

Ordinal Oddities

Richard Matthews

University of Leeds

Leeds - Ghent Virtual Logic Seminar

 $\langle A, \prec \rangle$ is a well-ordering if it is a strict total order such that any non-empty subset X of A has an \prec -least element.

Definition

An Ordinal α is a transitive set which is well-ordered by \in . Let ORD denote the class of Ordinals.

Proposition

α is an ordinal iff it is a transitive set of transitive sets.

Remark

Because ∈ is an order, we will often switch between ∈ and *<*.

- **•** If α is an ordinal then so is $\alpha + 1 \coloneqq \alpha \cup \{\alpha\},\$
- If X is a set of ordinals then $\bigcup X$ is an ordinal,

$$
\bullet \ \beta < \alpha \Longrightarrow \beta + 1 \leq \alpha,
$$

- For any ordinal α , $0 \in \alpha + 1$,
- **Trichotomy:** For any $\alpha, \beta, \alpha = \beta$ or $\alpha \in \beta$ or $\beta \in \alpha$,
- Every non-empty set of ordinals has an ∈-least element,
- Every ordinal is one of

\n- 0,
$$
\bullet
$$
 A successor, \bullet An additive limit.
\n- $\alpha = \beta + 1$
\n- $\forall \beta \in \alpha \ \beta + 1 \in \alpha$
\n

- (Law of Excluded Middle) *ϕ* ∨ ¬*ϕ*
- (Double Negation Elimination) ¬¬*ϕ* → *ϕ*
- (Some Classical Logical Equivalences) (*ϕ* → *ψ*) → (¬*ϕ* ∨ *ψ*)
- Foundation: $\forall a(\exists x(x \in a) \rightarrow \exists x \in a \forall y \in a(y \notin x))$
- "Least elements" of sets
- Axiom of Choice / Well-Ordering Principle
- Definition by cases which differentiate between successor and limit ordinals

Remark

$$
\neg \varphi \text{ is interpreted as } \varphi \to (0 = 1).
$$

Idea

IZF is the theory ZF with intuitionistic logic instead of classical logic.

Definition (IZF)

- **•** Extensionality
- **•** Empty Set
- **•** Power set

• Pairing **o** Unions

• Pairing Unions

Definition (IZF)

- **•** Extensionality
- **•** Empty Set
- **•** Power set
- Set Induction For any formula *ϕ*(u), \forall a(\forall x ∈ a $\varphi(x)$ → $\varphi(a)$) → \forall a $\varphi(a)$)
- Collection (For any formula $\varphi(u, v)$ and set a, $\forall x \in a \exists y \; \varphi(x, y) \rightarrow \exists b \; \forall x \in a \; \exists y \in b \; \varphi(x, y))$
- Separation (For any formula $\varphi(u)$ and set *a*, $\{x \in a : \varphi(x)\}$ is a set
- Strong Infinity $(\exists a \ (Ind(a) \ \land \ \forall b \ (Ind(b) \rightarrow \forall x \in a(x \in b))))^1$.

 1 Ind(a) $\equiv \emptyset \in$ a $\wedge \forall x \in$ a $(x \cup \{x\} \in$ a)

Definition (IKP^{-Inf})

- **•** Extensionality **•** Empty Set **•** Pairing Unions
- Set Induction For any formula *ϕ*(u), ∀a(∀x ∈ a *ϕ*(x) → *ϕ*(a)) → ∀a *ϕ*(a)
- Bounded Collection (For any Σ_0 formula $\varphi(u,v)$ and set *a*, ∀x ∈ a ∃y *ϕ*(x*,* y) → ∃b ∀x ∈ a ∃y ∈ b *ϕ*(x*,* y)
- Bounded Separation (For any Σ_0 formula $\varphi(u)$ and set *a*, $\{x \in a : \varphi(x)\}\)$ is a set)

Definition (IKP)

IKP is IKP^{-Inf} plus strong infinity.

An ordinal is a transitive set of transitive sets.

Remarks

- **•** If α is an ordinal then so is $\alpha + 1 := \alpha \cup \{\alpha\}.$
- If X is a set of ordinals then $\bigcup X$ is an ordinal.
- $\theta \beta \in \alpha \not\Rightarrow \beta + 1 \in \alpha + 1.$
- $\bullet \ \forall \alpha \ (0 \in \alpha + 1)$ implies excluded middle!

Trichotomy

- *α* is trichotomous ∀*β* ∈ *α* ∀*γ* ∈ *α* (*β* ∈ *γ* ∨ *β* = *γ* ∨ *γ* ∈ *β*).
- \bullet It is consistent with IZF that the collection of trichotomous ordinals is a set!

An ordinal is a transitive set of transitive sets.

Remarks

- **•** If α is an ordinal then so is $\alpha + 1 := \alpha \cup \{\alpha\}.$
- If X is a set of ordinals then $\bigcup X$ is an ordinal.

$$
\bullet \ \beta \in \alpha \not\Rightarrow \beta + 1 \in \alpha + 1.
$$

 $\bullet \ \forall \alpha \ (0 \in \alpha + 1)$ implies excluded middle!

Definition

An ordinal α is a *weak additive limit* if $\forall \beta \in \alpha \exists \gamma \in \alpha \ (\beta \in \gamma)$.

An ordinal α is a *strong additive limit* if $\forall \beta \in \alpha$ ($\beta + 1 \in \alpha$).

Given a formula *ϕ*, an important ordinal is

$$
\alpha_{\varphi}:=\{\mathsf{0}\in\mathsf{1}:\varphi\}.
$$

Naively, if we don't assume $\varphi \lor \neg \varphi$ then α_{φ} is neither 0 not 1. In general we let

$$
\Omega\coloneqq\mathcal{P}(1)=\{x:x\subseteq 1\}
$$

be the class of truth values.

If $\Omega = 2$ then the Law of Excluded Middle holds.

Note that

$$
0\in \alpha_\varphi+1\Longrightarrow 0\in \alpha_\varphi\vee 0=\alpha_\varphi\Longrightarrow \varphi\vee\neg\varphi.
$$

- The constructible universe was developed by Gödel in papers published in 1939 and 1940 to show the consistency of the Axiom of Choice and the Generalised Continuum Hypothesis with ZF.
- There are $2/3$ main approaches to building L both of which are formalisable in KP:²
	- Syntactically as the set of definable subsets of M (See Devlin -Constructibility)
	- Using Gödel functions (See Barwise Admissible Sets) or
	- Using Rudimentary Functions (See Gandy, Jensen, Mathias)
- \bullet The syntactic approach was then modified for IZF by Lubarsky (Intuitionistic L - 1993)
- And then for IKP by Crosilla (Realizability models for constructive set theories with restricted induction - 2000)

 2 In fact significantly weaker systems - see Mathias: *Weak Systems of* Gandy, Jensen and Devlin, 2006

- \bullet $\mathcal{F}_p(x, y) := \{x, y\},\,$
- $\mathcal{F}_{\cap}(x,y) \coloneqq x \cap \bigcap$
- $\mathcal{F}_{\cup}(x,y) \coloneqq \bigcup x,$
- $\mathcal{F}_{\backslash}(x,y) \coloneqq x \setminus y,$
- \bullet $\mathcal{F}_{\times}(x, y) := x \times y$,
- $\mathcal{F}_\rightarrow \!(x,y) \coloneqq x \cap \{ \mathsf{z} \in 2^{\mathsf{nd}}(y) : y \text{ is an ordered pair }$ \wedge z \in 1st(y)},

 $\mathcal{F}_{\forall}(x, y) \coloneqq \{x''\{z\} : z \in y\},\qquad (x, y) \in \mathcal{F}_{\forall}(x, y)$

 $\gamma' u = \{v : v \in 2^{nd}(x) \wedge \langle u, v \rangle \in x\}$

 $(∩y = {u : ∀v ∈ y (u ∈ v)})$

•
$$
\mathcal{F}_{dom}(x, y) := dom(x) = \{1^{st}(z) : z \in x \land z \text{ is an ordered pair}\},
$$

•
$$
\mathcal{F}_{ran}(x, y) := ran(x) = \{2^{nd}(z) : z \in x \land z \text{ is an ordered pair}\},
$$

$$
\bullet \ \mathcal{F}_{123}(x,y) := \{ \langle u,v,w \rangle : \langle u,v \rangle \in x \ \land \ w \in y \},
$$

$$
\bullet \ \mathcal{F}_{132}(x,y) := \{ \langle u, w, v \rangle : \langle u, v \rangle \in x \ \land \ w \in y \},
$$

$$
\bullet \ \mathcal{F}_{=}(x,y) := \{ \langle v,u \rangle \in y \times x : u = v \},
$$

$$
\bullet \ \mathcal{F}_{\in}(x,y) := \{ \langle v, u \rangle \in y \times x : u \in v \}.
$$

Notation

Let I be the finite set indexing the above operations.

[Ordinals](#page-1-0) **[Intuitionism](#page-3-0)** [Constructibility](#page-10-0) [Kripke Models](#page-21-0) [Non-Constructive Ordinals](#page-26-0) Ω 00000 oo●oooooc 00000 00000

Generating Constructible Sets

Lemma (Barwise: Admissible Sets, Lemma II.6.1, (M.))

For every Σ_0 formula $\varphi(v_1,\ldots,v_n)$ with free variables among v_1, \ldots, v_n , there is a term \mathcal{F}_{φ} built up from the Gödel functions such that

$$
IKP \vdash \mathcal{F}_{\varphi}(a_1,\ldots,a_n) = \{ \langle x_n,\ldots,x_1 \rangle \in a_n \times \ldots \times a_1 : \varphi(x_1,\ldots,x_n) \}.
$$

Proof.

- Call a formula $\varphi(x_1, \ldots, x_n)$ a termed-formula or *t-formula* if there is a term \mathcal{F}_{φ} such that the conclusion of the lemma holds.
- Proceed by induction on Σ_0 formulae to show that every such formula is a t-formula.

Suppose that $\psi(v_1,\ldots,v_{n+1})$ is a t-formula.

 $\mathcal{F}_{\psi}(a_1,\ldots,a_n,a_{n+1})=\{\langle x_{n+1},x_n,\ldots,x_1\rangle\in a_{n+1}\times a_n\times\ldots\times a_1:\psi(x_1,\ldots,x_n,x_{n+1})\}$

$\varphi(v_1, ..., v_n, b) \equiv \forall v_{n+1} \in b \ \psi(v_1, ..., v_{n+1}), b \notin \{v_1, ..., v_n\}$

First note that
$$
\mathcal{F}_{\forall}(\mathcal{F}_{\psi}(a_1, ..., a_n, b), b) =
$$

\n{ $ran(\mathcal{F}_{\psi}(a_1, ..., a_n, \{z\})) : z \in b$ }.
\nTherefore $\mathcal{F}_{\varphi}(a_1, ..., a_n, b)$ can be expressed as
\n{ $\langle x_n, ..., x_1 \rangle \in a_n \times ... \times a_1 : \forall x_{n+1} \in b \psi(x_1, ..., x_n)$ }
\n= $(a_n \times ... \times a_1) \cap$
\n{ $w : \forall x_{n+1} \in b \langle x_{n+1}, w \rangle \in \mathcal{F}_{\psi}(a_1, ..., a_n, \{x_{n+1}\})$ }
\n= $(a_n \times ... \times a_1) \cap$
\n $\bigcap \{ran(\mathcal{F}_{\psi}(a_1, ..., a_n, \{x_{n+1}\})) : x_{n+1} \in b\}$
\n= $\mathcal{F}_{\cap}(a_n \times ... \times a_1, \mathcal{F}_{\forall}(\mathcal{F}_{\psi}(a_1, ..., a_n, b), b))$.

Suppose that $\psi(\nu_1, \ldots, \nu_{n+1})$ is a t-formula.

 $\mathcal{F}_{\psi}(a_1,\ldots,a_n,a_{n+1}) = \{\langle x_{n+1}, x_n,\ldots,x_1\rangle \in a_{n+1}\times a_n\times \ldots \times a_1 : \psi(x_1,\ldots,x_n,x_{n+1})\}\$

$$
\varphi(v_1,\ldots,v_n,b) \equiv \forall v_{n+1} \in b \ \psi(v_1,\ldots,v_{n+1}), \ b \notin \{v_1,\ldots,v_n\}
$$
\nTherefore $\mathcal{F}_{\varphi}(a_1,\ldots,a_n,b)$ can be expressed as\n
$$
\mathcal{F}_{\cap}(a_n \times \ldots \times a_1, \ \mathcal{F}_{\forall}(\mathcal{F}_{\psi}(a_1,\ldots,a_n,b),b)).
$$

$\varphi(\nu_1,\ldots,\nu_n)\equiv \forall \nu_{n+1}\in v_j \; \psi(\nu_1,\ldots,\nu_{n+1})$

Let $\theta(v_1, \ldots, v_n, b) \equiv \forall v_{n+1} \in b \ (v_{n+1} \in v_i \rightarrow \psi(v_1, \ldots, v_{n+1}))$ which is a t-formula Then

$$
\{\langle x_n,\ldots,x_1\rangle\in a_n\times\ldots\times a_1:\forall x_{n+1}\in x_j\ \psi(x_1,\ldots,x_{n+1})\}
$$

= $\{\langle x_n,\ldots,x_1\rangle\in a_n\times\ldots\times a_1:\theta(x_1,\ldots,x_n,\bigcup a_j)\}.$

Bounded Separation

Theorem (Barwise: Corollary 6.2)

For any Σ_0 formula $\varphi(v_1,\ldots,v_n)$ with free variables among $v_1, \ldots v_n$ there is a term \mathcal{F}_{φ} of n arguments built from the Gödel functions such that:

$$
\begin{aligned} \text{IKP}^{-Inf} \vdash \mathcal{F}_{\varphi}(a, x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \\ &= \{x_i \in a : \varphi(x_1, \ldots, x_n)\}.\end{aligned}
$$

Proof.

- Let \mathcal{F}_{φ} be such that IKP^{-Inf} deduces that $\mathcal{F}_{\varphi}(a_1, \ldots, a_n) = \{ \langle x_n, \ldots, x_1 \rangle \in a_n \times \ldots \times a_1 : \varphi(x_1, \ldots, x_n) \}$
- Then our required set can be built from

$$
\mathcal{F}_{\varphi}(\{x_1\},\ldots,\{x_{i-1}\},a_i,\{x_{i+1}\},\ldots\{x_n\})
$$

by using \mathcal{F}_{ran} n – i times and then \mathcal{F}_{dom} .

For a set
$$
b
$$
, $\mathcal{D}(b) := b \cup \{\mathcal{F}_i(x, y) : x, y \in b \land i \in \mathcal{I}\}.$

Definition

For
$$
\alpha
$$
 an ordinal, $L_{\alpha} := \bigcup_{\beta \in \alpha} \mathcal{D}(L_{\beta} \cup \{L_{\beta}\})$.

$$
L\coloneqq \bigcup_\alpha L_\alpha.
$$

Definition (Assuming Strong Infinity)

For a set b, $\mathsf{Def}(b) \coloneqq \bigcup_{n \in \omega} \mathcal{D}^n(b \cup \{b\})$. For α an ordinal, $\mathcal{L}_{\alpha} \coloneqq \bigcup_{\beta \in \alpha} \mathsf{Def}(\mathcal{L}_{\beta})$ $L \coloneqq \left\lfloor \ \right\rfloor$ *α* L*α.*

Proposition (IKP)

For all ordinals *α, β*:

• If
$$
\beta \in \alpha
$$
 then $L_{\beta} \subseteq L_{\alpha}$ and $L_{\beta} \subseteq L_{\alpha}$,

$$
\bullet \ \mathcal{L}_{\alpha} \in \mathcal{L}_{\alpha+1} \text{ and } \mathcal{L}_{\alpha} \in \mathcal{L}_{\alpha+1},
$$

 \bullet \mathcal{L}_{α} is a transitive model of Σ_0 separation,

$$
\bullet \ \mathcal{L}_{\alpha} = L_{\omega \cdot \alpha}.
$$

Theorem

For every axiom, φ , of $I\text{KP}^{-Inf}$, $I\text{KP}^{-Inf} \vdash \varphi^{\text{L}}$. Moreover, $IKP^{-Inf} + "strong infinity" \vdash (strong infinity)^L.$

Theorem

For every axiom, φ , of IZF, IZF $\vdash \varphi^{\text{L}}$.

[Ordinals](#page-1-0) [Intuitionism](#page-3-0) [Constructibility](#page-10-0) [Kripke Models](#page-21-0) [Non-Constructive Ordinals](#page-26-0) Ω 00000 00000 00000

Axiom of Constructibility

We want to prove that $(\mathrm{V}=\mathrm{L})^\mathrm{L}$. But, $\mathrm{L}=\bigcup_{\alpha\in\mathrm{ORD}\cap\mathrm{V}}\mathrm{L}_\alpha$ and we don't know if $\text{ORD} \cap \text{L} = \text{ORD} \cap \text{V}$. However, $(\text{V} = \text{L})^{\text{L}}$ will be immediate from the following:

Lemma (Lubarsky)

For every ordinal α there is an ordinal $\alpha^* \in L$ such that $L_{\alpha} = L_{\alpha^*}$

Definition (Hereditary Addition)

For ordinals *α* and *γ*, hereditary addition is defined inductively on $α$ as

$$
\alpha + H \gamma := \left(\bigcup \{ \beta + H \gamma : \beta \in \alpha \} \cup \{ \alpha \} \right) + \gamma
$$

where $+$ " is the usual ordinal addition. Also

$$
(\alpha +_{H} \gamma)^{-} := \bigg(\bigcup \{\beta +_{H} \gamma : \beta \in \alpha\} \cup \{\alpha\}\bigg).
$$

Lemma (Lubarsky)

For every ordinal α there is an ordinal $\alpha^* \in L$ such that $L_\alpha = L_{\alpha^*}$

Proof.

- Proof by induction on *α*.
- **•** Fix $k \in \omega$ such that for all ordinals α and τ ,

$$
\{\gamma\in L_\tau: \mathcal{D}(L_\gamma\cup\{L_\gamma\})\subseteq L_\alpha\}\in L_{\tau+k}.
$$

- $\alpha^* := \{ \gamma \in L_{(\alpha+\mu k)^{-}} : \mathcal{D}(L_{\gamma} \cup \{L_{\gamma}\}) \subseteq L_{\alpha} \} \in L_{\alpha+\mu k}.$
- **Claim:** If $\beta \in \alpha$ then $\beta^* \in \alpha^*$.
- Therefore $\mathcal{L}_{\alpha} = \bigcup \mathcal{D}(\mathcal{L}_{\beta} \cup \{\mathcal{L}_{\beta}\}) = \bigcup \mathcal{D}(\mathcal{L}_{\beta^*} \cup \{\mathcal{L}_{\beta^*}\})$ *β*∈*α β*∈*α* \subseteq \bigcup $\mathcal{D}(\mathcal{L}_{\gamma} \cup \{\mathcal{L}_{\gamma}\}) = \mathcal{L}_{\alpha^*}.$ *γ*∈*α*[∗]

A Kripke model is a collection of "possible worlds" along with a binary relation which gives us some information as to how the worlds are related to one another.

Alternatively, a Kripke model is a collection of "states of knowledge" and p is related to q indicates that if we know p then it is possible that we shall know q at a later stage.

A Kripke model is an ordered quadruple $\mathscr{K} = \langle K, \mathcal{R}, \mathcal{D}, \iota \rangle$ where

- \bullet K is a non-empty set of "*nodes*",
- \bullet D is a function on K.
- \bullet $\mathcal R$ is a binary, reflexive relation between elements of $\mathcal K$.

ι is a set of functions $\iota_{p,q}$ for each pair $p, q \in \mathcal{K}$ with $p \mathcal{R} q$ such that the following hold.

- For each $p \in \mathcal{K}$, $\mathcal{D}(p)$ is an inhabited class structure.
- **•** If $p \mathcal{R} q$ then $\iota_{p,q} : \mathcal{D}(p) \to \mathcal{D}(q)$ is a homomorphism.
- **•** If $p \mathcal{R}q$ and $q \mathcal{R}r$ then $\iota_{p,r} = \iota_{q,r} \circ \iota_{p,q}$.

Now, for atomic formulae φ , let $p \Vdash \varphi$ denote that $\mathcal{D}(p) \models \varphi$. Then $\mathbb F$ can be extended to arbitrary formulae by the following prescription:

- For no p do we have $p \Vdash \perp$,
- \bullet $p \Vdash \varphi \land \psi$ iff $p \Vdash \varphi$ and $p \Vdash \psi$.

•
$$
p \Vdash \varphi \lor \psi
$$
 iff $p \Vdash \varphi$ or $p \Vdash \psi$,

- \bullet $p \Vdash \varphi \rightarrow \psi$ iff for any $r \in \mathcal{K}$ with $p\mathcal{R}r$, if $r \Vdash \varphi$ then $r \Vdash \psi$,
- $p \Vdash \forall x \varphi(x)$ iff whenever $p \mathcal{R} q$ and $d \in \mathcal{D}(q)$, $q \Vdash \varphi(d)$,
- $p \Vdash \exists x \varphi(x)$ iff there is some $d \in \mathcal{D}(p)$ such that $p \Vdash \varphi(d)$.

Let $\mathscr{K} = \langle K, \mathcal{R}, \mathcal{D}, \iota \rangle$ be a Kripke model and $p \in \mathcal{K}$.

- A formula φ is said to be *valid at p* iff $p \Vdash \varphi$.
- A formula φ is valid in the full Kripke model, written $\mathscr{K} \Vdash \varphi$, if for every $p \in \mathcal{K}$, $p \Vdash \varphi$.

[Fact](#page-35-0) (Hendtlass, Lubarsky)

It is possible to add a model structure to \mathscr{K} , $V(\mathscr{K})$ such that

$$
V(\mathscr{K}) \models \varphi \Longleftrightarrow \forall p \in \mathcal{K} \ p \Vdash \varphi.
$$

Theorem (Hendtlass, Lubarsky)

If for each $p, q \in K$, $\mathcal{D}(p) \models \text{ZF}$ and $\text{ORD} \cap \mathcal{D}(p) = \text{ORD} \cap \mathcal{D}(q)$, then $V(\mathcal{K}) = IZF$.

Let $\mathscr{K} = \langle \mathcal{K}, \mathcal{R}, \mathcal{D}, \iota \rangle$ be a Kripke model.

Definition

Define \mathcal{K}^p to be the truncation of the Kripke model to $\mathcal{K}^p \coloneqq \{q \in \mathcal{K} : p\mathcal{R}q\}$. So \mathcal{K}^p is the cone of nodes which are related to p.

Fact

Given $p \in \mathcal{K}$ and $x \in \mathcal{D}(p)$ we can define an interpretation x^p such that if $p\mathcal{R}q$ then $q \Vdash x^p = x^q$.

This gives us a way to talk about the past worlds in the current one.

Suppose that $N \subseteq M$ are models of IZF such that N satisfies the following weak incidence of excluded middle:

for any set $\{a_n : n \in \omega\}$ of distinct sets, if we have x such that $x\in \bigcup a_n$ and for some k, $x\not\in \bigcup\, a_n$ then $x\in a_k.$ n $n\neq k$

Further suppose that in N there is an ordinal α such that $\alpha \notin \omega$ and $\omega \not\subseteq \alpha$. Then

$$
\mathrm{Ord} \cap M = \mathrm{Ord} \cap N \Longrightarrow ({}^{\omega}2)^M = ({}^{\omega}2)^N.
$$

$$
\mathrm{Ord} \cap M = \mathrm{Ord} \cap N \Longrightarrow ({}^\omega 2)^M = ({}^\omega 2)^N.
$$

- Fix $\alpha \in N$ such that $\alpha \notin \omega$ and $\omega \nsubseteq \alpha$,
- \bullet Note that this is also true in M.
- **•** Also, $(\alpha + 1) \nsubseteq \omega$
- So, ${n \cup (α + 1) : n ∈ ω}$ is a set of $ω$ many pairwise incomparable ordinals.
- i.e. If $m \neq n$ then $m \cup (\alpha + 1) \notin n \cup (\alpha + 1)$.
- For $f \in ({}^{\omega}2)^{\text{M}}$ define

$$
\delta_f := \bigcup_{n \in \omega} [(n \cup (\alpha + 1)) + f(n)].
$$

$$
\mathrm{Ord} \cap M = \mathrm{Ord} \cap N \Longrightarrow ({}^\omega 2)^M = ({}^\omega 2)^N.
$$

- $\delta_f := \bigcup_{n \in \omega} [(n \cup (\alpha + 1)) + f(n)] \in \text{ORD} \cap M = \text{ORD} \cap N.$
- Now define a function $g: \omega \to 2$ in N,

$$
g(k) = 1 \Longleftrightarrow (k \cup (\alpha + 1)) \in \delta_f
$$

$$
\Longleftrightarrow f(k) = 1.
$$

And so $f \in N$.

- Note that, in M, if $(k \cup (\alpha + 1)) \in \delta_f$ then $(k \cup (\alpha + 1)) \in (n \cup (\alpha + 1)) + f(n)$ for some *n*,
- But for $n \neq k$, $(k \cup (\alpha + 1)) \notin (n \cup (\alpha + 1)) + f(n)$.
- So $(k \cup (\alpha + 1)) \in (k \cup (\alpha + 1)) + f(k)$ and $f(k) = 1$.

[Ordinals](#page-1-0) **[Intuitionism](#page-3-0)** [Constructibility](#page-10-0) [Kripke Models](#page-21-0) [Non-Constructive Ordinals](#page-26-0) ΩŌ 00000 000000000 00000 00000 Could it all go wrong!?

Suppose that V is a model of IZF, $\mathbb{P} \in L$ a partial order and that there exists some set $\{\alpha_p : p \in \mathbb{P}\} \subseteq \mathcal{P}(1)$ such that for all $p,q\in \mathbb{P}$:³

- $\bullet \quad \alpha_p \neq 0$ (that is $\neg(\forall x \in \alpha_p \ (x \neq x))$),
- **2** If $p \neq q$ then $\alpha_p \neq \alpha_q$,

$$
\bullet \ \mathbf{L}_{\alpha_p} = \alpha_p.
$$

- Let $G \subseteq \mathbb{P}$ be generic.
- Classically, $G \notin L$ because forcing doesn't add ordinals and definability is absolute.
- **•** Intuitionistically, $L_{\alpha_p \cup \{\alpha_p\}} = 1 \cup \alpha_p \cup \{\alpha_p\}.$

$$
\bullet\ \mathsf{Define}\ \delta_{G}:=1\cup\{\alpha_{p}:p\in G\}
$$

 3 It is unclear how to make all three of these points simultaneously hold!

[Ordinals](#page-1-0) **[Intuitionism](#page-3-0)** [Constructibility](#page-10-0) [Kripke Models](#page-21-0) [Non-Constructive Ordinals](#page-26-0) \circ 00000 aaaaaaaaa 00000 00000 Could it all go wrong!?

Suppose that V is a model of IZF, $\mathbb{P} \in L$ a partial order and that there exists some set $\{\alpha_p : p \in \mathbb{P}\}\subseteq \mathcal{P}(1)$ such that for all $p,q\in \mathbb{P}$:³ $\bullet \quad \alpha_n \neq 0$ (that is $\neg(\forall x \in \alpha_n \ (x \neq x))$), **2** If $p \neq q$ then $\alpha_p \neq \alpha_q$, 3 $L_{\alpha_p} = \alpha_p$. $\mathcal{L}_{\delta_{\mathcal{G}}} = \bigcup_{\gamma \in \delta_{\mathcal{G}}} \mathcal{D}(\mathcal{L}_{\gamma}) = \mathcal{L}_1 \cup \bigcup_{\rho \in \mathcal{G}} \mathcal{D}(\mathcal{L}_{\alpha_{\rho}})$ $=\bigcup_{p\in G}1\cup\alpha_p\cup\{\alpha_p\}.$ **•** But $\alpha_p \in L_{\delta_G} \Longleftrightarrow p \in G$ Therefore, since $L_{\delta G}$, $\mathbb{P} \in L$,

$$
G = \{p \in \mathbb{P} : \alpha_p \in L_{\delta_G}\} \in L!
$$

 3 It is unclear how to make all three of these points simultaneously hold!

It is consistent to have a model of IZF such that

$\text{ORD} \cap V \neq \text{ORD} \cap L$.

Sketch.

The desired model will be $V(\mathcal{K})$ where

• K is the two node Kripke structure $\{1,\alpha\}$,

$$
\bullet \ \mathcal{D}(\mathbb{1})=\mathcal{D}(\alpha)=\mathcal{L}[c],
$$

- c is a Cohen real over L.
- *ι* is the identity.

$$
\mathcal{K} = \begin{bmatrix} \alpha & \mathbf{L}[c] \\ \mathbf{L}[c] & \mathbf{L}[c] \end{bmatrix}
$$

It is consistent to have a model of IZF such that

 $ORD \cap V \neq ORD \cap L$.

Sketch.

- Let c^p be the interpretation of c at node p
- Then $p \Vdash c^p \notin L$.
- \bullet So, $V(\mathcal{K}) \models c \notin L$.
- Let 1_α be the ordinal in $V(\mathscr K)$ which looks like 0 at 1 and 1 at *α*.

$$
1_\alpha: \mathcal{K} \to 2 \qquad 1_\alpha(\rho) = \begin{cases} 0, & \text{if } \rho = \mathbb{1} \\ 1, & \text{if } \rho = \alpha. \end{cases}
$$

• Then, in $V(\mathscr{K})$, $1_{\alpha} \subseteq 1$ and $L_{1_{\alpha}} = 1_{\alpha}$.

Sketch.

• Define δ_c to be an ordinal encoding c, for example,

$$
\delta_c = \bigcup_{n \in \omega} (\alpha \cup n) + c(n)
$$

= { $\alpha \cup n : c(n) = 0$ } \cup { $\alpha \cup n \cup \{\alpha \cup n\} : c(n) = 1$ }
= { $\alpha \cup n : n \in \omega$ } \cup { $\{\alpha \cup n\} : c(n) = 1$ }.

 \Box

- Then $c(n) = 1$ if and only if $(\alpha \cup n) \in \delta_c$,
- So, since $c \in L \Longleftrightarrow \delta_c \in L$,

$$
\bullet \ \delta_c \not\in \mathcal{L}.
$$

It is consistent with ZFC to have a model of $IZF + V = L$ plus a non-trivial automorphism of the universe.

Idea

Find a model of IZF with two non-zero ordinals $\alpha_p, \alpha_q \in \mathcal{P}(1)$ with $\alpha_{p} \neq \alpha_{q}$ which are *indistinguishable*.

Theorem

It is consistent with ZFC plus a measurable cardinal to have a model of IZF plus a non-trivial elementary embedding $i: V \to M$ and an ordinal *κ* such that

- *ω* ∈ *κ*,
- $\forall \alpha \in \kappa \; j(\alpha) = \alpha$,
- $\bullet \ \kappa \in i(\kappa)$,
- \bullet L_{κ} \models IZF,
- *κ* is a weak additive limit,
- $\bullet \omega + 1 \notin \kappa$.

The Model [Back](#page-24-0)

[Appendix](#page-35-1)

Suppose that $\mathscr K$ is a Kripke model and that for each node p, $\mathcal D(p)$ is a model of ZF. We shall simultaneously define the set of objects at p , $\mathrm{M}^p \coloneqq \bigcup_{\alpha} \mathrm{M}^p_{\alpha}$, inductively through the ordinals. So suppose that $\{ \mathrm{M}^\mathcal{P}_\beta : \mathcal{p} \in \mathcal{K} \}$ has been defined for each $\beta \in \alpha$ along with transition functions $k_{\bm{\rho},\bm{q}}: \mathrm{M}^{\bm{\rho}}_\beta \to \mathrm{M}^{\bm{q}}_\beta$ for each pair $\bm{\rho}\mathcal{R}\bm{q}.$ The objects of $\mathrm{M}^{\bm{\rho}}_\alpha$ are then the collection of functions \bm{g} such that

- $dom(g) = \mathcal{K}^p$,
- $g \upharpoonright \mathcal{K}^q \in \mathcal{D}(q)$,
- $g(q) \subseteq \bigcup_{\beta \in \alpha} M_{\beta}^q$,

If $h \in g(q)$ and $q\mathcal{R}r$ then $k_{q,r}(h) \in g(r)$.

Finally, extend $k_{p,q}$ to M^p_α by setting $k_{p,q}(g) := g \restriction K^q$. Then the objects at node p are $\bigcup_{\alpha} M_{\alpha}^{p}$.

We now define truth at node p for formulae by the following:

$$
\bullet \ p\Vdash g\in h \iff g\upharpoonright \mathcal{K}^p\in h(p),
$$

$$
\bullet \ \ p\Vdash g=h \iff g\upharpoonright \mathcal{K}^p=h\upharpoonright \mathcal{K}^p,
$$

• For logical connectives and quantifiers we use the rules for \mathbb{H} .