathcal{L}_{\gamma}\cup\{\mathcal{L}_{\gamma}\})\subseteq\mathcal{L}_{\alpha}\}\in\mathcal{L}_{\tau+k}.
$$

- $\alpha^* \coloneqq \{ \gamma \in \mathcal{L}_{(\alpha+\mu k)^-} : \mathcal{D}(\mathcal{L}_{\gamma} \cup \{\mathcal{L}_{\gamma}\}) \subseteq \mathcal{L}_{\alpha} \} \in \mathcal{L}_{\alpha+\mu k}.$
- **Claim:** If $\beta \in \alpha$ then $\beta^* \in \alpha^*$.
- Therefore $\mathcal{L}_{\alpha} = \bigcup \mathcal{D}(\mathcal{L}_{\beta} \cup {\{\mathcal{L}_{\beta}\}}) = \bigcup \mathcal{D}(\mathcal{L}_{\beta^*} \cup {\{\mathcal{L}_{\beta^*}\}})$ *β*∈*α β*∈*α* \subseteq \bigcup $\mathcal{D}(\mathcal{L}_{\gamma} \cup \{\mathcal{L}_{\gamma}\}) = \mathcal{L}_{\alpha^*}.$ *γ*∈*α*[∗]

Definition (IKP)

For a set b, $\mathsf{Def}(b) \coloneqq \bigcup_{n \in \omega} \mathcal{D}^n(b \cup \{b\})$. For α an ordinal, $\mathcal{L}_{\alpha} \coloneqq \bigcup_{\beta \in \alpha} \mathsf{Def}(\mathcal{L}_{\beta})$ $\mathrm{L}\coloneqq\left\lfloor \ \ \right\rfloor$ *α* L*α.*

Proposition (IKP)

For all ordinals *α, β*:

• If
$$
\beta \in \alpha
$$
 then $L_{\beta} \subseteq L_{\alpha}$,

$$
\bullet \ \mathbf{L}_{\alpha} \in \mathrm{L}_{\alpha+1},
$$

 \bullet L_α is a transitive model of Σ_0 separation,

$$
\bullet \ \mathbf{L}_{\alpha} = \mathcal{L}_{\omega \cdot \alpha}.
$$

Definition (IKP)

Say that a set x is definable over $\langle M, \in \rangle$ if there exists a formula φ and $a_1, \ldots, a_n \in M$ such that

$$
x = \{y \in M : \langle M, \in \rangle \models \varphi[y, a_1, \ldots, a_n]\}.
$$

We can then define the collection of definable subsets of M as

$$
\operatorname{def}(M) \coloneqq \{x \subseteq M : x \text{ is definable over } \langle M, \in \rangle\}.
$$

Theorem (IKP)

For every transitive set M:

$$
\begin{array}{rcl}\n\mathrm{def}(M) & = & \mathrm{Def}(M) \cap \mathcal{P}(M) \\
& = & \bigcup_{n \in \omega} \mathcal{D}^n(M) \cap \mathcal{P}(M).\n\end{array}
$$

Idea

IZF is the theory ZF with intuitionistic logic instead of classical logic.

Definition

Let IZF_{ren} denote the theory IKP plus full separation plus the full replacement scheme.

(∀x ∈ a ∃!y *ϕ*(x*,* y*,* z) → ∃b ∀x ∈ a ∃y ∈ b *ϕ*(x*,* y*,* z))

Let IZF denote the theory IKP plus full separation plus the full collection scheme.

(∀x ∈ a ∃y *ϕ*(x*,* y*,* z) → ∃b ∀x ∈ a ∃y ∈ b *ϕ*(x*,* y*,* z))

Let IZF_{ref} denote the theory IKP plus full separation plus the reflection scheme.

> (For any formula φ and set x there is a transitive set M such that $x \subseteq M$ and φ is absolute between M and V.)

Let $M \subseteq N$. We say that M has an external cumulative hierarchy (e.c.h.) in N if there exists a sequence $\langle M_\alpha : \alpha \in \text{ORD } \cap N \rangle$ (which is definable in N) such that;

- $\bullet \ \forall \alpha \in \text{ORD} \cap N \ M_\alpha \in M$.
- $M = \bigcup_{\alpha \in \text{ORD} \cap N} M_{\alpha}$
- **•** If $\beta \in \alpha$ then $M_{\beta} \subseteq M_{\alpha}$.

Remarks

- When $N = V$ we will just say that M has an e.c.h.
- \bullet If M is a model of IZF containing all of the ordinals then its rank hierarchy is an e.c.h.
- **•** By construction $\langle L_{\alpha} : \alpha \in \text{ORD} \rangle$ is an e.c.h. for L.

Proposition

Suppose that $M\subseteq N$ are transitive models of $\mathrm{ZF}^{\,5}.$ If M has an e.c.h. in N then $\text{ORD} \cap M = \text{ORD} \cap N$.

Proof.

- Let $\langle M_\alpha : \alpha \in \text{ORD} \cap \mathbb{N} \rangle$ be an e.c.h.
- **•** Prove inductively that $\forall \gamma \in \mathbb{N} \exists \beta \in \mathbb{N}$ ($\gamma \subseteq M_{\beta}$).
	- Working in N , $\forall \alpha \in \gamma$ $\exists \tau_\alpha \in N \ (\alpha \in M_{\tau_\alpha})$.
	- Using collection and the cumulative nature of the hierarchy, ∃*β* ∈ N ∀*α* ∈ *γ* (*α* ∈ M*β*).
- **•** Since M ^{*β*} ∈ *M* and *M* is transitive, either $γ = M$ ^{*β*} ∩ ORD or $\gamma \in M_\beta \cap$ Ord.
- **•** Either of which yields that $\gamma \in \text{ORD} \cap M$.

Let $M \subseteq N$. We say that M is almost universal in N if for any $x \in N$, if $x \subseteq M$ then there exists some $y \in M$ such that $x \subseteq y$.

Theorem

Suppose that N is a model of IZF and $M \subseteq N$ is a transitive (proper) class with an external cumulative hierarchy in N. Then M is a model of IZF iff M is closed under Gödel functions and is almost universal in N.

Remarks

- The e.c.h. is not necessary for the right to left implication.
- \bullet It is needed to show that M is almost universal in N:
	- If $a \in N$, $a \subseteq M$ then $\exists \beta \in \mathrm{ORD} \cap N$ $(a \subseteq \bigcup_{\alpha \in \beta} \mathrm{V}^M_\alpha)$.
	- **•** If $\beta \notin M$, why should this union be in M?

- \textbf{D} Does $\text{IZF}_{\textit{ref}}$ prove $(\text{IZF}_{\textit{ref}})^{\textit{L}}$?
- $^{\textcolor{red}{\textbf{2}}}$ Does $\text{IZF}_{\textit{rep}}$ prove $(\text{IZF}_{\textit{rep}})^{\textcolor{red}{\textbf{L}}}\textcolor{red}{?}$
- ³ Does L have any nice additional properties? For example, ls $\mathcal{P}(\omega) \subseteq \mathrm{L}_{\omega_1}$? Does L satisfy some form of condensation?
- ⁴ Which large set axioms (intuitionistic versions of large cardinals axioms) are downwards absolute to L?
- \bullet Is ORD \cap V = ORD \cap L?

Claim

There is a model, M , of $(\mathrm{IZF} + \mathrm{V} = \mathrm{L})^6$ containing a sequence $\langle \alpha_n : n \in \omega \rangle$ such that:

- \bullet Each α_n is a distinct ordinal.
- **•** If $n \neq m$ then $\alpha_n \notin \alpha_m$.
- Let $\langle \alpha_n : n \in \omega \rangle$ be such a sequence.
- For $f: \omega \to 2$, let $\delta_f := \bigcup_n (\alpha_n \cup f(n)).$
- Then $\{\delta_f: f \in {}^{\omega}2\}$ is an encoding of ${}^{\omega}2$ by ordinals.
- So, if $M \subseteq N$ are models of IZF and $\langle \alpha_n : n \in \omega \rangle \in M$, then $\text{ORD} \cap M = \text{ORD} \cap N \Rightarrow {}^{\omega}2 \cap M = {}^{\omega}2 \cap N$.
- So, if we add a Cohen real to M we add a new function from *ω* to 2 and therefore new ordinals.

⁶Possibly Kleene's first realizability model?

Claim

There is a model, M , of $(\mathrm{IZF} + \mathrm{V} = \mathrm{L})^7$ containing a sequence $\langle \alpha_n : n \in \omega \rangle$ such that:

- \bullet Each α_n is a distinct ordinal.
- **•** If $n \neq m$ then $\alpha_n \notin \alpha_m$.

Conclusions

- ORD \cap V need not equal ORD \cap L!
- Forcing can add ordinals!

⁷Possibly Kleene's first realizability model?