Introduction 0000 Big Classes

Attempt 000 Formalising 00000000000000 Respect

References

Big Classes and the Respected Model

Richard Matthews

University of Leeds

R.M.A.Matthews@leeds.ac.uk

Leeds-Ghent Logic Seminar

Under ZF without Replacement the following three principles are equivalent:

- The Reflection Principle ("any formula reflects to a transitive set.")
- The Collection Scheme $(\forall x \in a \; \exists y \; \varphi(x,y) \to \exists b \forall x \in a \exists y \in b \varphi(x,y))$
- The Replacement Scheme. $(\forall x \in a \exists ! y \ \varphi(x, y) \rightarrow \exists b \forall x \in a \exists y \in b \varphi(x, y))$

However, without Power Set the reverse implications break down.

Definition 1

Let \mathbf{ZF}^{\perp} denote the theory consisting of the following axioms:

- Empty set, Extensionality, Pairing, Unions, Infinity,
- the Foundation Scheme, the Separation Scheme,
- the Replacement Scheme.

Introduction ○●○○	Big Classes	Attempt 000	Formalising 0000000000000	Respect 0000000	References
ZFC wit	thout Powe	er Set 1			

Definition 2

- ZF⁻ denotes the theory ZF⁻ plus the Collection Scheme.
- ZFC⁻ denotes the theory ZF⁻ plus the Well-Ordering Principle.
- $\operatorname{ZFC}_{Ref}^-$ denotes the theory ZFC^- plus the Reflection Principle.

Remarks

- For μ regular, $H_{\mu} \models ZFC_{Ref}^{-}$.
- Models of ZFC- can behave very counter-intuitively.

¹See What is the Theory ZFC without Power Set? by Gitman, Hamkins and Johnstone.

Introduction Big Classes Attempt Formalising Respect References Going wrong without Collection¹

Any of the following can occur in ZFC– models:

- ω_1 exists and is singular,
- ω_1 exists and every set of reals is countable,
- For every n ∈ ω there is a set of reals of size ℵ_n but none of size ℵ_ω,
- The Łoś ultrapower theorem fails,
- Gaifman's Theorem fails (there is a cofinal, Σ_1 -elementary map $j: M \to N$ which is not fully elementary),
- The class of Σ_1 formulas is not closed under bounded quantification (i.e. φ is Σ_1 but $\forall x \in a \varphi$ is not).

Conclusion

All of these problems go away if we also assume Collection. So ZFC^- is the "*correct*" way to state ZFC without Power Set.

¹See What is the Theory ZFC without Power Set? by Gitman, Hamkins and Johnstone.

Introduction	Big Classes	Attempt	Formalising	Respect	References
000●	00000000	000	0000000000000	0000000	
Big Classe	es				

Definition

A proper class A is called Big if for every non-zero ordinal α there is a surjection of A onto α .

Proposition 3

Over ZFC-, if $j: V \to M$ is elementary and if $j \upharpoonright (C \cup \{C\})$ is the identity then C does not surject onto $\operatorname{crit}(j)$.

Corollary 4

Over ZFC-, if $j: V \to M$ is elementary, $\mathcal{P}(\omega)$ is not big.

Proposition 5

In ZF every proper class is big.

Proposition 6

In ZF every proper class is big.

Proof.

• Given a proper class \mathcal{C} , define

$$S \coloneqq \{ \gamma \in \operatorname{Ord} | \, \exists x \in \mathcal{C} \, \operatorname{rank}(x) = \gamma \}.$$

- S must be unbounded in the ordinals.
- So, given an ordinal α , we can take the first α many elements of S, $\{\gamma_{\beta} | \beta \in \alpha\}$.

• Then
$$f(x) = \begin{cases} \beta, & \text{if } \operatorname{rank}(x) = \gamma_{\beta} \\ 0, & otherwise \end{cases}$$

defines a surjection of \mathcal{C} onto α .

Introduction	Big Classes	Attempt	Formalising	Respect	References
0000	○●○○○○○○	000	0000000000000	0000000	
Easy Exa	ample 2				

Proposition 7

 $L_{\aleph_{\omega}^{L}}$ is a model of KP containing a proper class which is not big.

- Every cardinal is admissible, and therefore $L_{\aleph_{\omega}^{L}} \models KP$,
- Externally, $CARD = \{\aleph_n^L | n \in \omega\}$ has cardinality ω ,
- So CARD does not surject onto \aleph_1^L in L,
- So there can be no surjection in $L_{\aleph_{\omega}^{L}}$.

Introduction	Big Classes	Attempt	Formalising	Respect	References
0000	00●00000	000	0000000000000	0000000	
Easy Exa	amples 3				

Theorem 8 (Gitman, Hamkins, Johnstone)

Suppose that $V \models ZFC$, κ is a regular cardinal with $2^{\omega} < \aleph_{\kappa}$ and that $G \subseteq Add(\omega, \aleph_{\kappa})$ is V-generic. If $W = \bigcup_{\gamma < \kappa} V[G_{\gamma}]$ where $G_{\gamma} = G \cap Add(\omega, \aleph_{\gamma})$, (that is G_{γ} is the first \aleph_{γ} many of the Cohen reals added by G) then $W \models ZFC^-$ has the same cardinals as V and the DC_{α} -Scheme holds in W for all $\alpha < \kappa$, but the DC_{κ} -Scheme and the Collection Scheme fail.

- $\mathcal{V} \subseteq \mathcal{W} \subseteq \mathcal{V}[G]$ all have the same cardinals.
- In V[G], $2^{\omega} = \aleph_{\kappa}$.
- Therefore there is no surjection of $\mathcal{P}(\omega)$ onto $\aleph_{\kappa+1}$.
- Hence there is no such surjection in W.
- *P*(ω) ∩ W is a proper class in W, so W is a model of ZFCwith a proper class that is not big.

Introduction	Big Classes	Attempt	Formalising	Respect	References
0000	000●0000	000	0000000000000	0000000	
Depender	nt Choice				

Definition 9

For μ an infinite cardinal, the DC_{μ} -Scheme is the assertion that any (definable class) tree of height μ , which has no maximal element and is closed under sequences of length μ has a branch of order type μ .

Notation

For $\mu = \aleph_0$, the above is called the DC-Scheme.

Consequences of DC in ZF:

- Baire Category Theorem (equivalent to DC),
- Downward Löwenheim-Skolem Theorem (equivalent to DC),
- Axiom of Choice for countable families,
- Every infinite set has a countably infinite subset,
- \aleph_1 is regular.

Introduction	Big Classes	Attempt	Formalising	Respect	References
0000	0000●000	000	0000000000000	0000000	
Reflection					

Theorem 10 (Gitman, Hamkins and Johnstone)

Over ZFC^- , the $\operatorname{DC}_{\aleph_0}$ -Scheme is equivalent to the Reflection Principle.

Theorem 11 (Friedman, Gitman and Kanovei)

The Reflection Principle is not provable in ZFC^- .

Proposition 12 (M.)

Suppose that $V \models ZF^- + DC_{\mu}$ for μ an infinite cardinal. Then for any proper class C, which is definable over V, there is a subset b of C of cardinality μ .

Proposition 13 (M.)

Suppose that $V \models ZF^- + DC_{\mu}$ for μ an infinite cardinal. Then for any proper class C, which is definable over V, there is a subset b of C of cardinality μ .

Corollary 14

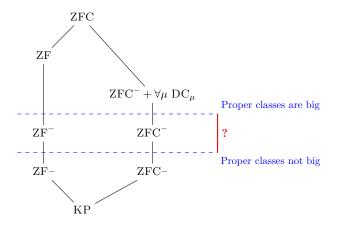
If $V \models ZF^- + DC_{\mu}$, for every cardinal μ , then every proper class is big.

Corollary 15

Over $V \models ZF^- + DC_{\mu}$ for every cardinal μ , $j: V \to M$ is an elementary embedding then both $\mathcal{P}(\omega)$ and $V_{\operatorname{crit}(j)}$ are sets.

 Introduction
 Big Classes
 Attempt
 Formalising
 Respect
 References

 Big Classes Summary



Question

Is every proper class big in $ZF(C)^{-2}$?

Introduction 0000	Big Classes 0000000●	Attempt 000	Formalising 0000000000000	Respect 0000000	References
Spoiler .					
Questio	on				

Is every proper class big in ZFC^- ?

Answer (Joint with V. Gitman)	Answer
No!	

...But we are not going to talk about that ...

 \dots Instead we will see a failed attempt \dots

- Start with a model M of ZFC.
- Consider the forcing $\mathbb{P} = \text{Add}(\omega, \text{ORD} \times \omega)$ to add ORD many ω blocks of Cohen reals.
- Let $G \subseteq \mathbb{P}$ be generic. Then $M[G] \models ZFC^-$.
- Take the symmetric model N such that the blocks form an amorphous proper class.¹

Assertion 16

N is a model of ZF^- with an infinite class which doesn't surject onto ω .

¹That is an infinite class A such that for any subclass B either B or $A \setminus B$ is finite.

Introduction	Big Classes	Attempt	Formalising	Respect	References
0000	00000000	0●0	0000000000000	0000000	
A Contra	diction				

Theorem 17

Suppose that $\langle N, A \rangle$ satisfies;

O N models ZF- in the language with a predicate for A,

 $\ \, {\bf @} \ \, A \subseteq {\bf N} \ \, and \ \, \langle {\bf N}, A \rangle \models "A \ \, is \ \, a \ \, proper \ class",$

● $\langle N, A \rangle \models$ "if $B \subseteq A$ is infinite then B is a proper class".

Then the Collection Scheme fails in $\langle N, A \rangle$. In fact, $\langle N, A \rangle$ does not have a cumulative hierarchy and therefore the Power Set also fails.

To prove that the Collection Scheme fails consider the sentence

$$\forall n \in \omega \; \exists y \; (|y| = n \; \land \; y \subseteq A).$$

Introduction Big Classes Attempt Formalising Respect References What Does this mean?

- Suppose that $M \models ZF^-$.
- A class forcing $\mathbb{P} \in \mathcal{M}$ is *pretame* if for any \mathbb{P} -generic G, $\mathcal{M}[G] \models \mathbb{Z}F^-$.
- Adding ORD many Cohen reals is pretame.
- But the Collection Scheme failed in N.
- Therefore the symmetric submodel of a pretame class forcing need not preserve the Collection Scheme.

Remarks

- In fact, it is unclear what the symmetric submodel actually satisfies!
- In Gitik's model where every cardinal in singular, the forcing is pretame (and Power Set fails) but the symmetric submodel satisfies ZF!

There are two sorts: sets (e.g. x, y, z, ...) and classes (e.g. A, B, C, ...).

Use separate variables and quantifiers for sets and classes.

Convention

A model of a second-order theory will be a triple $\mathscr{V}=\langle V,\in,\mathcal{C}\rangle$ where

- V consists of the sets,
- \mathcal{C} consists of the classes,
- Every set is a class (i.e. $V \subseteq C$),
- Classes are made up of sets (i.e. for every $C \in \mathcal{C}, C \subseteq V$).

Definition 18 (GB)

The axioms of GB are:

- Set axioms: $V \models ZF$,
- Class Replacement: If F is a function and a is a set then $F \upharpoonright a$ is a set,
- **③** First-Order Comprehension: If $\varphi(x, A)$ is a first-order formula then $\{x \mid \varphi(x, A)\}$ is a class.

Example

If $\langle M, \in \rangle$ is a model of ZF and def(M) is the collection of definable subsets of M then $\langle M, \in, \operatorname{def}(M) \rangle \models \operatorname{GB}$.

Introduction	Big Classes	Attempt	Formalising	Respect	References
0000	00000000	000	00●0000000000	0000000	
More Th	eories				

Definition 19

GBC is GB plus *set choice* (every set can be well-ordered), GBC is GB plus *Global Choice* (there is a bijection $F: V \rightarrow ORD$).

Definition 20

KM is GBC plus Second-Order Comprehension: If $\varphi(x, A)$ is a second-order formula then $\{x | \varphi(x, A)\}$ is a class.

Theorem 21

KM implies the consistency of ZFC. If κ is inaccessible then $\langle V_{\kappa}, \in, \mathcal{P}(V_{\kappa}) \rangle \models \text{KM}$.

Introduction Big Classes Attempt Formalising Respect References Class Forcing

- Let $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle$ be a model of GB.
- A class forcing is a partial order \mathbb{P} such that $\mathbb{P} \in \mathcal{C}$.
- G is \mathscr{V} -generic for \mathbb{P} if it meets every dense subclass $D \in \mathcal{C}$ of \mathbb{P} .
- In which case, the forcing extension is $\mathscr{V}[G] = \langle V[G], \in, \mathcal{C}[G] \rangle.$
- For the extension to be defined \mathbb{P} needs to satisfy the *forcing theorem* which consists of 2 lemmas:
 - *truth:* Anything true in the generic extension is forced to be true by an element in the generic.
 - ② definability: The forcing relation ⊢ is definable in the ground model.
- Warning: In class forcing, the forcing theorem may fail, even for atomic formulas!

The Forcing Theorem

Theorem 22 (Holy, Krapf, Lücke, Njegomir, Schlicht)

Let M be a countable transitive model of GB. Then there is a partial order \mathbb{P} , which is definable over M and does not satisfy the forcing theorem for atomic formulae over M.

Theorem 23 (Holy, Krapf, Lücke, Njegomir, Schlicht)

If \mathbb{P} satisfies the definability lemma for either " $u \in v$ " or "u = v" then \mathbb{P} satisfies the forcing theorem for all (\mathcal{L}_{\in}) -formulas over M.

Definition 24 (Stanley / Friedman)

Let $\mathscr{V} \models \mathrm{GB}^-$. A forcing \mathbb{P} is said to be *pretame* if for every generic $G, \mathscr{V}[G] \models \mathrm{GB}^-$. Let $\mathscr{V} \models \mathrm{GB}$. A forcing \mathbb{P} is said to be *tame* if for every generic $G, \mathscr{V}[G] \models \mathrm{GB}$.

Introduction 0000	Big Classes	Attempt 000	Formalising 00000€0000000	Respect 0000000	References
Pretame	ness				

Remarks

- If $\mathbb P$ is pretame then it satisfies the forcing theorem.
- \mathbb{P} is pretame if and only if $\mathscr{V}[G] \models \text{GB-}$.
- Both pretamesss and tameness can be formally defined by those forcings which satisfy a combinatorial property.

Formalisation

- Tame Forcing
 - Forcing GCH to fail / hold at every regular cardinal,
 - Making all supercompact cardinals Laver indestructible,
 - Adding a global well-order.
- Pretame Forcing
 - Adding ORD many Cohen reals $(Add(\omega, ORD))$,
- Satisfies Forcing Theorem
 - Adding a surjection $F: \omega \to \text{Ord} (\text{Col}(\omega, \text{Ord})).$

- Suppose that M is a model of ZFC and $\mathbb{P} \in M$ is a forcing. (Add (ω, ω))
- Let $\mathcal{G} \in M$ be a group of order preserving automorphisms of \mathbb{P} . (*The automorphisms generated by bijections of* ω)
- Let $\mathcal{K} = \mathcal{P}(\mathcal{G})$.
- $\mathcal{F} \in M$ is a normal filter of subgroups of \mathcal{G} if
 - $\mathcal{F} \subseteq \mathcal{K}$ and $\mathcal{G} \in \mathcal{F}$
 - If $H \in \mathcal{F}$ and $K \in \mathcal{F}$ then $H \cap K \in \mathcal{F}$,
 - If $H \in \mathcal{F}$ and $H \subseteq K$ where $K \in \mathcal{K}$ then $K \in \mathcal{F}$,
 - (Normality) If $\pi \in \mathcal{G}$ and $H \in \mathcal{F}$ then $\pi H \pi^{-1} \in \mathcal{F}$.

(The filter generated by fixing finite subsets of ω)

• We shall then call the triple $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ a symmetric system.

The Symmetric Model

Definition 25

Say that a name \dot{x} is *symmetric* if

$$sym(\dot{x}) \coloneqq \{\pi \in \mathcal{G} \mid \pi \dot{x} = \dot{x}\} \in \mathcal{F}.$$

Let $\text{HS}_{\mathcal{F}}$ denote the class of *hereditarily symmetric names*. The *symmetric model* given by \mathcal{F} is

$$\mathbf{N}_G \coloneqq \{ \dot{x}^G \, | \, \dot{x} \in \mathbf{M}^{\mathbb{P}} \land \dot{x} \in \mathbf{HS}_{\mathcal{F}} \}$$

The Symmetry Lemma 26

Let φ be a formula, $p \in \mathbb{P}$, $\pi \in \mathcal{G}$ and $\dot{x} \in M^{\mathbb{P}}$. Then

$$p \Vdash \varphi(\dot{x}) \Longleftrightarrow \pi p \Vdash \varphi(\pi \dot{x}).$$

Theorem 27

 N_G is a model of ZF with $M \subseteq N_G \subseteq M[G]$.

- Suppose that $\langle \mathbf{M}, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3 \rangle^2$ is a model of fourth order ZFC and \mathbb{P} is a pretame class forcing. (Add(ω , ORD))
- Let $\mathcal{G} \subseteq \mathcal{C}_2$ be a group of order preserving automorphisms of \mathbb{P} . (*The automorphisms generated by bijections of* ORD)

Respect

References

- Let $\mathcal{K} \in \mathcal{C}_3$ denote the collection of subclasses of \mathcal{G} .
- $\mathcal{F} \in \mathcal{C}_3$ is a normal filter of subgroups of \mathcal{G} if
 - $\mathcal{F} \subseteq \mathcal{K}$ and $\mathcal{G} \in \mathcal{F}$
 - If $H \in \mathcal{F}$ and $K \in \mathcal{F}$ then $H \cap K \in \mathcal{F}$,
 - If $H \in \mathcal{F}$ and $H \subseteq K$ where $K \in \mathcal{K}$ then $K \in \mathcal{F}$,
 - (Normality) If $\pi \in \mathcal{G}$ and $H \in \mathcal{F}$ then $\pi H \pi^{-1} \in \mathcal{F}$.

(The filter generated by fixing finite subsets of ORD)

• We shall then call the triple $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ a symmetric system. ² \mathcal{C}_1 are the classes, \mathcal{C}_2 the hyper-classes and \mathcal{C}_3 the hyper-hyper-classes. For simplicity, take $\langle M, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3 \rangle = \langle V_{\kappa}, V_{\kappa+1}, V_{\kappa+2}, V_{\kappa+3} \rangle$ where κ is inaccessible.

The Symmetric Model

Definition 28

Say that a (class) name \dot{X} is *symmetric* if $sym(\dot{X}) := \{\pi \in \mathcal{G} \mid \pi \dot{X} = \dot{X}\} \in \mathcal{F}.$

Let $HS_{\mathcal{F}}$ denote the collection of *hereditarily symmetric names*.

Definition 29

The symmetric model given by \mathcal{F} is $\langle N_G, \mathcal{C}_G \rangle$ where

$$\begin{split} \mathbf{N}_{G} &\coloneqq \{ \dot{x}^{G} \, | \, \dot{x} \in \mathbf{M}^{\mathbb{P}} \land \dot{x} \in \mathbf{HS}_{\mathcal{F}} \} \\ \mathcal{C}_{G} &\coloneqq \{ \dot{\Gamma}^{G} \, | \, \dot{\Gamma} \in \mathcal{C}_{1}^{\mathbb{P}} \land \dot{\Gamma} \in \mathbf{HS}_{\mathcal{F}} \}. \end{split}$$

The Symmetry Lemma 30

Let φ be a formula, $p \in \mathbb{P}$, $\pi \in \mathcal{G}$, $\dot{x} \in M^{\mathbb{P}}$ and $\dot{\Gamma} \in \mathcal{C}_1$. Then $p \Vdash \varphi(\dot{x}, \dot{\Gamma}) \iff \pi p \Vdash \varphi(\pi \dot{x}, \pi \dot{\Gamma}).$

Introduction Big Classes Attempt Formalising Respect References Examples of Class Symmetric Models

- Adding a Dedekind finite class (a class X such that there is no injection from ω into X),
- Adding an amorphous class (a class which cannot be partitioned into two infinite subclasses),
- Gitik's Model (a model of ZF where every cardinal has cofinality ω),
- The Morris Model (ZF plus for every α there exists a set A_{α} which is the countable union of countable sets, and $\mathcal{P}(A_{\alpha})$ can be partitioned into \aleph_{α} many non-empty sets),
- Monro's Model (ZF with a Dedekind finite proper class which surjects onto V). Formal Statement

Introduction Big Classes Attempt Formalising Respect References Formalising the Contradiction Contradiction

- Let $\langle M, \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3 \rangle$ be a model of fourth-order set theory.
- The forcing $\mathbb{P} = \text{Add}(\omega, \text{ORD} \times \omega)$ is pretame.
- So if $G \subseteq \mathbb{P}$ is generic then $M[G] \models ZFC^-$.
- Let \mathcal{G} be the class of automorphisms of \mathbb{P} generated by the wreath product of the automorphisms of ORD with the automorphisms of ω .
- Let \mathcal{F} be the filter generated by fixing finite subsets of ORD $\times \omega$.
- Then $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ is a symmetric system.
- Let N_G be the symmetric model given by \mathcal{F} .
- Then N_G contains an amorphous proper class. So, Collection fails in N_G .
- So the symmetric submodel of a pretame class forcing need not satisfy ZFC⁻.
- In fact, I have no idea what theory N_G satisfies ...

Introduction 0000	Big Classes	Attempt 000	Formalising 000000000000●	Respect 0000000	References
Replacem	ent				

- Let N_G be the symmetric submodel.
- Suppose that $p \Vdash \dot{f}$ is a total function on \dot{a} where \dot{f} and \dot{a} are hereditarily symmetric names.
- We want a name for the range of \dot{f} .
- Using Collection, we can find some set of hereditarily symmetric names c containing witnesses to elements being in the range of \dot{f} .
- Let

$$\dot{b} = \{ \langle \dot{y}, s \rangle \, | \, \dot{y} \in c \ \land \ \exists \langle \dot{x}, r \rangle \in \dot{a} \ (s \in d_{\dot{x}, r}^3 \ \land \ s \Vdash \dot{f}(\dot{x}) = \dot{y}) \}.$$

- Want to conclude that for any $\pi \in \operatorname{sym}(\dot{a}) \cap \operatorname{sym}(\dot{f}), \ \pi \dot{b} = \dot{b}.$
- However, in general, $\{\pi(\langle \dot{y}, s \rangle) \mid \pi \in \text{sym}(\dot{a}) \cap \text{sym}(\dot{f})\}$ will not be a set!

³These sets are determined using pretameness

Hereditary Respect

Definition 31 (Karagila)

Say that a name \dot{x} is *respected* if $\{\pi \in \mathcal{G} \mid \mathbb{1} \Vdash \pi \dot{x} = \dot{x}\} \in \mathcal{F}$. Let $\operatorname{HR}_{\mathcal{F}}$ denote the class of *hereditarily respected names*.

Definition 32

The *respected model* given by \mathcal{F} is $\langle \mathbf{N}_G, \mathcal{C}_G \rangle$ where $\mathbf{N}_G \coloneqq \{ \dot{x}^G \, | \, \dot{x} \in \mathbf{M}^\mathbb{P} \land \dot{x} \in \mathrm{HR}_\mathcal{F} \}$ $\mathcal{C}_G \coloneqq \{ \dot{x}^G \, | \, \dot{x} \in \mathcal{C}_1^\mathbb{P} \land \dot{x} \in \mathrm{HR}_\mathcal{F} \}.$

Remark

If
$$\dot{a}, \dot{f} \in \operatorname{HR}_{\mathcal{F}}, p \Vdash \dot{f}$$
 is a total function on \dot{a} ' and
 $\{\pi \mid \pi p = p\} \in \mathcal{F}$ then $\dot{b} \in \operatorname{HR}_{\mathcal{F}},$
 $\dot{b} = \{\langle \dot{y}, s \rangle \mid \dot{y} \in c \land \exists \langle \dot{x}, r \rangle \in \dot{a} \ (s \in d_{\dot{x},r} \land s \Vdash \dot{f}(\dot{x}) = \dot{y})\}.$

Introduction 0000	Big Classes	Attempt 000	Formalising 0000000000000	Respect 0●00000	References
Tenacity					

Definition 33 (Karagila)

Let $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ be a symmetric system. A condition $p \in \mathbb{P}$ is said to be \mathcal{F} -tenacious if there exists some $H \in \mathcal{F}$ such that for every $\pi \in H$, $\pi p = p$. $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ is said to be \mathcal{F} -tenacious if there is a dense subset of \mathcal{F} -tenacious conditions.

Example

The forcing to add an amorphous proper class is tenacious. As is Cohen's model adding a Dedekind finite set (/ class)

Theorem 34 (Karagila, Hayut)

Over ZFC, every (set) symmetric system is equivalent to a tenacious one.

Introduction	Big Classes	Attempt	Formalising	Respect	References
0000	00000000	000	0000000000000	o●ooooo	
Tenacity					

Definition 33 (Karagila)

Let $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ be a symmetric system. A condition $p \in \mathbb{P}$ is said to be \mathcal{F} -tenacious if there exists some $H \in \mathcal{F}$ such that for every $\pi \in H$, $\pi p = p$. $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ is said to be \mathcal{F} -tenacious if there is a dense subset of \mathcal{F} -tenacious conditions.

The proof relies on the completion of the corresponding Boolean algebra, which does not always exist for class forcings ...

Question 1

If every class symmetric system (\mathbb{P} pretame) equivalent to a tenacious one?

Fix \mathscr{M} a model of fourth-order set theory and $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ a symmetric system such that \mathbb{P} satisfies the forcing theorem. Given a \mathbb{P} -generic G, let \mathscr{N}_G be the respective Respected Model.

References

Theorem 34 (M.)

If for any \mathbb{P} -generic $G \subseteq \mathbb{P} \mathscr{M}[G]$ is closed under Gödel operations, then so is \mathscr{N}_G .

Theorem 35 (M.)

If \mathbb{P} is pretame and $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ is tenacious then $\mathcal{N}_G \models \text{GB}-$ (with second-order Replacement but not Collection).

Observation

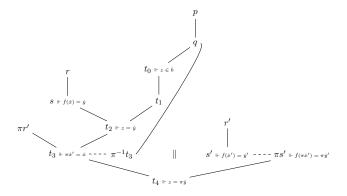
If \mathcal{N}_G is the Respected submodel formed by adding an a morphous proper class as before, then Collection fails in \mathcal{N}_G .⁴

⁴but, unlike in the symmetric case, we can prove Replacement!

 Introduction
 Big Classes
 Attempt
 Formalising
 Respect
 References

 Replacement in Respected Model
 Model
 References
 Ref

Suppose $p \Vdash \dot{f}$ is a total function on \dot{a} . $\dot{b} = \{ \langle \dot{y}, s \rangle \mid \dot{y} \in c \land \exists \langle \dot{x}, r \rangle \in \dot{a} \ (s \in d_{\dot{x},r} \land s \Vdash \dot{f}(\dot{x}) = \dot{y}) \}.$ $q \leq p$ (satisfies some condition) and $\pi \in \operatorname{resp}(\dot{a}) \cap \operatorname{resp}(\dot{f}) \cap \operatorname{sym}(q).$ **Claim:** $q \Vdash \pi \dot{b} = \dot{b}$ (and therefore so does 1).



Introduction	Big Classes	Attempt	Formalising	Respect	References	
0000	00000000	000	0000000000000	0000●00		
The Respected Model 2						

Theorem 36 (M.)

If \mathbb{P} is tame then $\mathscr{N}_G \models \mathrm{GB}$.

Remark

This does not require any assumption about tenacity. Essentially because, using tameness,

$$\mathbb{1} \Vdash \exists u \forall x \; (\operatorname{rank}(x) < \alpha \to x \in u)$$

and $\pi \mathbb{1} = \mathbb{1}$ for any automorphism π .

Proposition 37

Suppose \mathbb{P} is a pretame class forcing and $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ is a tenacious symmetric system. Suppose further that for any $\dot{x} \in \mathrm{HR}_{\mathcal{F}}, \{\pi \dot{x} \mid \pi \in \mathcal{G}\} \in \mathrm{V}.$ Then $\dot{x} \in \mathrm{HR}_{\mathcal{F}}$ iff there is some $\dot{y} \in \mathrm{HS}_{\mathcal{F}}$ such that $\mathbb{1} \Vdash \dot{x} = \dot{y}.$

Idea

If $\dot{x} \in \mathrm{HR}_{\mathcal{F}}$ then \dot{y} will be

$$\dot{y} = \bigcup \{ \pi \dot{x} \, | \, \pi \in \operatorname{resp}(\dot{x}) \}.$$

Proposition 37

Suppose \mathbb{P} is a pretame class forcing and $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ is a tenacious symmetric system. Suppose further that for any $\dot{x} \in \operatorname{HR}_{\mathcal{F}}, \{\pi \dot{x} \mid \pi \in \mathcal{G}\} \in \operatorname{V}.$ Then $\dot{x} \in \operatorname{HR}_{\mathcal{F}}$ iff there is some $\dot{y} \in \operatorname{HS}_{\mathcal{F}}$ such that $\mathbb{1} \Vdash \dot{x} = \dot{y}.$

Theorem 38 (M.)

Assuming the above hypothesis, $\mathcal{N}_G \models GB^-$. In particular, \mathcal{N}_G satisfies Collection.

Corollary 39

If \mathbb{P} is a set then the Symmetric Model and the Respected Model are the same.

Introduction	Big Classes	Attempt	Formalising	Respect	References
0000	0000000	000	0000000000000	000000●	
Questions					

Question 1

If every class symmetric system (\mathbb{P} pretame) equivalent to a tenacious one?

Question 2

What conditions do we have to put on a (pretame) tenacious symmetric system $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ to ensure \mathcal{N}_G satisfies Collection?

Question 3

What about Power Set?

Question 4

Is the Respected Model actually different to the Symmetric Model?

Introduction	Big Classes	Attempt	Formalising	Respect	References
0000	00000000	000	0000000000000	0000000	
Bibliogra	ohy				

- [FGK] SY-DAVID FRIEDMAN, VICTORIA GITMAN and VLADIMIR KANOVEI, A model of second-order arithmetic satisfying AC but not DC, Journal of Mathematical Logic, Volume 19, 2019.
- [GHJ] VICTORIA GITMAN, JOEL DAVID HAMKINS and THOMAS A. JOHNSTONE, What is theory ZFC without power set?, Mathematical Logic Quarterly, Volume 62, 2016
- [HKL⁺] PETER HOLY, REGULA KRAPF, PHILIPP LÜCKE, ANA NJEGOMIR and PHILIPP SCHLICHT, Class forcing, the forcing theorem and Boolean completions, Journal of Symbolic Logic, Volume 81(4), 2016.
- [HKS] PETER HOLY, REGULA KRAPF and PHILIPP SCHLICHT, Characterizations of pretameness and the Ord-cc, Annals of Pure and Applied Logic, Volume 169, 2018.
- [Kar] ASAF KARAGILA, Iterating symmetric extensions, Journal of Symbolic Logic, Volume 84(1), 2019.
- [Mat] RICHARD MATTHEWS, *Taking Reinhardt's Power Away*, arxiv preprint arXiv:2009.01127, 2020. To appear in the Journal of Symbolic Logic
- [Mat] RICHARD MATTHEWS, Large Cardinals in Weakened Axiomatic Theories, PhD Thesis, 2021.
- [Zar] ANDREZJ ZARACH, Unions of ZF^- models which are themselves ZF^- models, Studies in Logic and the Foundations of Mathematics, Volume 108, 1982.

Union of ${\rm ZF}^-$ models

Construction 40 (Zarach)

Suppose that $M \models ZFC$, $\mathbb{P} \in M$, $\omega(\mathbb{P})$ is the finite support product of ω many copies of N and h: $\mathbb{P} \cong \omega(\mathbb{P})$ be an order isomorphism. Let G be \mathbb{P} -generic over \mathcal{M} and $H = h^{*}G$ be $\omega(\mathbb{P})$ -generic. Let $G_n = H \upharpoonright \{n\}$ be the nth generic and let $M_n = M[G_0 \times \cdots \times G_{n-1}]$. Consider

$$\mathbf{N} = \bigcup_{n} \mathbf{M}_{n}.$$

Theorem 41 (M., Gitman)

N is a model of $\operatorname{ZFC}_{Ref}^- + \neg \operatorname{DC}_{|\mathcal{P}^{V[G]}(\mathbb{P})|^+}$. In particular, $\mathcal{P}(\mathbb{P})$ is a proper class that does not surject onto every ordinal!

A solution

Theorem 42 (M., Gitman)

 $\langle N, \in, M \rangle$ is a model of $ZFC_{Ref}^- + \neg DC_{|\mathcal{P}^{V[G]}(\mathbb{P})|^+}$. In particular, $\mathcal{P}(\mathbb{P})$ is a proper class that does not surject onto every ordinal!

Corollary 43 (M., Gitman)

One can have models V of $\operatorname{ZFC}_{Ref}^-$ with an elementary embedding $j: V \to M$ for which $\mathcal{P}(\omega)$ is a proper class.

A note on Injections

Theorem 44 (Monro)

Let ZF(K) be the theory with the language of ZF plus a one-place predicate K and let M be a countable transitive model of ZF. Then there is a model N such that N is a transitive model of ZF(K) and

 $N \models K$ is a proper class which is Dedekind-finite and can be mapped onto the universe.

Proper Classes Are Big with Reflection

Proposition 45 (M.)

Suppose that $V \models ZF^- + DC_{\mu}$ for μ an infinite cardinal. Then for any proper class C, which is definable over V, there is a subset b of Cof cardinality μ .

Proof

- We shall prove that for any *ν* ≤ *μ* there is a subset *b* of *C* and a bijection between *b* and *ν*.
- Suppose not and let δ be the least cardinal for which this fails.
- Let $\varphi(\alpha, s, y) \equiv (s \cup \{y\} \subseteq \mathcal{C} \land y \notin s \land \operatorname{len}(s) = \alpha).$
- This satisfies the hypothesis of DC_{δ} .
- So there is a function f with domain δ and whose range gives a subset of C of cardinality δ . Contradiction.

Back

 $D \in \mathcal{C} \cap \mathcal{P}(\mathbb{P})$ is said to be *dense below* $p \in \mathbb{P}$ if for every $r \leq p$ there is some $s \leq r$ such that $s \in D$.

A set d is said to be *predense below* $p \in \mathbb{P}$ if for every $r \leq p$ there is some $s \in d$ which is compatible with r.

A class forcing \mathbb{P} is said to be *pretame* is for every $p \in \mathbb{P}$ and every set length sequence of dense subclasses $\langle D_i | i \in I \rangle \in C$ of \mathbb{P} , there is some $q \leq p$ and $\langle d_i | i \in I \rangle \in V$ such that for every $i \in I, d_i \subseteq D_i$ and d_i is predense below q.

Back