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In [HHMOS| to 4 is associated (Inv(8l), ®) = (S (4), ®)/ ~p.
Theorem (Haskell, Hrushovski, Macpherson)
In ACVF (% i= residue field, T := value group) (K F ACF, T' F DOAG)

Inv(l) = Inv(k) @ Inv(T) 2 N & (Pgn(X), V)

ACF strongly minimal = I?ﬁ/(k:) = N. DOAG is o-minimal.
Question N

What shape can Inv(4l) have in an o-minimal theory?
Theorem (Ealy, Haskell, Marikova)
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Motivation
In [HHMOS| to 4 is associated (Inv(8l), ®) = (S (4), ®)/ ~p.
Theorem (Haskell, Hrushovski, Macpherson)
In ACVF (% i= residue field, T := value group) (K F ACF, T' F DOAG)

Inv(l) = Inv(k) @ Inv(T) 2 N & (Pgn(X), V)

ACF strongly minimal = I?ﬁ/(k:) = N. DOAG is o-minimal.
Question N

What shape can Inv(4l) have in an o-minimal theory?
Theorem (Ealy, Haskell, Marikova)

In RCVF (k & RCF, I" E DOAG)

Inv(Y) = Inv(k) ® Inv(T) = (7) & (Pgn(X), V)
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Dense Linear Orders

Definition
DLO is the theory of Dense Linear Orders (with no endpoints).

Fact
DLO eliminates quantifiers in L = {<}.

Corollary
{1 F DLO = L(4l)-definable subsets of 4! are finite unions of intervals and points.

R R

Definable subsets of 42 are also quite simple. We have e.g. the set of points above
the diagonal, but that is essentially as complicated as it gets.
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Definition (L 2 {<})
T is o-minimal iff for every M E T every definable subset of M! is a finite union of
points and intervals.
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Definition (L 2 {<})
T is o-minimal iff for every M E T every definable subset of M is a finite union of
points and intervals.
Note: no requirement on subsets of M?2. Non-example: Th(R, <, sin). Examples:
e DLO, by quantifier elimination.
e DOAG, by q.e. (semilinear sets, e.g. polyhedra).
e RCF, by q.e. (Tarski) (semialgebraic sets, e.g. discs).
o Th(R, +,-,exp) (Wilkie).
e Restricted analytic functions, Pfaffian functions,. ..

Tame behaviour of definable sets and functions, even in higher dimension: e.g.
piecewise differentiability, cell decomposition, dcl is a pregeometry with nice

dimension theory, and more.
Applications in: (real) algebraic geometry, tame topology, number theory,. ..
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Types
Throughout: letters may denote tuples, e.g. x = xg,...,Tpn—1, & = ag, ..., Um—1-
Go-to example for this talk: DLO. Fix a parameter set B.

tp(a/B) = {formulas over B satisfied by a}.
{z>b|la®>beB}u{r<b|a’ <be B} = tp(a’/B) = tp(a'/B) # tp(a®/B)
Space of types: S;(B). Equivalent descriptions of p(x) € S;(B):

e p(x) =tp(a/B) for a in some N = M DO B
e p(z) = a maximal consistent set of p(z) € L(B)

e p(z) = an ultrafilter on the Boolean algebra Def,(B) (Stone duality)
T o-minimal = 1-types over A = cuts in dcl A.

Example (A 2-type in RCF)
The element of Sy, ., (R) axiomatised by
{0<z <1/n|neN}U{0<z}U{zd+23 =1}
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Fix a “big enough” cardinal. say x > 2,7 strong imit. Small means of size < k.
Definition
i is a (k-)monster model of T iff for all small B C i
e § realises all types in S« (B) (k-saturation), and
e types = orbits, i.e. tp(a’/B) = tp(a!/B) if and only if they are conjugate by
the pointwise stabiliser Aut(/A) (k-strong homogeneity).

Fact (Monsters are everywhere)
For every k, every T, and every M E T, there is a k-monster 4 > M.

e We are going to work in S, (), i.e. with types over l.

e We think of their realisations as living in a fixed bigger monster £f; T~ §l.
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Invariant Types

Canonical extension and product

Definition (p € S(4), A C U small)
p A-invariant: whether p(x) b ¢(z;d) depends only on ¢(z;w) and tp(d/A).

Say p € S(U) is tnvariant iff it is A-invariant for some small A C 4.
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Invariant Types

Canonical extension and product

Definition (p € S(4), A C U small, B Z il arbitrary)
p A-invariant: whether p(x) b ¢(z;d) depends only on ¢(z;w) and tp(d/A).

Say p € S(U) is tnvariant iff it is A-invariant for some small A C 4.

Example (T" = DLO, A small)
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Pa+

o(x;d) € (p| UB) &% for d € 4 such that d =4 d, we have o(x;d) € p.
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T 1T T 711

o(x;d) € (p| UB) L% for d € U such that d =, d, we have o(x;d) € p.

Using this, define p(z,y;d) € p(x) ® q(y) PN o(x;b,d) € p| LUb (bEq)
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p A-invariant: whether p(x) b ¢(z;d) depends only on ¢(z;w) and tp(d/A).
Say p € S(4) is invariant iff it is A-invariant for some small A C L.

Example (T" = DLO, A small)
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Invariant Types

Canonical extension and product
Definition (p € S(4), A C U small, B Z il arbitrary)
p A-invariant: whether p(x) b ¢(z;d) depends only on ¢(z;w) and tp(d/A).
Say p € S(U) is tnvariant iff it is A-invariant for some small A C 4.
Example (T" = DLO, A small)
par(x) ={z<d|d>AyU{x>d|d# A} pa+ () @ pa+ (v)

pba+
)
v ) i

o(x;d) € (p| UB) L% for d € U such that d =, d, we have o(x;d) € p.

Using this, define p(z,y;d) € p(x) ® q(y) PN o(x;b,d) € p| LUb (bEq)
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Definition (p € S(4), A C U small, B Z il arbitrary)
p A-invariant: whether p(x) b ¢(z;d) depends only on ¢(z;w) and tp(d/A).
Say p € S(4) is invariant iff it is A-invariant for some small A C L.
Example (T" = DLO, A small)
pa+(z) ={z<d|d>AYU{z>d|d# A} pa+ () @pa+(y) Fa <y
Pa+

o(x;d) € (p| UB) L% for d € U such that d =, d, we have o(x;d) € p.
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Invariant Types

Canonical extension and product
Definition (p € S(4), A C U small, B Z il arbitrary)
p A-invariant: whether p(x) b ¢(z;d) depends only on ¢(z;w) and tp(d/A).
Say p € S(8) is invariant iff it is A-invariant for some small A C 4.

Example (T" = DLO, A small)
par(z) ={z <d[d>AyU{z>d[d¥ A} par(2)@par(y) Fz <y

%lpmi) N

o(x;d) € (p| UB) L% for d € U such that d =, d, we have o(x;d) € p.

Using this, define p(z,y;d) € p(x) ® q(y) PN o(x;b,d) € p| LUb (bEq)

Fact
® iS aSSOCiatiVG. ® Commutative = T Stable. O-minimal theories are unstable.
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Domination

Definition (Domination preorder on S™V(4l); generalises Rudin—Keisler)
Pz >D @y iff there are a small A C 4 and 7 € S,y (A) such that:

p. q are A-invariant, v 2 (p | A)U (¢ | A), and p(z) Ur(z,y) - q(y)

Domination equivalence p ~p q means p >p q >p P.
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Domination

Definition (Domination preorder on S™V(4l); generalises Rudin—Keisler)

Pz >D @y iff there are a small A C 4 and 7 € S,y (A) such that:
p, q ave A-invariant, r 2 (p | A) U (q | A), and p(z) Ur(,y) - q(y)
Domination equivalence p ~p q means p >p q >p p.

Example (DLO, all types below are (-invariant)
tp(z > 40)  tp(y1 > yo > U)
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Domination

Definition (Domination preorder on S™V(4l); generalises Rudin—Keisler)
Pz >D @y iff there are a small A C 4 and 7 € S,y (A) such that:

p, q are A-invariant, r O (p [ A)U (¢ [ A), and p(z) Ur(z,y) - q(y)
Domination equivalence p ~p q means p >p q >p p.

Example (DLO, all types below are (-invariant)
tp(x > W) >p tp(yr > yo > U) (“glue z and yo”, ie. 7= {yg =2} U...)
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Domination

Definition (Domination preorder on S™V(4l); generalises Rudin—Keisler)

Pz >D @y iff there are a small A C 4 and 7 € S,y (A) such that:
p, q ave A-invariant, r 2 (p | A) U (q | A), and p(z) Ur(,y) - q(y)
Domination equivalence p ~p q means p >p q >p p.

Example (DLO, all types below are (-invariant)
tp(x > W) >p tp(yr > yo > U) (“glue z and yo”, ie. 7= {yo =2} U...)

Example (Random Graph)
P >p q <= p 2 q after renaming/duplicating variables and ignoring realised ones.
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Domination

Definition (Domination preorder on S™V(4l); generalises Rudin—Keisler)

Pz >D @y iff there are a small A C 4 and 7 € S,y (A) such that:
p. q are A-invariant, v 2 (p | A)U (¢ | A), and p(a) Ur(z,y) - q(y)
Domination equivalence p ~p q means p >p q >p p.

Example (DLO, all types below are (-invariant)
tp(x > W) >p tp(yr > yo > U) (“glue z and yo”, ie. 7= {yo =2} U...)

Example (Random Graph, or a set with no structure (degenerate domination))

P >p q <= p 2 q after renaming/duplicating variables and ignoring realised ones.
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The domination monoid

Let Inv(8l) := S2Y(40)/ ~p.
Fact
If ~p is a congruence with respect to ®, then
. (I/I;;/(ﬂ), ®,<p) is an ordered monoid, the domination monoid,
e the neutral element (and minimum) is the (unique) class of realised types; and

e nothing else is invertible (p ® ¢ realised = p, ¢ both realised!).
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The domination monoid

Let Inv(8l) := S2Y(40)/ ~p.
Fact
If ~p is a congruence with respect to ®, then
. (I?l;/(ﬂ), ®,<p) is an ordered monoid, the domination monoid,
e the neutral element (and minimum) is the (unique) class of realised types; and

e nothing else is invertible (p ® ¢ realised = p, ¢ both realised!).

Warning: there is a theory where ® and ~p are not compatible.
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The domination monoid

Let Inv(8l) := S2Y(40)/ ~p.
Fact
If ~p is a congruence with respect to ®, then
. (I/r;/(ﬂ), ®,<p) is an ordered monoid, the domination monoid,
e the neutral element (and minimum) is the (unique) class of realised types; and

e nothing else is invertible (p ® ¢ realised = p, ¢ both realised!).

Warning: there is a theory where ® and ~p are not compatible.

There are some ensuring compatibility, but this is a different story.
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Examples
(In all of these (I/r;/(il), ®) is well-defined)

T strongly minimal (see €Z)
(IDV(L[), X, SD) = (N7 =+, S)

For T stable, ﬂ);(u) >~ N & T is unidimensional, e.g. countable and Rj-categorical, or Th(Z, +).
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Examples
(In all of these (Ifnvv(il), ®) is well-defined)

T strongly minimal (see )

(Inv(4),®, <p) = (N, +, <).

For T stable, Inv(il) = N < T is unidimensional, e.g. countable and Ri-categorical, or Th(Z, +).
T superstable (thin is enough)

By classical results Inv({) = @, (N, +, <), for some A = A().
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Examples
(In all of these (I,nvv(il), ®) is well-defined)

T strongly minimal (see )

(Inv(41), ®, <p) = (N, +, <).

For T stable, Inv(il) = N < T is unidimensional, e.g. countable and Ri-categorical, or Th(Z, +).
T superstable (thin is enough)

By classical results Inv({) = @, (N, +, <), for some A = A().

DLO (see )
(Inv(Y), ®, <p) = (P ({invariant cuts}), U, C).

Invariant cut = small cofinality on exactly one side.

Some Details
[e]e)
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Examples
(In all of these (I;R/(Ll), ®) is well-defined)

T strongly minimal (see )

(Inv(41), ®, <p) = (N, +, <).

For T stable, Inv(il) & N < T is unidimensional, e.g. countable and R;-categorical, or Th(Z, +).
T superstable (thin is enough)

By classical results I/I;/(Ll) =P, (N, 4, <), for some A = A(Y).
DLO (see )

(Inv(Y), ®, <p) = (P ({invariant cuts}), U, C).

Invariant cut = small cofinality on exactly one side.

Random Graph (see )

~p is degenerate, (Inv(4l), ®) resembles (S (L), ®), e.g. it is noncommutative.
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The Domination Monoid
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O-minimality and Types
0000
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Weak orthogonality

| swear this is the last definition for this talk

Definition
p(x) is weakly orthogonal to q(y) iff p(x) U q(y) is complete. Write p [V gq.

Example
In any o-minimal 7" with 0 € L, these two are (-invariant 1-types:

p(z) = tp(+oo/U) == {z > d |€ U} q(y) =tp(0T/U):={0<y<d|dei d>0}
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Weak orthogonality

| swear this is the last definition for this talk

Definition
p(x) is weakly orthogonal to q(y) iff p(x) U q(y) is complete. Write p [V gq.

Example
In any o-minimal 7" with 0 € L, these two are (-invariant 1-types:

p(z) = tp(+oo/U) == {z > d |€ U} q(y) =tp(0T/U):={0<y<d|dei d>0}

In DOAG, p 1V ¢, but in RCF p I q. Reason: “dcl(p) Ng # 0 is x > 1/y?
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Weak orthogonality
| swear this is the last definition for this talk
Definition
p(x) is weakly orthogonal to q(y) iff p(x) U q(y) is complete. Write p [V gq.

Example
In any o-minimal 7" with 0 € L, these two are (-invariant 1-types:

p(z) = tp(+oo/U) == {z > d |€ U} q(y) =tp(0T/U):={0<y<d|dei d>0}

In DOAG, p 1V ¢, but in RCF p I q. Reason: “dcl(p) Ng # 0 is x > 1/y?
Fact

¢ (T o-minimal) If p, g € Sy (L), then p / q iff p ~p q iff fup = ¢ for some
$l-definable bijection f.
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Weak orthogonality
| swear this is the last definition for this talk
Definition
p(x) is weakly orthogonal to q(y) iff p(x) U q(y) is complete. Write p [V gq.

Example
In any o-minimal 7" with 0 € L, these two are (-invariant 1-types:

p(z) = tp(+oo/U) == {z > d |€ U} q(y) =tp(0T/U):={0<y<d|dei d>0}

In DOAG, p 1V ¢, but in RCF p I q. Reason: “dcl(p) Ng # 0 is x > 1/y?
Fact

¢ (T o-minimal) If p, g € Sy (L), then p / q iff p ~p q iff fup = ¢ for some
$l-definable bijection f.

e g LV po>pp1 = ¢ LY p1. So we may expand to (I,I\I;I(ﬂ), >p, ®, V).

e In particular if ¢ 1LW p >p ¢ then q is realised.
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Reduction to generation by 1-types

Theorem (M., T' o-minimal)

If every p € S™(U) is ~p to a product of 1-types, then I’&(ﬂ) is well-defined, and
(Inv(4), ®, >p, 1Y) = (Phn(X), U, 2, D)
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Reduction to generation by 1-types

Theorem (M., T' o-minimal)

If every p € S™V(4) is ~p to a product of 1-types, then I’nvv(il) is well-defined, and
(Inv(H), ®, >p, V) = (Paa(X),U, 2, D), for X any maximal set of pairwise [V
invariant 1-types
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Reduction to generation by 1-types

Theorem (M., T' o-minimal)

If every p € S™V(4) is ~p to a product of 1-types, then I’nvv(il) is well-defined, and
(Inv(U), ®, >p, V) = (P, (X),U, 2, D), for X any maximal set of pairwise [V
invariant 1-types and D(x,y) :==x Ny = (.
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Reduction to generation by 1-types

Theorem (M., T' o-minimal)
If every p € SMV(§() is ~p to a product of 1-types, then I/I\l;/'(il) is well-defined, and
(Inv(U), ®, >p, V) = (P, (X),U, 2, D), for X any maximal set of pairwise [V
invariant 1-types and D(x,y) :==x Ny = (.
Hence, given an o-minimal 7', to conclude the study of 1/1\1;/(5.1) it is enough to:

1. show that invariant types are equivalent to a product of 1-types, and

2. identify a nice set of representatives for f¥-classes of invariant 1-types.
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Reduction to generation by 1-types

Ok, | lied, technically there is a definition here

Theorem (M., T' o-minimal)

If every p € S™(4) is ~p to a product of 1-types, then I/I\l;/'(il) is well-defined, and
(Inv(U), ®, >p, V) = (P, (X),U, 2, D), for X any maximal set of pairwise [V
invariant 1-types and D(x,y) :==x Ny = (.

Hence, given an o-minimal 7', to conclude the study of 1/1\1;/(5.1) it is enough to:

1. show that invariant types are equivalent to a product of 1-types, and
2. identify a nice set of representatives for f¥-classes of invariant 1-types.

Sufficient condition for 1: if ¢ is a {-independent tuple, then

U tou, 7@/ U {ws = f@) | £ € FFM ) E o, (/) (1)

l=],1
feFr

]:7|g3 1 .= set of (-definable functions of T with domain $/*! and codomain U!.
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Applications

Theorem ([HHMO8])
In DOAG, Inv(4) = P, ({invariant convex subgroups}).
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Applications

Theorem ([HHMO8])
In DOAG, 1/1\1;7(11) > Pan({invariant convex subgroups}).
Here () holds by q.e. and the fact that e.g.

Aoco + prodo < At 4+ pudy = Aoco — ey < pady — piod

Xo(-) =M1 ()eFE! el
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Applications

Theorem ([HHMO8])
In DOAG, 1/1\1;7(11) > Pan({invariant convex subgroups}).
Here () holds by q.e. and the fact that e.g.
Aoco + prodo < At 4+ pudy = Aoco — ey < pady — piod

S1

Theorem (M.) Yo()-M0)eFr

In RCF, Ifl’\l;/(ﬂ) = Ppn({invariant convex subrings}).
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Applications

Theorem ([HHMO8])
In DOAG, 1/1\1;7(11) = Ppn({invariant convex subgroups}).
Here () holds by q.e. and the fact that e.g.

Aoco + podo < Aer + pdy <= Aoco — Aier < pady — podo

Theorem (M.) dol)-M(eF7" =

In RCF, I/r;/(il) = Ppn({invariant convex subrings}).

“Enough of (1)” can be shown to hold using some valuation theory.
Exact statement . Ask to see it at your own risk.
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Applications

Theorem ([HHMO8])
In DOAG, 1/1\1;7(11) = Ppn({invariant convex subgroups}).
Here () holds by q.e. and the fact that e.g.

Aoco + podo < Aer + pdy <= Aoco — Aier < pady — podo

Theorem (M.) dol)-M(eF7" =

In RCF, I/r;/(il) = Ppn({invariant convex subrings}).

“Enough of (1)” can be shown to hold using some valuation theory.
Exact statement . Ask to see it at your own risk.

Corollary
In RCVF, by [EHM19] Inv(4) 2 Inv(k) @ Inv(T). So Inv(8l) & P4, (X), where

X = {invariant convex subrings of k} LI {invariant convex subgroups of I'}
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The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, M <t N <* ()
If bl p € SIV(U, M) then p(dcl(Nb)) is cofinal and coinitial in p(dcl(Ub)).
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The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, M <t N <* ()
If bl p € SIV(U, M) then p(dcl(Nb)) is cofinal and coinitial in p(dcl(Ub)).

Example
If b > 81 £ RCF, then {b,b2,b%,...} is cofinal in dcl(ub).
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The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, M <t N <* ()
If bl p € SIV(U, M) then p(dcl(Nb)) is cofinal and coinitial in p(dcl(Ub)).

Example
If b > 81 £ RCF, then {b,b2,b%,...} is cofinal in dcl(ub).

Corollary
If T is o-minimal and p € SV (8f) then p(y) ® p(z) ~p p(z).

Proof.
A small type is enough to say e.g. “z = z and y > p(dcl(Nz))”. O
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The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, M <t N <* ()
If bl p € SIV(U, M) then p(dcl(Nb)) is cofinal and coinitial in p(dcl(Ub)).

Example
If b > 8L RCF, then {b,b b3,...} is cofinal in dcl(b).

Corollary
If T is o-minimal and p € S (&) then p(y) @ p(z) ~p p(z).

Proof.

A small type is enough to say e.g. “z = z and y > p(dcl(Nz))”. O
Proof idea for the Lemma: use the Monotonicity Theorem to show that, otherwise,
there is d € 4 such that b, f(b,d), f(f(b,d),d),... is an infinite N-independent
sequence. By Steinitz exchange this is nonsense: d depends on a long enough piece
of the sequence. N is used to “copy” parameters of definable functions.
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Further Directions/Work in Progress

Questions:

1.

o LN

In the Idempotency Lemma, can we replace N with M?

Can we adapt the RCF proof to, say, polynomially bounded structures?

Is 1/1\1;/(11,) generated by 1-types in every o-minimal theory? In Rexp?

For T' O RCF, can we take X to be the set of invariant T-convex subrings?

Can these techniques be adapted to other contexts?

E.g. weakly o-minimal theories, or other “tame” generalisations of o-minimality.
Here the RCVF result is promising. Other related context: Q,7
More generally, the big question is:

5.

Is (Inv(4), ®) well-defined under NIP? NIPy? Commutativity under NIP?
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Further Directions/Work in Progress
Questions:
1. In the Idempotency Lemma, can we replace N with M?
Can we adapt the RCF proof to, say, polynomially bounded structures?
Is 1/1\1;/(11,) generated by 1-types in every o-minimal theory? In Rexp?

For T' O RCF, can we take X to be the set of invariant T-convex subrings?

o LN

Can these techniques be adapted to other contexts?

E.g. weakly o-minimal theories, or other “tame” generalisations of o-minimality.
Here the RCVF result is promising. Other related context: Q,7
More generally, the big question is:

5. Is (Inv(8l), ®) well-defined under NIP? NIPy? Commutativity under NIP?

Thanks for listening!
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Appendix

More examples: Branches

Example
Let T be the theory in the language {P, | ¢ € 2<%} asserting that every point

belongs to every Py, for exactly one n € 2¢. Then Inv(i) = @gx, N.

Basically, 1/1\1;/(11) here is counting how many new points are in a “branch”.
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More Examples: Generic Equivalence Relation

Equivalence relation £ with infinitely many infinite classes (and no finite classes).
A set of generators for Inv(4l) looks like this:
e a single ~p-class [0] for realised types
o if po(x) == {E(z,a)} U{zx ¢ U}, then [p.] = [ps] if and only if F E(a,b);
corresponds to new points in an existing equivalence class

e asingle ~p-class [py], where py :== {—=E(z,a) | a € U}; corresponds to new
equivalence classes.

The product adds new points/new classes. So, if 4 has k equivalence classes,

Iv(d) =N& PN
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More Examples: Cross-cutting Equivalence Relations
T, = n generic equivalence relations F;; intersection of classes of different E;
always infinite. Here (Inv(8l),®) is generated by:
e a single ~p-class [0] for realised types
o if po(x) == {Ei(x,a) | i <n}U{zx ¢ U}, then [p.] = [ps] if and only if
E Nicn Ei(a,b); corresponds to new points in Ej-relation with a for all i
e For each i < n, a class [p;] saying = is in a new FE; class, but in existing
Ej-classes for j # i (does not matter which)

So
Inv HN@@N

<n
Why [] instead of @7 If we allow, say, Ny equlvalence relations, then
bdd

Tnv (8 HN@@N

<N
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Other Notions
One can define a finer equivalence relation:
Definition
p =p q is defined as p ~p ¢, but by asking the same r to work in both directions:
pUrkgqgand gUrF p.

Another notion classically studied is:

Definition

p >Rk ¢ iff every model realising p realises q.

This behaves best in totally transcendental theories (because of prime models). It
corresponds to p(x) U {p(z,y)} F q(y).

But even there, modulo ~gx it is not true that every type decomposes as a product
of >rk-minimal types (but in non-multidimensional totally transcendental theories
every type decomposes as a product of strongly regular types).

A classical example where >p differs from >ggk: generic equivalence relation with a
bijection s such that Vo E(z, s(x)).
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Hrushovski's Counterexample

Example (Hrushovski)
In DLO plus a dense-codense predicate P, Inv(4l) is not commutative.

Proof idea.

Let p(z) :== {P(x)} U{x > U} and ¢(y) := {-P(x)} U{y > U}. Then p, ¢ do not
commute, even modulo =p (but they do modulo ~p).

The predicate P forbids to “glue” variables. One will be “left behind”: e.g. if

rEay <yo <y <1, knowing that y; > 4 does not imply zo > Ll O

In this case, for each cut C there are generators [pc,p] and [pc -p], with relations
* [pc.p] ® [pc,p] = [pc,-rl @ [pc,pl = [pc.p]
e (same relations swapping P and —P)
o [peo, -1 @ [pey,-] = [per,-1 @ [pcy, -] whenever Co # Ch.
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Stable Case

In a stable theory, <p, ~p and =p can be expressed in terms of forking:

Definition
av>g b iff, for all ¢,
al ce=bl ¢
E E

p>E q (p dominates q over E) iff there are a F p and b F ¢ such that a>g b
p g g (p and g are domination equivalent) iff p>g q>g p, i.e. there are
a Dg b >bp C
~— N N
Fp Fq Fp
p =g q (p and q are equidominant over E) iff there are a F p and b F ¢ such that

aDEbDEa

These are well-behaved with non-forking extensions: we can drop g.
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Comparison

Proposition (7" stable)
The previous definitions of <p= «, ~p=i and =p==.
Remark

The proof uses crucially stationarity of types over models.

In almost all examples we saw before, ~p coincides with =p.
Exception: in DLO with a predicate, (Inv(4l), ®) is not commutative, while
(Inv(4l),®) is (in fact, it is the same as in DLO).

Fact
Even in the stable case, ~p and =p are generally different.
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Classical Results

In the thin case (generalises superstable), this is classical:

Theorem (7" thin)

IfI;f(Ll) is a direct sum of copies of N.

If T is moreover superstable, (Inv(Ll), ®) is generated by {[p] | p regular}.

Superstability (even just thinness) implies that =p and ~p coincide.

The behaviour of >p in general seems related to the existence of some kind of
prime models (in the stable case, “prime a-models” are the way to go).
Also, some suitable generalisation of the Omitting Types Theorem would help.
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(Non-multi)Dimensionality

At least in the superstable case, independence of Ifnvv(il) on i already had a name:
Definition

T is (non-multi)dimensional iff no type is orthogonal t0 (every type that does not fork over) (.
If $ly <t 4f; one has a map e: I/I\l;/(il()) — 1/1\1;/(111).

Proposition (7" thin)

¢ surjective <= T dimensional.

Question

Is this true under stability? It boils down to the image of ¢ being downward closed.
I suspect this should follow from classical results.
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Generically Stable Part

Proposition
g <p p definable/finitely satisfiable/generically stable = so is q.

As generically stable types commute with everything, in any theory the monoid

generated by their Classes iS Well—deﬁned. (Warning: p generically stable % p ® p generically stable)
g.s. part
—

Hope
At least in special cases, get decompositions similar to Inv(Y) = Inv(k) x Inv(T).

Probably one should really work in 7°9:

Example
I/_I\l/T = DLO+equivalence relation Wlth (no finite classes and infinitely many) dense Classes,
Inv (i) grows when passing to 7°4, which has more generically stable types.

Question
How can the generically stable part look like?
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Interaction with Weak Orthogonality

Definition
p(x) is weakly orthogonal to q(y) iff p U g is complete.

Remark
Weakly orthogonal types commute.

Proposition
Weak orthogonality strongly negates domination: ¢ LY pg >p p1 = ¢ LV p;.
In particular if ¢ 1Y p >p g then ¢ is realised.

Question
Under which conditions if p f¥q then they dominate a common nonzero class?

Known:
e Superstable (or thin) is enough.

e Fails in the Random Graph.



Action on Type Space

f € Aut(Ll) acts on p € S(4) by changing parameters in formulas:

f-p=Ae(, f(d) | p(z,d) € p}

Consider this action restricted to Aut(l/A).
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Action on Type Space

f € Aut(Ll) acts on p € S(4) by changing parameters in formulas:

Consider this action restricted to Aut(l/A).

Example
T = DLO, consider py+ (z) ={z <d|d>b}U{z >d|d < b}

DPyp+
-~
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Action on Type Space

f € Aut(Ll) acts on p € S(4) by changing parameters in formulas:

Consider this action restricted to Aut(l/A).

Example
T = DLO, consider py+ (z) ={z <d|d>b}U{z >d|d < b}

-
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Action on Type Space

f € Aut(Ll) acts on p € S(4) by changing parameters in formulas:

Consider this action restricted to Aut(l/A).

Example
T = DLO, consider py+(z) ={z <d|d>b}U{x >d|d <b} and let
f € Aut(U/A) be such that f(b) = c.
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Action on Type Space

f € Aut(Ll) acts on p € S(4) by changing parameters in formulas:

Consider this action restricted to Aut(l/A).

Example
T = DLO, consider py+(z) ={z <d|d>b}U{x >d|d <b} and let
f € Aut(U/A) be such that f(b) = c. Then f - py+ = p.+.

/7N
DPy+ D+

v ()

~ 1
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Invariant Extension

How to canonically extend an invariant type to bigger sets

Recall: p € SinV(4, A) <= whether p(z) F ¢(z;d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p € Sinv(4, A) has a unique extension (p | 4B) € SV (UB, A)



Appendix

Invariant Extension
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Invariant Extension

How to canonically extend an invariant type to bigger sets

Recall: p € SinV(4, A) <= whether p(z) F ¢(z;d) or not depends only on tp(d/A)
Fact (B arbitrary, A small)
Every p € Sinv(4l, A) has a unique extension (p | 4B) € SIV(UB, A): for tuples d from UB

o(z;d) € (p| UB) &L for d € U such that d =4 d, we have ¢(z;d) € p.

Example (T' = DLO, A small)

par(@) ={x<d|d>A}U{z>d|d# A}“ =" (ps+ | UB)(x) (now d € UB)
Pa+

o)
F)

(pa+ | B)
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Product of Invariant Types

Definition (p invariant)
o(x,y;d) € p(x) @ qly) €5 p(a;b,d)ep|th  (bEqQ)

Example
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Product of Invariant Types

Definition (p invariant)
o(x,y;d) € p(x) @ qly) €5 p(a;b,d)ep|th  (bEqQ)

Example
(pa+(@) ={z<d|d>A}U{z>d|d# A}) pa+(x) @ pa+(y)
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Product of Invariant Types

Definition (p invariant)
o(x,y;d) € p(x) @ qly) €5 p(a;b,d)ep|th  (bEqQ)

Example
(pa+(@) ={z<d|d>A}U{z>d|d# A}) pa+ () @pa+(y) Fo <y

AH—H—HM(-QIE-Z-)f-ZIJ-)
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Product of Invariant Types

Definition (p invariant)
o(x,y;d) € p(x) @ qly) €5 p(a;b,d)ep|th  (bEqQ)

Example
(pa+(@) ={z<d|d>A}U{z>d|d# A}) pa+ () @pa+(y) Fo <y

Pa+
)
z Y
Fact

® is associative. It is commutative if and only if T is stable.
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Map of Sufficient Conditions

stability
strict strict
X weak .
stationary bi . stationary
. . inarity . .
domination equidominance
stationary algebraic degenerate algebraic stationary
domination domination domination equidominance equidominance
Inv(sl) Inv ()

well-defined well-defined
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Sufficient Conditions

Proposition
o >D q1 = p R qo >p p R q1 is implied by any of the following:
e g1 algebraic over qg: every cF ¢q; is algebraic over some b F qy. E.g. q1 = fiqo
for some definable function f. Reason: {c | (b,c) F r} does not grow with &l.
e Or even weakly binary: tp(a/H) Utp(b/U) Utp(ab/M) E tp(ab/Ll): few
questions about a F p and ¢ F ¢;.
e T is stable.
Any condition in the Proposition implies that if there is some 7 € S, (M)
witnessing ¢o(y) >p ¢1(z), then there is one such that, in addition, if
e b,c €ty T= 4 are such that (b,c) F g U,
o p€ S™(U M) and a F p(z) | U,
o 7[p] = tpyy,(abe/M) U {z = w}.
then p ® qo Ur[p] - p ® q1. We call this stationary domination.
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A Counterexample

(with SOP and IP3)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(z,z,w) — (G(72) < 2G(72) < G(Tw)) (for some permutation of . z, w)

qo(y) — L(_|G(y) < _OOH

< @
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A Counterexample

(with SOP and IP3)
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some

triples of fibers: R3(z,z,w) — (G(72) < 2G(72) < G(Tw)) (for some permutation of . z, w)

Go(y) =“~Gy) <—oc”
qi(z) =“"G(nz) < —c0” ¢,

< @
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A Counterexample

(with SOP and IP3)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(z,z,w) — (G(72) < 2G(72) < G(Tw)) (for some permutation of . z, w)

Go(y) = “~G(y) < —oo”
q1(z) =“G(rz) < —o0” Ny

r(y,z) ={y=mz}U... y

i

1
®
Yy

qo Ur I q1: no hyperedges to decide.
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A Counterexample

(with SOP and IP3)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(z,z,w) — (G(72) < 2G(72) < G(Tw)) (for some permutation of . z, w)

Go(y) ="“~Gy) <—oc”
q1(2) ="“2G(rz) < —o0” " T/ \\\;//

r(y,z) ={y=mz}U... [T
p(x) ="“G(rx) < —o0”, | !

1
®
Yy

U{~Rs(z,a,b) | a,be U}

go Ur I q1: no hyperedges to decide.
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A Counterexample

(with SOP and IP3)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(z,z,w) — (G(72) < 2G(72) < G(Tw)) (for some permutation of . z, w)

q0(y) ="“7G(y) < —od” \
q1(z) =“2G(rz) < —o0” 2 7
r(y,z) ={y=mz}U... Yy ¥

):

p(x) ="“G(rx) < —o0”, | |
U{-Rs(w.a.b) [abet)

go Ur F ¢q1: no hyperedges to decide. But does p ® qo(x,y) >p p® qu(t, 2)?
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(with SOP and IP3)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(z,z,w) — (G(72) < 2G(r2) < G(7w)) (for some permutation of . z, w)

wly) =G <~ 7 L2
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No: even with x = ¢ no small type can decide all hyperedges involving z and z!
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A Counterexample

(with SOP and IP3)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(z,z,w) — (G(72) < 2G(r2) < G(7w)) (for some permutation of . z, w)

wly) =G <~ 7 L2
q1(2) =“2G(rz) < —o0” = * /9D
r(y,z) ={y=mz}U... \”,’ . \”/ ’
p(x) ="“G(rx) < —o0”, | |
U{-Rs(z,a,b) |a,bet} 3

go Ur F ¢q1: no hyperedges to decide. But does p ® qo(x,y) >p p® qu(t, 2)?
No: even with x = ¢ no small type can decide all hyperedges involving z and z!
Supersimple version . Also works for a number of of ~p.
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Another Counterexample
Ternary, supersimple, w-categorical, can be tweaked to have degenerate algebraic closure
Replacing the densely coloured DLO with a random graph R yields a supersimple

counterexample of SU-rank 2; forkingisa | b <= (anNbC C) A (ranmb C 7C).
C

R3(z0, 71, 72) — \/ (Ra2(m200, T241) A Ro(T240, T02) A "Ro(TTg1, T02))
€Sy (exactly two edges between wxo, 721, TX2)

qo(y) = {~Ra(y,a) | a € U} .
q1(2) = {-Ra(rz,a) | a € U}
r(y,z) ={y=mz}U...
p(x) == {Rao(mx,a) | a € U} \ . Gsr‘;”h o
U{-Rs3(x,a,b) | a,be U} ' Z : —

go U F q1: no hyperedges to decide. Same problem: p ® qo(z,y) 2p p ® q1(t, 2).
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(for T stable, fr};(ﬂ) =~ N < T is unidimensional, e.g. countable and Rj-categorical, or Th(Z, +))
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Strongly Minimal Theories

(Inv(4), ®) well-defined by stability

Example
If T is strongly minimal, (Inv(4), ®, <p) = (N, +, <).
(for T stable, Iﬁn\;(u) =~ N < T is unidimensional, e.g. countable and Rj-categorical, or Th(Z, +))

In this case, I’nvv(il) is basically “counting the dimension”. E.g.: in ACFy we have

p(x1, ... xn) ~p Y1, ..., Ym) < trdeg(x/U) = trdeg(y/L).
Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if (a,b) F p ® ¢, then
dim(a/Ub) = dim(a/4), and in strongly minimal theories

dim(ab/) = dim(b/) 4+ dim(a/Ub)

More generally, in superstable theories (or even thin theories), by classical results IFr:/(Ll) > P; AN, +, <), for some .
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Dense Linear Orders

(Inv(4), ®) well-defined by binarity

e Classes are given by a finite sets of invariant cuts (i.e. smail cofinality on exactly one side).
. (1/1\1;/(11), ®) is commutative: e.g. p(zo) ® p(yo) ~p p(y1) @ p(z1) by gluing:
r={xo=y1Ay=z1}U...
e Every element is idempotent: e.g. if p(x) = tp(z > L), then
p(z) ~p p(y1) @ p(yo) (seen before: glue z and yo):

Yo=x Y1

Ifr;f(ﬂ) is the free idempotent commutative monoid generated by the invariant cuts:

(Inv(U), ®, <p) = (Pgn({invariant cuts}), U, C)
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(S (81), ®). For instance, it is not commutative:
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These types do not commute, even modulo ~p:
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p(w) = {—=E(w,b) | b€ U}
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Random Graph
(Inv(4), ®) well-defined by binarity
In the Random Graph, ~p is degenerate and (Inv({), ®) resembles closely
(S (81), ®). For instance, it is not commutative:

Example (All types (-invariant)

These types do not commute, even modulo ~p:

q(y) = {E(y,b) | b € s} a() ® p(w)

p(w) = {-E(w,b) | b e U} %

Proof Idea.
As p, ® qy - —FE(x,y) and ¢. ® py, - E(z,w), gluing cannot work. But in the
random graph domination is degenerate and there is not much more one can do. [
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Properties Preserved by Domination

Domination equivalence is quite coarse; for instance it does not preserve Morley
rank (generic equivalence relation), nor dp-rank (DLO). Anyway:

Theorem (M.)

If p >p q and p has any of the following properties, then so does ¢:
L] Deﬁnability (over some small set, not necessarily the same as q)
e Finite satisfiability (in some small set, not necessarily the same as q)
e Generic stability (over some small set, not necessarily the same as q)

e Weak orthogonality to a fixed type

Generic stability is particularly interesting:
e It is possible to have IfI;/(il) #* I?l;/(ileq) (more g.s. types, e.g. DLO-+dense eq. rel.).
e Using [Tanl5|, strongly regular g.s. types are <p-minimal (among the nonrealised ones).

. (I;Vgs(il), ®, <p) makes sense in any theory (can be trivial).
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You asked for it
Let T' be o-minimal. Let p(x) € S™ (4, My), let ¢ E p be Y-independent.

1. There is a tuple b € dcl(8lc) of maximal length among those satisfying a
product of nonrealised invariant 1-types.
2. Let b be as above, and let ¢ :== tp(b/U) = go ® ... ® g, where ¢; € STV (). Up
to replacing ¢; with ¢; ~p ¢;, we may assume that either ¢; I g; or ¢; = g;.
Let b, q as above, ¢; € S™ (U, M) and My < M <t N <t Ny <t 4L
3. Up to replacing b with another b F ¢, we may assume b € dcl(Ne).
4. Let b,q be as above, r == tp,, (cb/N1), and ]-";L’l the set of T'(M)-definable

(M)
functions with domain 4™ and codomain U'. Then p(z) Ur(z,y) F q(y) and
aly) Ur(e,p) F (@) = | tou, (F@/0 U {uy = £@) | £ € 7}
fef';( i

Using this and some valuation theory, in RCF, it can be shown that g U r - p.
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