00 00000 0		
00 00000 0		

Ordinal Oddities

Richard Matthews

University of Leeds

Leeds - Ghent Virtual Logic Seminar

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
●0	00000	00000000	00000	
What is a	an Ordinal?			

 $\langle A, \prec \rangle$ is a well-ordering if it is a strict total order such that any non-empty subset X of A has an \prec -least element.

Definition

An Ordinal α is a transitive set which is well-ordered by \in . Let ORD denote the class of Ordinals.

Proposition

 α is an ordinal iff it is a transitive set of transitive sets.

Remark

Because \in is an order, we will often switch between \in and <.

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
○●	00000	000000000	00000	
Basic Pro	operties			

- If α is an ordinal then so is $\alpha + 1 \coloneqq \alpha \cup \{\alpha\}$,
- If X is a set of ordinals then $\bigcup X$ is an ordinal,

•
$$\beta < \alpha \Longrightarrow \beta + 1 \le \alpha$$
,

- For any ordinal α , $0 \in \alpha + 1$,
- Trichotomy: For any α, β , $\alpha = \beta$ or $\alpha \in \beta$ or $\beta \in \alpha$,
- Every non-empty set of ordinals has an \in -least element,
- Every ordinal is one of

• 0,
• A successor,
•
$$\alpha = \beta + 1$$

• An additive limit. $\forall \beta \in \alpha \ \beta + 1 \in \alpha$

00	00000	00000000	00000	00000		
Non-constructive Principles						

- (Law of Excluded Middle) $\varphi \lor \neg \varphi$
- (Double Negation Elimination) $\neg \neg \varphi \rightarrow \varphi$
- (Some Classical Logical Equivalences) $(\varphi \rightarrow \psi) \rightarrow (\neg \varphi \lor \psi)$
- Foundation: $\forall a (\exists x (x \in a) \rightarrow \exists x \in a \ \forall y \in a (y \notin x))$
- "Least elements" of sets
- Axiom of Choice / Well-Ordering Principle
- Definition by cases which differentiate between successor and limit ordinals

Remark

```
\neg \varphi \text{ is interpreted as } \varphi \rightarrow (0 = 1).
```

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	000000000	00000	
IZF				

Idea

 IZF is the theory ZF with intuitionistic logic instead of classical logic.

Definition (IZF)

- Extensionality
- Empty Set
- Power set

PairingUnions

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	0●000	000000000	00000	
IZF				

Pairing

Unions

Definition (IZF)

- Extensionality
- Empty Set
- Power set
- Set Induction (For any formula $\varphi(u)$, $\forall a(\forall x \in a \ \varphi(x) \rightarrow \varphi(a)) \rightarrow \forall a \ \varphi(a))$
- Collection (For any formula φ(u, v) and set a, ∀x ∈ a ∃y φ(x, y) → ∃b ∀x ∈ a ∃y ∈ b φ(x, y))
- Separation (For any formula $\varphi(u)$ and set a, $\{x \in a : \varphi(x)\}$ is a set)
- Strong Infinity $(\exists a (Ind(a) \land \forall b (Ind(b) \rightarrow \forall x \in a(x \in b))))^1$.

 1 Ind(a) $\equiv \emptyset \in a \land \forall x \in a \ (x \cup \{x\} \in a)$

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	000000000	00000	
IKP				

Definition (IKP^{-Inf})

- ExtensionalityEmpty SetUnions
- Set Induction (For any formula $\varphi(u)$, $\forall a(\forall x \in a \ \varphi(x) \rightarrow \varphi(a)) \rightarrow \forall a \ \varphi(a))$
- Bounded Collection (For any Σ₀ formula φ(u, v) and set a, ∀x ∈ a ∃y φ(x, y) → ∃b ∀x ∈ a ∃y ∈ b φ(x, y))
- Bounded Separation (For any Σ₀ formula φ(u) and set a, {x ∈ a : φ(x)} is a set)

Definition (IKP)

IKP is IKP^{-Inf} plus strong infinity.

Ordinary	Ordinal (Oddities		
Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	000●0	000000000	00000	

An ordinal is a transitive set of transitive sets.

Remarks

- If α is an ordinal then so is $\alpha + 1 := \alpha \cup \{\alpha\}$.
- If X is a set of ordinals then $\bigcup X$ is an ordinal.

•
$$\beta \in \alpha \not\Rightarrow \beta + 1 \in \alpha + 1.$$

• $\forall \alpha \ (0 \in \alpha + 1)$ implies excluded middle!

Trichotomy

- α is trichotomous $\forall \beta \in \alpha \ \forall \gamma \in \alpha \ (\beta \in \gamma \lor \beta = \gamma \lor \gamma \in \beta).$
- It is consistent with IZF that the collection of trichotomous ordinals is a set!

Ordinary	Ordinal ()ddities		
Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	00000000	00000	

An ordinal is a transitive set of transitive sets.

Remarks

- If α is an ordinal then so is $\alpha + 1 := \alpha \cup \{\alpha\}$.
- If X is a set of ordinals then $\bigcup X$ is an ordinal.

•
$$\beta \in \alpha \not\Rightarrow \beta + 1 \in \alpha + 1.$$

• $\forall \alpha \ (0 \in \alpha + 1)$ implies excluded middle!

Definition

An ordinal α is a *weak additive limit* if $\forall \beta \in \alpha \ \exists \gamma \in \alpha \ (\beta \in \gamma)$.

An ordinal α is a strong additive limit if $\forall \beta \in \alpha \ (\beta + 1 \in \alpha)$.

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	0000●	00000000	00000	
Truth Va	lues			

Given a formula $\varphi,$ an important ordinal is

$$\alpha_{\varphi} \coloneqq \{ \mathbf{0} \in \mathbf{1} : \varphi \}.$$

Naively, if we don't assume $\varphi \vee \neg \varphi$ then α_{φ} is neither 0 not 1. In general we let

$$\Omega \coloneqq \mathcal{P}(1) = \{x : x \subseteq 1\}$$

be the class of *truth values*.

If $\Omega=2$ then the Law of Excluded Middle holds.

Note that

$$\mathbf{0} \in \alpha_{\varphi} + \mathbf{1} \Longrightarrow \mathbf{0} \in \alpha_{\varphi} \lor \mathbf{0} = \alpha_{\varphi} \Longrightarrow \varphi \lor \neg \varphi.$$

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	●00000000	00000	
History				

- The constructible universe was developed by Gödel in papers published in 1939 and 1940 to show the consistency of the Axiom of Choice and the Generalised Continuum Hypothesis with ZF.
- $\bullet\,$ There are 2/3 main approaches to building $\rm L$ both of which are formalisable in $\rm KP{:}^2$
 - Syntactically as the set of definable subsets of *M* (See Devlin *Constructibility*)
 - Using Gödel functions (See Barwise Admissible Sets) or
 - Using Rudimentary Functions (See Gandy, Jensen, Mathias)
- The syntactic approach was then modified for IZF by Lubarsky (*Intuitionistic L* 1993)
- And then for IKP by Crosilla (*Realizability models for* constructive set theories with restricted induction 2000)

²In fact significantly weaker systems - see Mathias: *Weak Systems of Gandy, Jensen and Devlin,* 2006

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	o●ooooooo	00000	
Gödel I	Functions			

- $\mathcal{F}_p(x,y) \coloneqq \{x,y\},\$
- $\mathcal{F}_{\cap}(x,y) \coloneqq x \cap \bigcap y$
- $\mathcal{F}_{\cup}(x, y) \coloneqq \bigcup x$,
- $\mathcal{F}_{\setminus}(x,y) \coloneqq x \setminus y$,
- $\mathcal{F}_{\times}(x,y) := x \times y$,
- $\mathcal{F}_{\rightarrow}(x,y) \coloneqq x \cap \{z \in 2^{nd}(y) : y \text{ is an ordered pair} \land z \in 1^{st}(y)\},$
- $\mathcal{F}_{\forall}(x,y) \coloneqq \{x''\{z\} : z \in y\},$

 $(x'' u = \{v : v \in 2^{nd}(x) \land \langle u, v \rangle \in x\})$

 $(\cap y = \{u : \forall v \in y \ (u \in v)\})$

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	○●○○○○○○○	00000	
Gödel Fu	nctions			

- $\mathcal{F}_{dom}(x,y) \coloneqq dom(x) = \{1^{st}(z) : z \in x \land z \text{ is an ordered pair}\},\$
- $\mathcal{F}_{ran}(x,y) \coloneqq ran(x) = \{2^{nd}(z) : z \in x \land z \text{ is an ordered pair}\},\$
- $\mathcal{F}_{123}(x,y) := \{ \langle u, v, w \rangle : \langle u, v \rangle \in x \land w \in y \},$
- $\mathcal{F}_{132}(x,y) \coloneqq \{ \langle u, w, v \rangle : \langle u, v \rangle \in x \land w \in y \},$
- $\mathcal{F}_{=}(x,y) \coloneqq \{ \langle v, u \rangle \in y \times x : u = v \},$
- $\mathcal{F}_{\in}(x,y) \coloneqq \{ \langle v, u \rangle \in y \times x : u \in v \}.$

Notation

Let \mathcal{I} be the finite set indexing the above operations.

 Ordinals
 Intuitionism
 Constructibility
 Kripke Models
 Non-Constructive Ordinals

 00
 00000
 000000
 00000
 00000

Generating Constructible Sets

Lemma (Barwise: Admissible Sets, Lemma II.6.1, (M.))

For every Σ_0 formula $\varphi(v_1, \ldots, v_n)$ with free variables among v_1, \ldots, v_n , there is a term \mathcal{F}_{φ} built up from the Gödel functions such that

$$\mathrm{IKP} \vdash \mathcal{F}_{\varphi}(a_1, \ldots, a_n) = \{ \langle x_n, \ldots, x_1 \rangle \in a_n \times \ldots \times a_1 : \varphi(x_1, \ldots, x_n) \}.$$

Proof.

- Call a formula $\varphi(x_1, \ldots, x_n)$ a termed-formula or *t*-formula if there is a term \mathcal{F}_{φ} such that the conclusion of the lemma holds.
- Proceed by induction on Σ_0 formulae to show that every such formula is a t-formula.

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	000000000	00000	
Universal	S			

Suppose that $\psi(v_1, \ldots, v_{n+1})$ is a t-formula.

 $\mathcal{F}_{\psi}(\mathsf{a}_1,\ldots,\mathsf{a}_n,\mathsf{a}_{n+1}) = \{ \langle x_{n+1}, x_n, \ldots, x_1 \rangle \in \mathsf{a}_{n+1} \times \mathsf{a}_n \times \ldots \times \mathsf{a}_1 : \psi(x_1,\ldots,x_n,x_{n+1}) \}$

$\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_n,b) \equiv \forall \mathbf{v}_{n+1} \in b \ \psi(\mathbf{v}_1,\ldots,\mathbf{v}_{n+1}), \ b \notin \{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$

First note that
$$\mathcal{F}_{\forall}(\mathcal{F}_{\psi}(a_{1},...,a_{n},b),b) =$$

{ $ran(\mathcal{F}_{\psi}(a_{1},...,a_{n},\{z\})): z \in b$ }.
Therefore $\mathcal{F}_{\varphi}(a_{1},...,a_{n},b)$ can be expressed as
{ $\langle x_{n},...,x_{1} \rangle \in a_{n} \times ... \times a_{1}: \forall x_{n+1} \in b \ \psi(x_{1},...,x_{n})$ }
= $(a_{n} \times ... \times a_{1}) \cap$
{ $w: \forall x_{n+1} \in b \ \langle x_{n+1}, w \rangle \in \mathcal{F}_{\psi}(a_{1},...,a_{n},\{x_{n+1}\})$ }
= $(a_{n} \times ... \times a_{1}) \cap$
 $\bigcap \{ran(\mathcal{F}_{\psi}(a_{1},...,a_{n},\{x_{n+1}\})): x_{n+1} \in b$ }
= $\mathcal{F}_{\cap}(a_{n} \times ... \times a_{1}, \ \mathcal{F}_{\forall}(\mathcal{F}_{\psi}(a_{1},...,a_{n},b),b))$.

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	00000000	00000	
Universal	S			

Suppose that $\psi(v_1, \ldots, v_{n+1})$ is a t-formula.

 $\mathcal{F}_{\psi}(a_1,\ldots,a_n,a_{n+1}) = \{ \langle x_{n+1}, x_n, \ldots, x_1 \rangle \in a_{n+1} \times a_n \times \ldots \times a_1 : \psi(x_1,\ldots,x_n,x_{n+1}) \}$

$$\varphi(\mathbf{v}_1, \dots, \mathbf{v}_n, b) \equiv \forall \mathbf{v}_{n+1} \in b \ \psi(\mathbf{v}_1, \dots, \mathbf{v}_{n+1}), \ b \notin \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$$

Therefore $\mathcal{F}_{\varphi}(\mathbf{a}_1, \dots, \mathbf{a}_n, b)$ can be expressed as
 $\mathcal{F}_{\bigcap} \Big(\mathbf{a}_n \times \dots \times \mathbf{a}_1, \ \mathcal{F}_{\forall}(\mathcal{F}_{\psi}(\mathbf{a}_1, \dots, \mathbf{a}_n, b), b) \Big).$

$\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_n)\equiv\forall\mathbf{v}_{n+1}\in\mathbf{v}_j\ \psi(\mathbf{v}_1,\ldots,\mathbf{v}_{n+1})$

Let $\theta(v_1, \ldots, v_n, b) \equiv \forall v_{n+1} \in b \ (v_{n+1} \in v_j \rightarrow \psi(v_1, \ldots, v_{n+1}))$ which is a t-formula. Then

$$\{ \langle x_n, \ldots, x_1 \rangle \in a_n \times \ldots \times a_1 : \forall x_{n+1} \in x_j \ \psi(x_1, \ldots, x_{n+1}) \}$$

= $\{ \langle x_n, \ldots, x_1 \rangle \in a_n \times \ldots \times a_1 : \theta(x_1, \ldots, x_n, \bigcup a_j) \}.$

	1.0			
		00000000		
Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals

Bounded Separation

Theorem (Barwise: Corollary 6.2)

For any Σ_0 formula $\varphi(v_1, \ldots, v_n)$ with free variables among $v_1, \ldots v_n$ there is a term \mathcal{F}_{φ} of n arguments built from the Gödel functions such that:

$$\begin{aligned} \text{IKP}^{-lnf} \vdash \mathcal{F}_{\varphi}(\mathbf{a}, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) \\ &= \{x_i \in \mathbf{a} : \varphi(x_1, \dots, x_n)\}. \end{aligned}$$

Proof.

- Let \mathcal{F}_{φ} be such that IKP^{-Inf} deduces that $\mathcal{F}_{\varphi}(a_1, \ldots, a_n) = \{ \langle x_n, \ldots, x_1 \rangle \in a_n \times \ldots \times a_1 : \varphi(x_1, \ldots, x_n) \}$
- Then our required set can be built from

$$\mathcal{F}_{\varphi}(\{x_1\},\ldots,\{x_{i-1}\},a_i,\{x_{i+1}\},\ldots,\{x_n\})$$

by using $\mathcal{F}_{ran} n - i$ times and then \mathcal{F}_{dom} .

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	000000000	00000	
L				

For a set
$$b$$
, $\mathcal{D}(b) \coloneqq b \cup \{\mathcal{F}_i(x, y) : x, y \in b \land i \in \mathcal{I}\}.$

Definition

For
$$\alpha$$
 an ordinal, $L_{\alpha} \coloneqq \bigcup_{\beta \in \alpha} \mathcal{D}(L_{\beta} \cup \{L_{\beta}\}).$

$$\mathbf{L} \coloneqq \bigcup_{\alpha} \mathbf{L}_{\alpha}.$$

Definition (Assuming Strong Infinity)

For a set b, $\operatorname{Def}(b) \coloneqq \bigcup_{n \in \omega} \mathcal{D}^n(b \cup \{b\})$. For α an ordinal, $\mathcal{L}_{\alpha} \coloneqq \bigcup_{\beta \in \alpha} \operatorname{Def}(\mathcal{L}_{\beta})$ $\operatorname{L} \coloneqq \bigcup_{\alpha} \mathcal{L}_{\alpha}.$

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals	
00	00000	000000000	00000		
The Axioms of L					

Proposition (IKP)

For all ordinals α, β :

$$If \beta \in \alpha \ then \ L_{\beta} \subseteq L_{\alpha} \ and \ \mathcal{L}_{\beta} \subseteq \mathcal{L}_{\alpha},$$

2
$$\mathrm{L}_lpha \in \mathrm{L}_{lpha+1}$$
 and $\mathcal{L}_lpha \in \mathcal{L}_{lpha+1}$,

(a) \mathcal{L}_{α} is a transitive model of Σ_0 separation,

Theorem

For every axiom, φ , of IKP^{-Inf}, IKP^{-Inf} $\vdash \varphi^{L}$. Moreover, IKP^{-Inf} + "strong infinity" \vdash (strong infinity)^L.

Theorem

For every axiom, φ , of IZF, IZF $\vdash \varphi^{L}$.

 Ordinals
 Intuitionism
 Constructibility
 Kripke Models
 Non-Constructive Ordinals

 00
 000000000
 000000
 000000
 000000

Axiom of Constructibility

We want to prove that $(V = L)^L$. But, $L = \bigcup_{\alpha \in ORD \cap V} L_{\alpha}$ and we don't know if $ORD \cap L = ORD \cap V$. However, $(V = L)^L$ will be immediate from the following:

Lemma (Lubarsky)

For every ordinal α there is an ordinal $\alpha^* \in L$ such that $L_{\alpha} = L_{\alpha^*}$

Definition (Hereditary Addition)

For ordinals α and $\gamma,$ $\mathit{hereditary}$ addition is defined inductively on α as

$$\alpha +_{H} \gamma \coloneqq \left(\bigcup \{ \beta +_{H} \gamma : \beta \in \alpha \} \cup \{ \alpha \} \right) + \gamma$$

where "+" is the usual ordinal addition. Also

$$(\alpha +_H \gamma)^- \coloneqq \left(\bigcup \{ \beta +_H \gamma : \beta \in \alpha \} \cup \{ \alpha \} \right)$$

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	00000000	00000	
α^*				

Lemma (Lubarsky)

For every ordinal α there is an ordinal $\alpha^* \in L$ such that $L_{\alpha} = L_{\alpha^*}$

Proof.

- Proof by induction on α .
- Fix $k \in \omega$ such that for all ordinals α and τ ,

$$\{\gamma \in L_{\tau} : \mathcal{D}(L_{\gamma} \cup \{L_{\gamma}\}) \subseteq L_{\alpha}\} \in L_{\tau+k}.$$

- $\alpha^* := \{\gamma \in \mathcal{L}_{(\alpha+_Hk)^-} : \mathcal{D}(\mathcal{L}_{\gamma} \cup \{\mathcal{L}_{\gamma}\}) \subseteq \mathcal{L}_{\alpha}\} \in \mathcal{L}_{\alpha+_Hk}.$
- Claim: If $\beta \in \alpha$ then $\beta^* \in \alpha^*$.
- Therefore $L_{\alpha} = \bigcup_{\beta \in \alpha} \mathcal{D}(L_{\beta} \cup \{L_{\beta}\}) = \bigcup_{\beta \in \alpha} \mathcal{D}(L_{\beta^{*}} \cup \{L_{\beta^{*}}\})$ $\subseteq \bigcup_{\gamma \in \alpha^{*}} \mathcal{D}(L_{\gamma} \cup \{L_{\gamma}\}) = L_{\alpha^{*}}.$

A Kripke model is a collection of "*possible worlds*" along with a binary relation which gives us some information as to how the worlds are related to one another.

Alternatively, a Kripke model is a collection of "states of knowledge" and p is related to qindicates that if we know p then it is possible that we shall know q at a later stage.

00	00000	00000000	0000	00000
Kripke	Models			

A Kripke model is an ordered quadruple $\mathscr{K} = \langle \mathcal{K}, \mathcal{R}, \mathcal{D}, \iota \rangle$ where

- \mathcal{K} is a non-empty set of "nodes",
- \mathcal{D} is a function on \mathcal{K} ,
- ${\mathcal R}$ is a binary, reflexive relation between elements of ${\mathcal K}$,

• ι is a set of functions $\iota_{p,q}$ for each pair $p, q \in \mathcal{K}$ with $p\mathcal{R}q$ such that the following hold.

- For each $p \in \mathcal{K}$, $\mathcal{D}(p)$ is an inhabited class structure.
- If $p\mathcal{R}q$ then $\iota_{p,q} \colon \mathcal{D}(p) \to \mathcal{D}(q)$ is a homomorphism.
- If $p\mathcal{R}q$ and $q\mathcal{R}r$ then $\iota_{p,r} = \iota_{q,r} \circ \iota_{p,q}$.

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	000000000	00●00	
Forcing(is	sh)			

Now, for atomic formulae φ , let $p \Vdash \varphi$ denote that $\mathcal{D}(p) \models \varphi$. Then \Vdash can be extended to arbitrary formulae by the following prescription:

- For no p do we have $p \Vdash \perp$,
- $p \Vdash \varphi \land \psi$ iff $p \Vdash \varphi$ and $p \Vdash \psi$,

•
$$p \Vdash \varphi \lor \psi$$
 iff $p \Vdash \varphi$ or $p \Vdash \psi$,

- $p \Vdash \varphi \rightarrow \psi$ iff for any $r \in \mathcal{K}$ with $p\mathcal{R}r$, if $r \Vdash \varphi$ then $r \Vdash \psi$,
- $p \Vdash \forall x \ \varphi(x)$ iff whenever $p\mathcal{R}q$ and $d \in \mathcal{D}(q)$, $q \Vdash \varphi(d)$,
- $p \Vdash \exists x \ \varphi(x)$ iff there is some $d \in \mathcal{D}(p)$ such that $p \Vdash \varphi(d)$.

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	000000000	000●0	
Validity				

Let $\mathscr{K} = \langle \mathcal{K}, \mathcal{R}, \mathcal{D}, \iota \rangle$ be a Kripke model and $p \in \mathcal{K}$.

- A formula φ is said to be *valid at p* iff $p \Vdash \varphi$.
- A formula φ is valid in the full Kripke model, written ℋ ⊨ φ, if for every p ∈ K, p ⊨ φ.

Fact (Hendtlass, Lubarsky)

It is possible to add a model structure to $\mathscr{K},\,\mathrm{V}(\mathscr{K})$ such that

$$\mathbf{V}(\mathscr{K})\models\varphi\Longleftrightarrow\forall\boldsymbol{p}\in\mathcal{K}\ \boldsymbol{p}\Vdash\varphi.$$

Theorem (Hendtlass, Lubarsky)

If for each $p, q \in \mathcal{K}$, $\mathcal{D}(p) \models \operatorname{ZF}$ and $\operatorname{ORD} \cap \mathcal{D}(p) = \operatorname{ORD} \cap \mathcal{D}(q)$, then $\operatorname{V}(\mathscr{K}) \models \operatorname{IZF}$.

00	00000		00000	00000
Interpr	eting the in	itial node		

Let $\mathscr{K} = \langle \mathcal{K}, \mathcal{R}, \mathcal{D}, \iota \rangle$ be a Kripke model.

Definition

Define \mathscr{K}^p to be the *truncation* of the Kripke model to $\mathcal{K}^p := \{q \in \mathcal{K} : p\mathcal{R}q\}$. So \mathcal{K}^p is the cone of nodes which are related to p.

Fact

Given $p \in \mathcal{K}$ and $x \in \mathcal{D}(p)$ we can define an interpretation x^p such that if $p\mathcal{R}q$ then $q \Vdash x^p = x^q$.

This gives us a way to talk about the past worlds in the current one.

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	00000000	00000	●0000
Same O	rdinals, Sa	me Reals		

Suppose that $N \subseteq M$ are models of IZF such that N satisfies the following weak incidence of excluded middle:

for any set $\{a_n : n \in \omega\}$ of distinct sets, if we have x such that $x \in \bigcup_n a_n$ and for some $k, x \notin \bigcup_{n \neq k} a_n$ then $x \in a_k$.

Further suppose that in N there is an ordinal α such that $\alpha \notin \omega$ and $\omega \not\subseteq \alpha$. Then

$$ORD \cap M = ORD \cap N \Longrightarrow (^{\omega}2)^M = (^{\omega}2)^N.$$

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	000000000	00000	○●○○○
The Pro	of			

$$ORD \cap M = ORD \cap N \Longrightarrow (^{\omega}2)^M = (^{\omega}2)^N$$

- Fix $\alpha \in N$ such that $\alpha \not\in \omega$ and $\omega \not\subseteq \alpha$,
- Note that this is also true in M.
- Also, $(\alpha + 1) \not\subseteq \omega$
- So, {n ∪ (α + 1) : n ∈ ω} is a set of ω many pairwise incomparable ordinals.
- i.e. If $m \neq n$ then $m \cup (\alpha + 1) \notin n \cup (\alpha + 1)$.
- For $f \in ({}^\omega 2)^{\mathrm{M}}$ define

$$\delta_f := \bigcup_{n \in \omega} [(n \cup (\alpha + 1)) + f(n)].$$

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
00	00000	00000000	00000	○●○○○
The Pro	of			

$$ORD \cap M = ORD \cap N \Longrightarrow (^{\omega}2)^M = (^{\omega}2)^N$$

•
$$\delta_f := \bigcup_{n \in \omega} [(n \cup (\alpha + 1)) + f(n)] \in \text{ORD} \cap M = \text{ORD} \cap N.$$

• Now define a function $g: \omega \rightarrow 2$ in N,

$$egin{aligned} g(k) &= 1 \Longleftrightarrow (k \cup (lpha + 1)) \in \delta_f \ & \Longleftrightarrow f(k) &= 1. \end{aligned}$$

And so $f \in \mathbb{N}$.

- Note that, in M, if $(k \cup (\alpha + 1)) \in \delta_f$ then $(k \cup (\alpha + 1)) \in (n \cup (\alpha + 1)) + f(n)$ for some n,
- But for $n \neq k$, $(k \cup (\alpha + 1)) \notin (n \cup (\alpha + 1)) + f(n)$,
- So $(k \cup (\alpha + 1)) \in (k \cup (\alpha + 1)) + f(k)$ and f(k) = 1.

 Ordinals
 Intuitionism
 Constructibility
 Kripke Models
 Non-Constructive Ordinals

 00
 00000
 00000
 00000
 00000

 Could it all go wrong!?

Suppose that V is a model of IZF, $\mathbb{P} \in L$ a partial order and that there exists some set $\{\alpha_p : p \in \mathbb{P}\} \subseteq \mathcal{P}(1)$ such that for all $p, q \in \mathbb{P}$:³

- 2 If $p \neq q$ then $\alpha_p \neq \alpha_q$,

- Let $G \subseteq \mathbb{P}$ be generic.
- Classically, $G \notin L$ because forcing doesn't add ordinals and *definability* is absolute.
- Intuitionistically, $L_{\alpha_p \cup \{\alpha_p\}} = 1 \cup \alpha_p \cup \{\alpha_p\}.$

• Define
$$\delta_{\mathcal{G}} := 1 \cup \{ \alpha_{p} : p \in \mathcal{G} \}$$

³It is unclear how to make all three of these points simultaneously hold!

 Ordinals
 Intuitionism
 Constructibility
 Kripke Models
 Non-Constructive Ordinals

 00
 00000
 00000
 00000
 00000

Suppose that V is a model of IZF, $\mathbb{P} \in L$ a partial order and that there exists some set $\{\alpha_p : p \in \mathbb{P}\} \subseteq \mathcal{P}(1)$ such that for all $p, q \in \mathbb{P}^{3}$ **1** $\alpha_n \neq 0$ (that is $\neg(\forall x \in \alpha_n \ (x \neq x))$), 2 If $p \neq q$ then $\alpha_p \neq \alpha_q$, $L_{\alpha_p} = \alpha_p.$ • $L_{\delta_G} = \bigcup_{\gamma \in \delta_C} \mathcal{D}(L_{\gamma}) = L_1 \cup \bigcup_{p \in G} \mathcal{D}(L_{\alpha_p})$ $=\bigcup_{p\in G}1\cup\alpha_p\cup\{\alpha_p\}.$ • But $\alpha_p \in L_{\delta_C} \iff p \in G$

• Therefore, since $L_{\delta_{\mathcal{G}}}, \mathbb{P} \in L$,

$$G = \{ p \in \mathbb{P} : \alpha_p \in \mathcal{L}_{\delta_G} \} \in \mathcal{L}!$$

³It is unclear how to make all three of these points simultaneously hold!

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
				00000

It is consistent to have a model of IZF such that

$\mathrm{Ord}\cap \mathrm{V}\neq\mathrm{Ord}\cap\mathrm{L}.$

Sketch.

The desired model will be $V(\mathcal{K})$ where

• ${\cal K}$ is the two node Kripke structure $\{\mathbbm{1},\alpha\}$,

•
$$\mathcal{D}(\mathbb{1}) = \mathcal{D}(\alpha) = L[c],$$

- c is a Cohen real over L,
- ι is the identity.

$$\mathcal{K} = \begin{bmatrix} \alpha \bullet & \mathbf{L}[c] \\ \\ \mathbf{I} \bullet & \mathbf{L}[c] \end{bmatrix}$$

Ordinals	Intuitionism	Constructibility	Kripke Models	Non-Constructive Ordinals
				00000

It is consistent to have a model of IZF such that

 $\mathrm{Ord} \cap \mathrm{V} \neq \mathrm{Ord} \cap \mathrm{L}.$

Sketch.

- Let c^p be the interpretation of c at node p
- Then $p \Vdash c^p \notin L$.
- So, $V(\mathscr{K}) \models c \notin L$.
- Let 1_{α} be the ordinal in $V(\mathscr{K})$ which looks like 0 at 1 and 1 at α .

$$1_{lpha}:\mathcal{K} o 2 \qquad 1_{lpha}(p)=egin{cases} 0, & ext{if } p=1\ 1, & ext{if } p=lpha. \end{cases}$$

• Then, in $V(\mathscr{K})$, $1_{\alpha} \subseteq 1$ and $L_{1_{\alpha}} = 1_{\alpha}$.

Sketch.

• Define δ_c to be an ordinal encoding c, for example,

$$\begin{aligned} \delta_c &= \bigcup_{n \in \omega} (\alpha \cup n) + c(n) \\ &= \{\alpha \cup n : c(n) = 0\} \cup \{\alpha \cup n \cup \{\alpha \cup n\} : c(n) = 1\} \\ &= \{\alpha \cup n : n \in \omega\} \cup \{\{\alpha \cup n\} : c(n) = 1\}. \end{aligned}$$

- Then c(n) = 1 if and only if $(\alpha \cup n) \in \delta_c$,
- So, since $c \in L \iff \delta_c \in L$,
- $\delta_c \notin L$.

00	00000	000000000	00000	
Oudinala	Instructed and a sec	Constructibility	Kuimba Madala	Nam Construction Ordinals

Juu Urumais

It is consistent with $\rm ZFC$ to have a model of $\rm IZF+V=L$ plus a non-trivial automorphism of the universe.

Idea

Find a model of IZF with two non-zero ordinals $\alpha_p, \alpha_q \in \mathcal{P}(1)$ with $\alpha_p \neq \alpha_q$ which are *indistinguishable*.

Theorem

It is consistent with ZFC plus a measurable cardinal to have a model of IZF plus a non-trivial elementary embedding $j: V \to M$ and an ordinal κ such that

- $\omega \in \kappa$,
- $\forall \alpha \in \kappa \ j(\alpha) = \alpha$,
- $\kappa \in j(\kappa)$,

- $L_{\kappa} \models IZF$,
- κ is a weak additive limit,
- $\omega + 1 \notin \kappa$.

The Model Back

Appendix

Suppose that \mathscr{K} is a Kripke model and that for each node p, $\mathcal{D}(p)$ is a model of ZF. We shall simultaneously define the set of objects at p, $M^{p} := \bigcup_{\alpha} M^{p}_{\alpha}$, inductively through the ordinals. So suppose that $\{M^{p}_{\beta} : p \in \mathcal{K}\}$ has been defined for each $\beta \in \alpha$ along with transition functions $k_{p,q} : M^{p}_{\beta} \to M^{q}_{\beta}$ for each pair $p\mathcal{R}q$. The objects of M^{p}_{α} are then the collection of functions g such that

- $\operatorname{dom}(g) = \mathcal{K}^p$,
- $g \upharpoonright \mathcal{K}^q \in \mathcal{D}(q)$,
- $g(q) \subseteq \bigcup_{\beta \in \alpha} \mathcal{M}_{\beta}^{q}$,

• If $h \in g(q)$ and $q \mathcal{R}r$ then $k_{q,r}(h) \in g(r)$.

Finally, extend $k_{p,q}$ to \mathcal{M}^p_{α} by setting $k_{p,q}(g) \coloneqq g \upharpoonright \mathcal{K}^q$. Then the objects at node p are $\bigcup_{\alpha} \mathcal{M}^p_{\alpha}$.

We now define truth at node p for formulae by the following:

•
$$p \Vdash g \in h \iff g \upharpoonright \mathcal{K}^p \in h(p),$$

•
$$p \Vdash g = h \iff g \upharpoonright \mathcal{K}^p = h \upharpoonright \mathcal{K}^p$$
,

• For logical connectives and quantifiers we use the rules for *⊢*.