
O-minimality and Types The Domination Monoid Main Results Some Details

The domination monoid in o-minimal theories

Rosario Mennuni

University of Leeds

21st May 2020

O-minimality and Types The Domination Monoid Main Results Some Details

Motivation
In [HHM08] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D.

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF (k := residue field, Γ := value group)

(k � ACF, Γ � DOAG)

Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ)

∼= N⊕ (Pfin(X),∪)

ACF strongly minimal =⇒ Ĩnv(k) ∼= N. DOAG is o-minimal.

Question
What shape can Ĩnv(U) have in an o-minimal theory?

Theorem (Ealy, Haskell, Maříková)
In RCVF (k � RCF, Γ � DOAG)

Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ) ∼= ? ⊕ (Pfin(X),∪)

O-minimality and Types The Domination Monoid Main Results Some Details

Motivation
In [HHM08] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D.

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF (k := residue field, Γ := value group) (k � ACF, Γ � DOAG)

Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ)

∼= N⊕ (Pfin(X),∪)

ACF strongly minimal =⇒ Ĩnv(k) ∼= N. DOAG is o-minimal.

Question
What shape can Ĩnv(U) have in an o-minimal theory?

Theorem (Ealy, Haskell, Maříková)
In RCVF (k � RCF, Γ � DOAG)

Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ) ∼= ? ⊕ (Pfin(X),∪)

O-minimality and Types The Domination Monoid Main Results Some Details

Motivation
In [HHM08] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D.

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF (k := residue field, Γ := value group) (k � ACF, Γ � DOAG)

Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ) ∼= N⊕ (Pfin(X),∪)

ACF strongly minimal =⇒ Ĩnv(k) ∼= N. DOAG is o-minimal.

Question
What shape can Ĩnv(U) have in an o-minimal theory?

Theorem (Ealy, Haskell, Maříková)
In RCVF (k � RCF, Γ � DOAG)

Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ) ∼= ? ⊕ (Pfin(X),∪)

O-minimality and Types The Domination Monoid Main Results Some Details

Motivation
In [HHM08] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D.

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF (k := residue field, Γ := value group) (k � ACF, Γ � DOAG)

Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ) ∼= N⊕ (Pfin(X),∪)

ACF strongly minimal =⇒ Ĩnv(k) ∼= N. DOAG is o-minimal.

Question
What shape can Ĩnv(U) have in an o-minimal theory?

Theorem (Ealy, Haskell, Maříková)
In RCVF (k � RCF, Γ � DOAG)

Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ) ∼= ? ⊕ (Pfin(X),∪)

O-minimality and Types The Domination Monoid Main Results Some Details

Motivation
In [HHM08] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D.

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF (k := residue field, Γ := value group) (k � ACF, Γ � DOAG)

Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ) ∼= N⊕ (Pfin(X),∪)

ACF strongly minimal =⇒ Ĩnv(k) ∼= N. DOAG is o-minimal.

Question
What shape can Ĩnv(U) have in an o-minimal theory?

Theorem (Ealy, Haskell, Maříková)
In RCVF (k � RCF, Γ � DOAG)

Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ)

∼= ? ⊕ (Pfin(X),∪)

O-minimality and Types The Domination Monoid Main Results Some Details

Motivation
In [HHM08] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D.

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF (k := residue field, Γ := value group) (k � ACF, Γ � DOAG)

Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ) ∼= N⊕ (Pfin(X),∪)

ACF strongly minimal =⇒ Ĩnv(k) ∼= N. DOAG is o-minimal.

Question
What shape can Ĩnv(U) have in an o-minimal theory?

Theorem (Ealy, Haskell, Maříková)
In RCVF (k � RCF, Γ � DOAG)

Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ) ∼= ? ⊕ (Pfin(X),∪)

O-minimality and Types The Domination Monoid Main Results Some Details

Dense Linear Orders

Definition
DLO is the theory of Dense Linear Orders (with no endpoints).

Fact
DLO eliminates quantifiers in L = {<}.

Corollary
U � DLO =⇒ L(U)-definable subsets of U1 are finite unions of intervals and points.

Definable subsets of U2 are also quite simple. We have e.g. the set of points above
the diagonal, but that is essentially as complicated as it gets.

O-minimality and Types The Domination Monoid Main Results Some Details

Dense Linear Orders

Definition
DLO is the theory of Dense Linear Orders (with no endpoints).

Fact
DLO eliminates quantifiers in L = {<}.

Corollary
U � DLO =⇒ L(U)-definable subsets of U1 are finite unions of intervals and points.

Definable subsets of U2 are also quite simple. We have e.g. the set of points above
the diagonal, but that is essentially as complicated as it gets.

O-minimality and Types The Domination Monoid Main Results Some Details

Dense Linear Orders

Definition
DLO is the theory of Dense Linear Orders (with no endpoints).

Fact
DLO eliminates quantifiers in L = {<}.

Corollary
U � DLO =⇒ L(U)-definable subsets of U1 are finite unions of intervals and points.

Definable subsets of U2 are also quite simple. We have e.g. the set of points above
the diagonal, but that is essentially as complicated as it gets.

O-minimality and Types The Domination Monoid Main Results Some Details

Dense Linear Orders

Definition
DLO is the theory of Dense Linear Orders (with no endpoints).

Fact
DLO eliminates quantifiers in L = {<}.

Corollary
U � DLO =⇒ L(U)-definable subsets of U1 are finite unions of intervals and points.

Definable subsets of U2 are also quite simple. We have e.g. the set of points above
the diagonal, but that is essentially as complicated as it gets.

O-minimality and Types The Domination Monoid Main Results Some Details

Dense Linear Orders

Definition
DLO is the theory of Dense Linear Orders (with no endpoints).

Fact
DLO eliminates quantifiers in L = {<}.

Corollary
U � DLO =⇒ L(U)-definable subsets of U1 are finite unions of intervals and points.

) [) • () • •

Definable subsets of U2 are also quite simple. We have e.g. the set of points above
the diagonal, but that is essentially as complicated as it gets.

O-minimality and Types The Domination Monoid Main Results Some Details

Dense Linear Orders

Definition
DLO is the theory of Dense Linear Orders (with no endpoints).

Fact
DLO eliminates quantifiers in L = {<}.

Corollary
U � DLO =⇒ L(U)-definable subsets of U1 are finite unions of intervals and points.

) [) • () • •

Definable subsets of U2 are also quite simple. We have e.g. the set of points above
the diagonal, but that is essentially as complicated as it gets.

O-minimality and Types The Domination Monoid Main Results Some Details

O-minimality

Definition (L ⊇ {<})
T is o-minimal iff for every M � T every definable subset of M1 is a finite union of
points and intervals.

Note: no requirement on subsets of M2. Non-example: Th(R, <, sin). Examples:
• DLO, by quantifier elimination.
• DOAG, by q.e. (semilinear sets, e.g. polyhedra).
• RCF, by q.e. (Tarski) (semialgebraic sets, e.g. discs).
• Th(R,+, ·, exp) (Wilkie).
• Restricted analytic functions, Pfaffian functions,. . .

Tame behaviour of definable sets and functions, even in higher dimension: e.g.
piecewise differentiability, cell decomposition, dcl is a pregeometry with nice
dimension theory, and more.
Applications in: (real) algebraic geometry, tame topology, number theory,. . .

O-minimality and Types The Domination Monoid Main Results Some Details

O-minimality

Definition (L ⊇ {<})
T is o-minimal iff for every M � T every definable subset of M1 is a finite union of
points and intervals.
Note: no requirement on subsets of M2.

Non-example: Th(R, <, sin). Examples:
• DLO, by quantifier elimination.
• DOAG, by q.e. (semilinear sets, e.g. polyhedra).
• RCF, by q.e. (Tarski) (semialgebraic sets, e.g. discs).
• Th(R,+, ·, exp) (Wilkie).
• Restricted analytic functions, Pfaffian functions,. . .

Tame behaviour of definable sets and functions, even in higher dimension: e.g.
piecewise differentiability, cell decomposition, dcl is a pregeometry with nice
dimension theory, and more.
Applications in: (real) algebraic geometry, tame topology, number theory,. . .

O-minimality and Types The Domination Monoid Main Results Some Details

O-minimality

Definition (L ⊇ {<})
T is o-minimal iff for every M � T every definable subset of M1 is a finite union of
points and intervals.
Note: no requirement on subsets of M2. Non-example: Th(R, <, sin).

Examples:
• DLO, by quantifier elimination.
• DOAG, by q.e. (semilinear sets, e.g. polyhedra).
• RCF, by q.e. (Tarski) (semialgebraic sets, e.g. discs).
• Th(R,+, ·, exp) (Wilkie).
• Restricted analytic functions, Pfaffian functions,. . .

Tame behaviour of definable sets and functions, even in higher dimension: e.g.
piecewise differentiability, cell decomposition, dcl is a pregeometry with nice
dimension theory, and more.
Applications in: (real) algebraic geometry, tame topology, number theory,. . .

O-minimality and Types The Domination Monoid Main Results Some Details

O-minimality

Definition (L ⊇ {<})
T is o-minimal iff for every M � T every definable subset of M1 is a finite union of
points and intervals.
Note: no requirement on subsets of M2. Non-example: Th(R, <, sin). Examples:
• DLO, by quantifier elimination.
• DOAG, by q.e. (semilinear sets, e.g. polyhedra).
• RCF, by q.e. (Tarski) (semialgebraic sets, e.g. discs).
• Th(R,+, ·, exp) (Wilkie).
• Restricted analytic functions, Pfaffian functions,. . .

Tame behaviour of definable sets and functions, even in higher dimension: e.g.
piecewise differentiability, cell decomposition, dcl is a pregeometry with nice
dimension theory, and more.
Applications in: (real) algebraic geometry, tame topology, number theory,. . .

O-minimality and Types The Domination Monoid Main Results Some Details

O-minimality

Definition (L ⊇ {<})
T is o-minimal iff for every M � T every definable subset of M1 is a finite union of
points and intervals.
Note: no requirement on subsets of M2. Non-example: Th(R, <, sin). Examples:
• DLO, by quantifier elimination.
• DOAG, by q.e. (semilinear sets, e.g. polyhedra).
• RCF, by q.e. (Tarski) (semialgebraic sets, e.g. discs).
• Th(R,+, ·, exp) (Wilkie).
• Restricted analytic functions, Pfaffian functions,. . .

Tame behaviour of definable sets and functions, even in higher dimension: e.g.
piecewise differentiability, cell decomposition, dcl is a pregeometry with nice
dimension theory, and more.

Applications in: (real) algebraic geometry, tame topology, number theory,. . .

O-minimality and Types The Domination Monoid Main Results Some Details

O-minimality

Definition (L ⊇ {<})
T is o-minimal iff for every M � T every definable subset of M1 is a finite union of
points and intervals.
Note: no requirement on subsets of M2. Non-example: Th(R, <, sin). Examples:
• DLO, by quantifier elimination.
• DOAG, by q.e. (semilinear sets, e.g. polyhedra).
• RCF, by q.e. (Tarski) (semialgebraic sets, e.g. discs).
• Th(R,+, ·, exp) (Wilkie).
• Restricted analytic functions, Pfaffian functions,. . .

Tame behaviour of definable sets and functions, even in higher dimension: e.g.
piecewise differentiability, cell decomposition, dcl is a pregeometry with nice
dimension theory, and more.
Applications in: (real) algebraic geometry, tame topology, number theory,. . .

O-minimality and Types The Domination Monoid Main Results Some Details

Types
Throughout: letters may denote tuples, e.g. x = x0, . . . , xn−1, a = a0, . . . , am−1.

Go-to example for this talk: DLO. Fix a parameter set B.

tp(a/B) = {formulas over B satisfied by a}.

{x ≥ b | a0 ≥ b ∈ B} ∪ {x ≤ b | a0 ≤ b ∈ B} =

tp(a0/B) = tp(a1/B) 6= tp(a2/B)
Space of types: Sx(B). Equivalent descriptions of p(x) ∈ Sx(B):
• p(x) = tp(a/B)

for a in some N �M ⊇ B

• p(x) = a maximal consistent set of ϕ(x) ∈ L(B)
• p(x) = an ultrafilter on the Boolean algebra Defx(B) (Stone duality)

T o-minimal ⇒ 1-types over A = cuts in dclA.

•
a

Example (A 2-type in RCF)
The element of Sx0,x1(R) axiomatised by
{0 < x1 < 1/n | n ∈ N} ∪ {0 < x0} ∪ {x20 + x21 = 1}.

O-minimality and Types The Domination Monoid Main Results Some Details

Types
Throughout: letters may denote tuples, e.g. x = x0, . . . , xn−1, a = a0, . . . , am−1.
Go-to example for this talk: DLO.

Fix a parameter set B.

tp(a/B) = {formulas over B satisfied by a}.

{x ≥ b | a0 ≥ b ∈ B} ∪ {x ≤ b | a0 ≤ b ∈ B} =

tp(a0/B) = tp(a1/B) 6= tp(a2/B)
Space of types: Sx(B). Equivalent descriptions of p(x) ∈ Sx(B):
• p(x) = tp(a/B)

for a in some N �M ⊇ B

• p(x) = a maximal consistent set of ϕ(x) ∈ L(B)
• p(x) = an ultrafilter on the Boolean algebra Defx(B) (Stone duality)

T o-minimal ⇒ 1-types over A = cuts in dclA.

•
a

Example (A 2-type in RCF)
The element of Sx0,x1(R) axiomatised by
{0 < x1 < 1/n | n ∈ N} ∪ {0 < x0} ∪ {x20 + x21 = 1}.

O-minimality and Types The Domination Monoid Main Results Some Details

Types
Throughout: letters may denote tuples, e.g. x = x0, . . . , xn−1, a = a0, . . . , am−1.
Go-to example for this talk: DLO. Fix a parameter set B.

tp(a/B) = {formulas over B satisfied by a}.

{x ≥ b | a0 ≥ b ∈ B} ∪ {x ≤ b | a0 ≤ b ∈ B} =

tp(a0/B) = tp(a1/B) 6= tp(a2/B)
Space of types: Sx(B). Equivalent descriptions of p(x) ∈ Sx(B):
• p(x) = tp(a/B)

for a in some N �M ⊇ B

• p(x) = a maximal consistent set of ϕ(x) ∈ L(B)
• p(x) = an ultrafilter on the Boolean algebra Defx(B) (Stone duality)

T o-minimal ⇒ 1-types over A = cuts in dclA.

| | | | | ||||| | | | | |||||||||

•
a

Example (A 2-type in RCF)
The element of Sx0,x1(R) axiomatised by
{0 < x1 < 1/n | n ∈ N} ∪ {0 < x0} ∪ {x20 + x21 = 1}.

O-minimality and Types The Domination Monoid Main Results Some Details

Types
Throughout: letters may denote tuples, e.g. x = x0, . . . , xn−1, a = a0, . . . , am−1.
Go-to example for this talk: DLO. Fix a parameter set B.

tp(a/B) = {formulas over B satisfied by a}.

{x ≥ b | a0 ≥ b ∈ B} ∪ {x ≤ b | a0 ≤ b ∈ B} =

tp(a0/B) = tp(a1/B) 6= tp(a2/B)

Space of types: Sx(B). Equivalent descriptions of p(x) ∈ Sx(B):
• p(x) = tp(a/B)

for a in some N �M ⊇ B

• p(x) = a maximal consistent set of ϕ(x) ∈ L(B)
• p(x) = an ultrafilter on the Boolean algebra Defx(B) (Stone duality)

T o-minimal ⇒ 1-types over A = cuts in dclA.

| | | | | ||||| | | | |•
a0
•
a1

•
a2

|||||||||

•
a

Example (A 2-type in RCF)
The element of Sx0,x1(R) axiomatised by
{0 < x1 < 1/n | n ∈ N} ∪ {0 < x0} ∪ {x20 + x21 = 1}.

O-minimality and Types The Domination Monoid Main Results Some Details

Types
Throughout: letters may denote tuples, e.g. x = x0, . . . , xn−1, a = a0, . . . , am−1.
Go-to example for this talk: DLO. Fix a parameter set B.

tp(a/B) = {formulas over B satisfied by a}.

{x ≥ b | a0 ≥ b ∈ B} ∪ {x ≤ b | a0 ≤ b ∈ B} = tp(a0/B) = tp(a1/B) 6= tp(a2/B)

Space of types: Sx(B). Equivalent descriptions of p(x) ∈ Sx(B):
• p(x) = tp(a/B)

for a in some N �M ⊇ B

• p(x) = a maximal consistent set of ϕ(x) ∈ L(B)
• p(x) = an ultrafilter on the Boolean algebra Defx(B) (Stone duality)

T o-minimal ⇒ 1-types over A = cuts in dclA.

| | | | | ||||| | | | |•
a0
•
a1

•
a2

|||||||||

•
a

Example (A 2-type in RCF)
The element of Sx0,x1(R) axiomatised by
{0 < x1 < 1/n | n ∈ N} ∪ {0 < x0} ∪ {x20 + x21 = 1}.

O-minimality and Types The Domination Monoid Main Results Some Details

Types
Throughout: letters may denote tuples, e.g. x = x0, . . . , xn−1, a = a0, . . . , am−1.
Go-to example for this talk: DLO. Fix a parameter set B.

tp(a/B) = {formulas over B satisfied by a}.

{x ≥ b | a0 ≥ b ∈ B} ∪ {x ≤ b | a0 ≤ b ∈ B} = tp(a0/B) = tp(a1/B) 6= tp(a2/B)
Space of types: Sx(B). Equivalent descriptions of p(x) ∈ Sx(B):
• p(x) = tp(a/B)

for a in some N �M ⊇ B
• p(x) = a maximal consistent set of ϕ(x) ∈ L(B)
• p(x) = an ultrafilter on the Boolean algebra Defx(B) (Stone duality)

T o-minimal ⇒ 1-types over A = cuts in dclA.

| | | | | ||||| | | | |•
a0
•
a1

•
a2

|||||||||

•
a

Example (A 2-type in RCF)
The element of Sx0,x1(R) axiomatised by
{0 < x1 < 1/n | n ∈ N} ∪ {0 < x0} ∪ {x20 + x21 = 1}.

O-minimality and Types The Domination Monoid Main Results Some Details

Types
Throughout: letters may denote tuples, e.g. x = x0, . . . , xn−1, a = a0, . . . , am−1.
Go-to example for this talk: DLO. Fix a parameter set B.

tp(a/B) = {formulas over B satisfied by a}.

{x ≥ b | a0 ≥ b ∈ B} ∪ {x ≤ b | a0 ≤ b ∈ B} = tp(a0/B) = tp(a1/B) 6= tp(a2/B)
Space of types: Sx(B). Equivalent descriptions of p(x) ∈ Sx(B):
• p(x) = tp(a/B) for a in some N �M ⊇ B

• p(x) = a maximal consistent set of ϕ(x) ∈ L(B)
• p(x) = an ultrafilter on the Boolean algebra Defx(B) (Stone duality)

T o-minimal ⇒ 1-types over A = cuts in dclA.

| | | | | ||||| | | | |•
a0
•
a1

•
a2

||||||||| •
a

Example (A 2-type in RCF)
The element of Sx0,x1(R) axiomatised by
{0 < x1 < 1/n | n ∈ N} ∪ {0 < x0} ∪ {x20 + x21 = 1}.

O-minimality and Types The Domination Monoid Main Results Some Details

Types
Throughout: letters may denote tuples, e.g. x = x0, . . . , xn−1, a = a0, . . . , am−1.
Go-to example for this talk: DLO. Fix a parameter set B.

tp(a/B) = {formulas over B satisfied by a}.

{x ≥ b | a0 ≥ b ∈ B} ∪ {x ≤ b | a0 ≤ b ∈ B} = tp(a0/B) = tp(a1/B) 6= tp(a2/B)
Space of types: Sx(B). Equivalent descriptions of p(x) ∈ Sx(B):
• p(x) = tp(a/B) for a in some N �M ⊇ B
• p(x) = a maximal consistent set of ϕ(x) ∈ L(B)

• p(x) = an ultrafilter on the Boolean algebra Defx(B) (Stone duality)
T o-minimal ⇒ 1-types over A = cuts in dclA.

| | | | | ||||| | | | |•
a0
•
a1

•
a2

||||||||| •
a

Example (A 2-type in RCF)
The element of Sx0,x1(R) axiomatised by
{0 < x1 < 1/n | n ∈ N} ∪ {0 < x0} ∪ {x20 + x21 = 1}.

O-minimality and Types The Domination Monoid Main Results Some Details

Types
Throughout: letters may denote tuples, e.g. x = x0, . . . , xn−1, a = a0, . . . , am−1.
Go-to example for this talk: DLO. Fix a parameter set B.

tp(a/B) = {formulas over B satisfied by a}.

{x ≥ b | a0 ≥ b ∈ B} ∪ {x ≤ b | a0 ≤ b ∈ B} = tp(a0/B) = tp(a1/B) 6= tp(a2/B)
Space of types: Sx(B). Equivalent descriptions of p(x) ∈ Sx(B):
• p(x) = tp(a/B) for a in some N �M ⊇ B
• p(x) = a maximal consistent set of ϕ(x) ∈ L(B)
• p(x) = an ultrafilter on the Boolean algebra Defx(B) (Stone duality)

T o-minimal ⇒ 1-types over A = cuts in dclA.

| | | | | ||||| | | | |•
a0
•
a1

•
a2

||||||||| •
a

Example (A 2-type in RCF)
The element of Sx0,x1(R) axiomatised by
{0 < x1 < 1/n | n ∈ N} ∪ {0 < x0} ∪ {x20 + x21 = 1}.

O-minimality and Types The Domination Monoid Main Results Some Details

Types
Throughout: letters may denote tuples, e.g. x = x0, . . . , xn−1, a = a0, . . . , am−1.
Go-to example for this talk: DLO. Fix a parameter set B.

tp(a/B) = {formulas over B satisfied by a}.

{x ≥ b | a0 ≥ b ∈ B} ∪ {x ≤ b | a0 ≤ b ∈ B} = tp(a0/B) = tp(a1/B) 6= tp(a2/B)
Space of types: Sx(B). Equivalent descriptions of p(x) ∈ Sx(B):
• p(x) = tp(a/B) for a in some N �M ⊇ B
• p(x) = a maximal consistent set of ϕ(x) ∈ L(B)
• p(x) = an ultrafilter on the Boolean algebra Defx(B) (Stone duality)

T o-minimal ⇒ 1-types over A = cuts in dclA.

| | | | | ||||| | | | |•
a0
•
a1

•
a2

||||||||| •
a

Example (A 2-type in RCF)
The element of Sx0,x1(R) axiomatised by
{0 < x1 < 1/n | n ∈ N} ∪ {0 < x0} ∪ {x20 + x21 = 1}.

O-minimality and Types The Domination Monoid Main Results Some Details

Types
Throughout: letters may denote tuples, e.g. x = x0, . . . , xn−1, a = a0, . . . , am−1.
Go-to example for this talk: DLO. Fix a parameter set B.

tp(a/B) = {formulas over B satisfied by a}.

{x ≥ b | a0 ≥ b ∈ B} ∪ {x ≤ b | a0 ≤ b ∈ B} = tp(a0/B) = tp(a1/B) 6= tp(a2/B)
Space of types: Sx(B). Equivalent descriptions of p(x) ∈ Sx(B):
• p(x) = tp(a/B) for a in some N �M ⊇ B
• p(x) = a maximal consistent set of ϕ(x) ∈ L(B)
• p(x) = an ultrafilter on the Boolean algebra Defx(B) (Stone duality)

T o-minimal ⇒ 1-types over A = cuts in dclA.

| | | | | ||||| | | | |•
a0
•
a1

•
a2

||||||||| •
a

Example (A 2-type in RCF)
The element of Sx0,x1(R) axiomatised by
{0 < x1 < 1/n | n ∈ N} ∪ {0 < x0} ∪ {x20 + x21 = 1}.

O-minimality and Types The Domination Monoid Main Results Some Details

Monsters

Fix a “big enough” cardinal. Say κ > iω|T | strong limit. Small means of size < κ.

Definition
U is a (κ-)monster model of T iff for all small B ⊂ U

• U realises all types in S<ω(B) (κ-saturation), and
• types = orbits, i.e. tp(a0/B) = tp(a1/B) if and only if they are conjugate by
the pointwise stabiliser Aut(U/A) (κ-strong homogeneity).

Fact (Monsters are everywhere)
For every κ, every T , and every M � T , there is a κ-monster U �M .

• We are going to work in S<ω(U), i.e. with types over U.
• We think of their realisations as living in a fixed bigger monster U1

+� U.

O-minimality and Types The Domination Monoid Main Results Some Details

Monsters

Fix a “big enough” cardinal. Say κ > iω|T | strong limit. Small means of size < κ.

Definition
U is a (κ-)monster model of T iff for all small B ⊂ U

• U realises all types in S<ω(B) (κ-saturation)

, and
• types = orbits, i.e. tp(a0/B) = tp(a1/B) if and only if they are conjugate by
the pointwise stabiliser Aut(U/A) (κ-strong homogeneity).

Fact (Monsters are everywhere)
For every κ, every T , and every M � T , there is a κ-monster U �M .

• We are going to work in S<ω(U), i.e. with types over U.
• We think of their realisations as living in a fixed bigger monster U1

+� U.

O-minimality and Types The Domination Monoid Main Results Some Details

Monsters

Fix a “big enough” cardinal. Say κ > iω|T | strong limit. Small means of size < κ.

Definition
U is a (κ-)monster model of T iff for all small B ⊂ U

• U realises all types in S<ω(B) (κ-saturation), and
• types = orbits, i.e. tp(a0/B) = tp(a1/B) if and only if they are conjugate by
the pointwise stabiliser Aut(U/A) (κ-strong homogeneity).

Fact (Monsters are everywhere)
For every κ, every T , and every M � T , there is a κ-monster U �M .

• We are going to work in S<ω(U), i.e. with types over U.
• We think of their realisations as living in a fixed bigger monster U1

+� U.

O-minimality and Types The Domination Monoid Main Results Some Details

Monsters

Fix a “big enough” cardinal. Say κ > iω|T | strong limit. Small means of size < κ.

Definition
U is a (κ-)monster model of T iff for all small B ⊂ U

• U realises all types in S<ω(B) (κ-saturation), and
• types = orbits, i.e. tp(a0/B) = tp(a1/B) if and only if they are conjugate by
the pointwise stabiliser Aut(U/A) (κ-strong homogeneity).

Fact (Monsters are everywhere)
For every κ, every T , and every M � T , there is a κ-monster U �M .

• We are going to work in S<ω(U), i.e. with types over U.
• We think of their realisations as living in a fixed bigger monster U1

+� U.

O-minimality and Types The Domination Monoid Main Results Some Details

Monsters

Fix a “big enough” cardinal. Say κ > iω|T | strong limit. Small means of size < κ.

Definition
U is a (κ-)monster model of T iff for all small B ⊂ U

• U realises all types in S<ω(B) (κ-saturation), and
• types = orbits, i.e. tp(a0/B) = tp(a1/B) if and only if they are conjugate by
the pointwise stabiliser Aut(U/A) (κ-strong homogeneity).

Fact (Monsters are everywhere)
For every κ, every T , and every M � T , there is a κ-monster U �M .

• We are going to work in S<ω(U), i.e. with types over U.

• We think of their realisations as living in a fixed bigger monster U1
+� U.

O-minimality and Types The Domination Monoid Main Results Some Details

Monsters

Fix a “big enough” cardinal. Say κ > iω|T | strong limit. Small means of size < κ.

Definition
U is a (κ-)monster model of T iff for all small B ⊂ U

• U realises all types in S<ω(B) (κ-saturation), and
• types = orbits, i.e. tp(a0/B) = tp(a1/B) if and only if they are conjugate by
the pointwise stabiliser Aut(U/A) (κ-strong homogeneity).

Fact (Monsters are everywhere)
For every κ, every T , and every M � T , there is a κ-monster U �M .

• We are going to work in S<ω(U), i.e. with types over U.
• We think of their realisations as living in a fixed bigger monster U1

+� U.

O-minimality and Types The Domination Monoid Main Results Some Details

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small)
p A-invariant: whether p(x) ` ϕ(x; d) depends only on ϕ(x;w) and tp(d/A).

Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇔ T stable. O-minimal theories are unstable.

O-minimality and Types The Domination Monoid Main Results Some Details

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small)
p A-invariant: whether p(x) ` ϕ(x; d) depends only on ϕ(x;w) and tp(d/A).

Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

| | | | | ||||||||||
pA+︸︷︷︸

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇔ T stable. O-minimal theories are unstable.

O-minimality and Types The Domination Monoid Main Results Some Details

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small)
p A-invariant: whether p(x) ` ϕ(x; d) depends only on ϕ(x;w) and tp(d/A).

Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

| | | | | ||||||||||
pA+︸︷︷︸

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇔ T stable. O-minimal theories are unstable.

O-minimality and Types The Domination Monoid Main Results Some Details

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small, B 6⊆ U arbitrary)
p A-invariant: whether p(x) ` ϕ(x; d) depends only on ϕ(x;w) and tp(d/A).

Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

| | | | | ||||||||||
pA+︸︷︷︸

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇔ T stable. O-minimal theories are unstable.

O-minimality and Types The Domination Monoid Main Results Some Details

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small, B 6⊆ U arbitrary)
p A-invariant: whether p(x) ` ϕ(x; d) depends only on ϕ(x;w) and tp(d/A).

Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

| | | | | ||||||||||
pA+︸︷︷︸

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇔ T stable. O-minimal theories are unstable.

O-minimality and Types The Domination Monoid Main Results Some Details

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small, B 6⊆ U arbitrary)
p A-invariant: whether p(x) ` ϕ(x; d) depends only on ϕ(x;w) and tp(d/A).

Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} pA+(x)⊗ pA+(y)

| | | | | ||||||||||
()pA+

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇔ T stable. O-minimal theories are unstable.

O-minimality and Types The Domination Monoid Main Results Some Details

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small, B 6⊆ U arbitrary)
p A-invariant: whether p(x) ` ϕ(x; d) depends only on ϕ(x;w) and tp(d/A).

Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} pA+(x)⊗ pA+(y)

| | | | | ||||||||||
()pA+

|
y

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇔ T stable. O-minimal theories are unstable.

O-minimality and Types The Domination Monoid Main Results Some Details

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small, B 6⊆ U arbitrary)
p A-invariant: whether p(x) ` ϕ(x; d) depends only on ϕ(x;w) and tp(d/A).

Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} pA+(x)⊗ pA+(y) ` x < y

| | | | | ||||||||||
()pA+

|
y

|
x

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇔ T stable. O-minimal theories are unstable.

O-minimality and Types The Domination Monoid Main Results Some Details

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small, B 6⊆ U arbitrary)
p A-invariant: whether p(x) ` ϕ(x; d) depends only on ϕ(x;w) and tp(d/A).

Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} pA+(x)⊗ pA+(y) ` x < y

| | | | | ||||||||||
()pA+

|
y

|
x

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇔ T stable. O-minimal theories are unstable.

O-minimality and Types The Domination Monoid Main Results Some Details

Domination

Definition (Domination preorder on Sinv
<ω(U); generalises Rudin–Keisler)

px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p.

Example (DLO, all types below are ∅-invariant)
tp(x > U)≥D tp(y1 > y0 > U) (“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|
y0 = x
|

y1

|

Example (Random Graph)
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.

O-minimality and Types The Domination Monoid Main Results Some Details

Domination

Definition (Domination preorder on Sinv
<ω(U); generalises Rudin–Keisler)

px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p.

Example (DLO, all types below are ∅-invariant)
tp(x > U)

≥D tp(y1 > y0 > U) (“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|
y0 = x
|

y1

|

Example (Random Graph)
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.

O-minimality and Types The Domination Monoid Main Results Some Details

Domination

Definition (Domination preorder on Sinv
<ω(U); generalises Rudin–Keisler)

px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p.

Example (DLO, all types below are ∅-invariant)
tp(x > U)

≥D

tp(y1 > y0 > U)

(“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|

y0 = x
|

y1

|

Example (Random Graph)
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.

O-minimality and Types The Domination Monoid Main Results Some Details

Domination

Definition (Domination preorder on Sinv
<ω(U); generalises Rudin–Keisler)

px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p.

Example (DLO, all types below are ∅-invariant)
tp(x > U)≥D tp(y1 > y0 > U) (“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|

y0 = x
|

y1

|

Example (Random Graph)
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.

O-minimality and Types The Domination Monoid Main Results Some Details

Domination

Definition (Domination preorder on Sinv
<ω(U); generalises Rudin–Keisler)

px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p.

Example (DLO, all types below are ∅-invariant)
tp(x > U)≥D tp(y1 > y0 > U) (“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|

y0 = x
|

y1

|

Example (Random Graph)
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.

O-minimality and Types The Domination Monoid Main Results Some Details

Domination

Definition (Domination preorder on Sinv
<ω(U); generalises Rudin–Keisler)

px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p.

Example (DLO, all types below are ∅-invariant)
tp(x > U)≥D tp(y1 > y0 > U) (“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|

y0 = x
|

y1

|

Example (Random Graph, or a set with no structure (degenerate domination))
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.

O-minimality and Types The Domination Monoid Main Results Some Details

The domination monoid

Let Ĩnv(U) := Sinv
<ω(U)/ ∼D.

Fact
If ∼D is a congruence with respect to ⊗, then
• (Ĩnv(U),⊗,≤D) is an ordered monoid, the domination monoid;
• the neutral element (and minimum) is the (unique) class of realised types; and
• nothing else is invertible (p⊗ q realised =⇒ p, q both realised!).

Warning: there is a theory where ⊗ and ∼D are not compatible.

There are some conditions ensuring compatibility, but this is a different story.

O-minimality and Types The Domination Monoid Main Results Some Details

The domination monoid

Let Ĩnv(U) := Sinv
<ω(U)/ ∼D.

Fact
If ∼D is a congruence with respect to ⊗, then
• (Ĩnv(U),⊗,≤D) is an ordered monoid, the domination monoid;
• the neutral element (and minimum) is the (unique) class of realised types; and
• nothing else is invertible (p⊗ q realised =⇒ p, q both realised!).

Warning: there is a theory where ⊗ and ∼D are not compatible.

There are some conditions ensuring compatibility, but this is a different story.

O-minimality and Types The Domination Monoid Main Results Some Details

The domination monoid

Let Ĩnv(U) := Sinv
<ω(U)/ ∼D.

Fact
If ∼D is a congruence with respect to ⊗, then
• (Ĩnv(U),⊗,≤D) is an ordered monoid, the domination monoid;
• the neutral element (and minimum) is the (unique) class of realised types; and
• nothing else is invertible (p⊗ q realised =⇒ p, q both realised!).

Warning: there is a theory where ⊗ and ∼D are not compatible.

There are some conditions ensuring compatibility, but this is a different story.

O-minimality and Types The Domination Monoid Main Results Some Details

Examples
(In all of these (Ĩnv(U),⊗) is well-defined)

T strongly minimal (see here)
(Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
For T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+).

T superstable (thin is enough)
By classical results Ĩnv(U) ∼=

⊕
i<λ(N,+,≤), for some λ = λ(U).

DLO (see here)
(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆).
Invariant cut = small cofinality on exactly one side.

Random Graph (see here)
∼D is degenerate, (Ĩnv(U),⊗) resembles (Sinv

<ω(U),⊗), e.g. it is noncommutative.

O-minimality and Types The Domination Monoid Main Results Some Details

Examples
(In all of these (Ĩnv(U),⊗) is well-defined)

T strongly minimal (see here)
(Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
For T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+).

T superstable (thin is enough)
By classical results Ĩnv(U) ∼=

⊕
i<λ(N,+,≤), for some λ = λ(U).

DLO (see here)
(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆).
Invariant cut = small cofinality on exactly one side.

Random Graph (see here)
∼D is degenerate, (Ĩnv(U),⊗) resembles (Sinv

<ω(U),⊗), e.g. it is noncommutative.

O-minimality and Types The Domination Monoid Main Results Some Details

Examples
(In all of these (Ĩnv(U),⊗) is well-defined)

T strongly minimal (see here)
(Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
For T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+).

T superstable (thin is enough)
By classical results Ĩnv(U) ∼=

⊕
i<λ(N,+,≤), for some λ = λ(U).

DLO (see here)
(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆).
Invariant cut = small cofinality on exactly one side.

Random Graph (see here)
∼D is degenerate, (Ĩnv(U),⊗) resembles (Sinv

<ω(U),⊗), e.g. it is noncommutative.

O-minimality and Types The Domination Monoid Main Results Some Details

Examples
(In all of these (Ĩnv(U),⊗) is well-defined)

T strongly minimal (see here)
(Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
For T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+).

T superstable (thin is enough)
By classical results Ĩnv(U) ∼=

⊕
i<λ(N,+,≤), for some λ = λ(U).

DLO (see here)
(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆).
Invariant cut = small cofinality on exactly one side.

Random Graph (see here)
∼D is degenerate, (Ĩnv(U),⊗) resembles (Sinv

<ω(U),⊗), e.g. it is noncommutative.

O-minimality and Types The Domination Monoid Main Results Some Details

Weak orthogonality
I swear this is the last definition for this talk

Definition
p(x) is weakly orthogonal to q(y) iff p(x) ∪ q(y) is complete. Write p ⊥w q.

Example
In any o-minimal T with 0 ∈ L, these two are ∅-invariant 1-types:

p(x) := tp(+∞/U) := {x > d |∈ U} q(y) := tp(0+/U) := {0 < y < d | d ∈ U, d > 0}

In DOAG, p ⊥w q, but in RCF p 6⊥w q. Reason: “dcl(p) ∩ q 6= ∅”: is x ≥ 1/y?

Fact

• (T o-minimal) If p, q ∈ S1(U), then p 6⊥w q iff p ∼D q iff f∗p = q for some
U-definable bijection f .

• q ⊥w p0 ≥D p1 =⇒ q ⊥w p1. So we may expand to (Ĩnv(U),≥D,⊗,⊥w).
• In particular if q ⊥w p ≥D q then q is realised.

O-minimality and Types The Domination Monoid Main Results Some Details

Weak orthogonality
I swear this is the last definition for this talk

Definition
p(x) is weakly orthogonal to q(y) iff p(x) ∪ q(y) is complete. Write p ⊥w q.

Example
In any o-minimal T with 0 ∈ L, these two are ∅-invariant 1-types:

p(x) := tp(+∞/U) := {x > d |∈ U} q(y) := tp(0+/U) := {0 < y < d | d ∈ U, d > 0}

In DOAG, p ⊥w q, but in RCF p 6⊥w q. Reason: “dcl(p) ∩ q 6= ∅”: is x ≥ 1/y?

Fact

• (T o-minimal) If p, q ∈ S1(U), then p 6⊥w q iff p ∼D q iff f∗p = q for some
U-definable bijection f .

• q ⊥w p0 ≥D p1 =⇒ q ⊥w p1. So we may expand to (Ĩnv(U),≥D,⊗,⊥w).
• In particular if q ⊥w p ≥D q then q is realised.

O-minimality and Types The Domination Monoid Main Results Some Details

Weak orthogonality
I swear this is the last definition for this talk

Definition
p(x) is weakly orthogonal to q(y) iff p(x) ∪ q(y) is complete. Write p ⊥w q.

Example
In any o-minimal T with 0 ∈ L, these two are ∅-invariant 1-types:

p(x) := tp(+∞/U) := {x > d |∈ U} q(y) := tp(0+/U) := {0 < y < d | d ∈ U, d > 0}

In DOAG, p ⊥w q, but in RCF p 6⊥w q. Reason: “dcl(p) ∩ q 6= ∅”: is x ≥ 1/y?

Fact

• (T o-minimal) If p, q ∈ S1(U), then p 6⊥w q iff p ∼D q iff f∗p = q for some
U-definable bijection f .

• q ⊥w p0 ≥D p1 =⇒ q ⊥w p1. So we may expand to (Ĩnv(U),≥D,⊗,⊥w).
• In particular if q ⊥w p ≥D q then q is realised.

O-minimality and Types The Domination Monoid Main Results Some Details

Weak orthogonality
I swear this is the last definition for this talk

Definition
p(x) is weakly orthogonal to q(y) iff p(x) ∪ q(y) is complete. Write p ⊥w q.

Example
In any o-minimal T with 0 ∈ L, these two are ∅-invariant 1-types:

p(x) := tp(+∞/U) := {x > d |∈ U} q(y) := tp(0+/U) := {0 < y < d | d ∈ U, d > 0}

In DOAG, p ⊥w q, but in RCF p 6⊥w q. Reason: “dcl(p) ∩ q 6= ∅”: is x ≥ 1/y?

Fact

• (T o-minimal) If p, q ∈ S1(U), then p 6⊥w q iff p ∼D q iff f∗p = q for some
U-definable bijection f .

• q ⊥w p0 ≥D p1 =⇒ q ⊥w p1. So we may expand to (Ĩnv(U),≥D,⊗,⊥w).
• In particular if q ⊥w p ≥D q then q is realised.

O-minimality and Types The Domination Monoid Main Results Some Details

Reduction to generation by 1-types

Ok, I lied, technically there is a definition here

Theorem (M., T o-minimal)
If every p ∈ Sinv(U) is ∼D to a product of 1-types, then Ĩnv(U) is well-defined, and
(Ĩnv(U),⊗,≥D,⊥w) ∼= (Pfin(X),∪,⊇, D)

, for X any maximal set of pairwise ⊥w
invariant 1-types and D(x, y) := x ∩ y = ∅.
Hence, given an o-minimal T , to conclude the study of Ĩnv(U) it is enough to:

1. show that invariant types are equivalent to a product of 1-types, and
2. identify a nice set of representatives for 6⊥w-classes of invariant 1-types.

Sufficient condition for 1: if c is a U-independent tuple, then⋃
f∈F |x|,1T

tpwf (f(c)/U) ∪
{
wf = f(x)

∣∣∣ f ∈ F |x|,1T

}
` tpx(c/U) (†)

F |x|,1T := set of ∅-definable functions of T with domain U|x| and codomain U1.

O-minimality and Types The Domination Monoid Main Results Some Details

Reduction to generation by 1-types

Ok, I lied, technically there is a definition here

Theorem (M., T o-minimal)
If every p ∈ Sinv(U) is ∼D to a product of 1-types, then Ĩnv(U) is well-defined, and
(Ĩnv(U),⊗,≥D,⊥w) ∼= (Pfin(X),∪,⊇, D), for X any maximal set of pairwise ⊥w
invariant 1-types

and D(x, y) := x ∩ y = ∅.
Hence, given an o-minimal T , to conclude the study of Ĩnv(U) it is enough to:

1. show that invariant types are equivalent to a product of 1-types, and
2. identify a nice set of representatives for 6⊥w-classes of invariant 1-types.

Sufficient condition for 1: if c is a U-independent tuple, then⋃
f∈F |x|,1T

tpwf (f(c)/U) ∪
{
wf = f(x)

∣∣∣ f ∈ F |x|,1T

}
` tpx(c/U) (†)

F |x|,1T := set of ∅-definable functions of T with domain U|x| and codomain U1.

O-minimality and Types The Domination Monoid Main Results Some Details

Reduction to generation by 1-types

Ok, I lied, technically there is a definition here

Theorem (M., T o-minimal)
If every p ∈ Sinv(U) is ∼D to a product of 1-types, then Ĩnv(U) is well-defined, and
(Ĩnv(U),⊗,≥D,⊥w) ∼= (Pfin(X),∪,⊇, D), for X any maximal set of pairwise ⊥w
invariant 1-types and D(x, y) := x ∩ y = ∅.

Hence, given an o-minimal T , to conclude the study of Ĩnv(U) it is enough to:

1. show that invariant types are equivalent to a product of 1-types, and
2. identify a nice set of representatives for 6⊥w-classes of invariant 1-types.

Sufficient condition for 1: if c is a U-independent tuple, then⋃
f∈F |x|,1T

tpwf (f(c)/U) ∪
{
wf = f(x)

∣∣∣ f ∈ F |x|,1T

}
` tpx(c/U) (†)

F |x|,1T := set of ∅-definable functions of T with domain U|x| and codomain U1.

O-minimality and Types The Domination Monoid Main Results Some Details

Reduction to generation by 1-types

Ok, I lied, technically there is a definition here

Theorem (M., T o-minimal)
If every p ∈ Sinv(U) is ∼D to a product of 1-types, then Ĩnv(U) is well-defined, and
(Ĩnv(U),⊗,≥D,⊥w) ∼= (Pfin(X),∪,⊇, D), for X any maximal set of pairwise ⊥w
invariant 1-types and D(x, y) := x ∩ y = ∅.
Hence, given an o-minimal T , to conclude the study of Ĩnv(U) it is enough to:

1. show that invariant types are equivalent to a product of 1-types, and
2. identify a nice set of representatives for 6⊥w-classes of invariant 1-types.

Sufficient condition for 1: if c is a U-independent tuple, then⋃
f∈F |x|,1T

tpwf (f(c)/U) ∪
{
wf = f(x)

∣∣∣ f ∈ F |x|,1T

}
` tpx(c/U) (†)

F |x|,1T := set of ∅-definable functions of T with domain U|x| and codomain U1.

O-minimality and Types The Domination Monoid Main Results Some Details

Reduction to generation by 1-types
Ok, I lied, technically there is a definition here

Theorem (M., T o-minimal)
If every p ∈ Sinv(U) is ∼D to a product of 1-types, then Ĩnv(U) is well-defined, and
(Ĩnv(U),⊗,≥D,⊥w) ∼= (Pfin(X),∪,⊇, D), for X any maximal set of pairwise ⊥w
invariant 1-types and D(x, y) := x ∩ y = ∅.
Hence, given an o-minimal T , to conclude the study of Ĩnv(U) it is enough to:

1. show that invariant types are equivalent to a product of 1-types, and
2. identify a nice set of representatives for 6⊥w-classes of invariant 1-types.

Sufficient condition for 1: if c is a U-independent tuple, then⋃
f∈F |x|,1T

tpwf (f(c)/U) ∪
{
wf = f(x)

∣∣∣ f ∈ F |x|,1T

}
` tpx(c/U) (†)

F |x|,1T := set of ∅-definable functions of T with domain U|x| and codomain U1.

O-minimality and Types The Domination Monoid Main Results Some Details

Applications
Theorem ([HHM08])
In DOAG, Ĩnv(U) ∼= Pfin({invariant convex subgroups}).

Here (†) holds by q.e. and the fact that e.g.

λ0c0 + µ0d0 ≤ λ1c1 + µ1d1 ⇐⇒ λ0c0 − λ1c1︸ ︷︷ ︸
λ0(·)−λ1(·)∈F2,1

T

≤ µ1d1 − µ0d0︸ ︷︷ ︸
∈U

Theorem (M.)
In RCF, Ĩnv(U) ∼= Pfin({invariant convex subrings}).
“Enough of (†)” can be shown to hold using some valuation theory.
Exact statement here . Ask to see it at your own risk.

Corollary
In RCVF, by [EHM19] Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ). So Ĩnv(U) ∼= Pfin(X), where

X = {invariant convex subrings of k} t {invariant convex subgroups of Γ}

O-minimality and Types The Domination Monoid Main Results Some Details

Applications
Theorem ([HHM08])
In DOAG, Ĩnv(U) ∼= Pfin({invariant convex subgroups}).
Here (†) holds by q.e. and the fact that e.g.

λ0c0 + µ0d0 ≤ λ1c1 + µ1d1 ⇐⇒ λ0c0 − λ1c1︸ ︷︷ ︸
λ0(·)−λ1(·)∈F2,1

T

≤ µ1d1 − µ0d0︸ ︷︷ ︸
∈U

Theorem (M.)
In RCF, Ĩnv(U) ∼= Pfin({invariant convex subrings}).
“Enough of (†)” can be shown to hold using some valuation theory.
Exact statement here . Ask to see it at your own risk.

Corollary
In RCVF, by [EHM19] Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ). So Ĩnv(U) ∼= Pfin(X), where

X = {invariant convex subrings of k} t {invariant convex subgroups of Γ}

O-minimality and Types The Domination Monoid Main Results Some Details

Applications
Theorem ([HHM08])
In DOAG, Ĩnv(U) ∼= Pfin({invariant convex subgroups}).
Here (†) holds by q.e. and the fact that e.g.

λ0c0 + µ0d0 ≤ λ1c1 + µ1d1 ⇐⇒ λ0c0 − λ1c1︸ ︷︷ ︸
λ0(·)−λ1(·)∈F2,1

T

≤ µ1d1 − µ0d0︸ ︷︷ ︸
∈U

Theorem (M.)
In RCF, Ĩnv(U) ∼= Pfin({invariant convex subrings}).

“Enough of (†)” can be shown to hold using some valuation theory.
Exact statement here . Ask to see it at your own risk.

Corollary
In RCVF, by [EHM19] Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ). So Ĩnv(U) ∼= Pfin(X), where

X = {invariant convex subrings of k} t {invariant convex subgroups of Γ}

O-minimality and Types The Domination Monoid Main Results Some Details

Applications
Theorem ([HHM08])
In DOAG, Ĩnv(U) ∼= Pfin({invariant convex subgroups}).
Here (†) holds by q.e. and the fact that e.g.

λ0c0 + µ0d0 ≤ λ1c1 + µ1d1 ⇐⇒ λ0c0 − λ1c1︸ ︷︷ ︸
λ0(·)−λ1(·)∈F2,1

T

≤ µ1d1 − µ0d0︸ ︷︷ ︸
∈U

Theorem (M.)
In RCF, Ĩnv(U) ∼= Pfin({invariant convex subrings}).
“Enough of (†)” can be shown to hold using some valuation theory.
Exact statement here . Ask to see it at your own risk.

Corollary
In RCVF, by [EHM19] Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ). So Ĩnv(U) ∼= Pfin(X), where

X = {invariant convex subrings of k} t {invariant convex subgroups of Γ}

O-minimality and Types The Domination Monoid Main Results Some Details

Applications
Theorem ([HHM08])
In DOAG, Ĩnv(U) ∼= Pfin({invariant convex subgroups}).
Here (†) holds by q.e. and the fact that e.g.

λ0c0 + µ0d0 ≤ λ1c1 + µ1d1 ⇐⇒ λ0c0 − λ1c1︸ ︷︷ ︸
λ0(·)−λ1(·)∈F2,1

T

≤ µ1d1 − µ0d0︸ ︷︷ ︸
∈U

Theorem (M.)
In RCF, Ĩnv(U) ∼= Pfin({invariant convex subrings}).
“Enough of (†)” can be shown to hold using some valuation theory.
Exact statement here . Ask to see it at your own risk.

Corollary
In RCVF, by [EHM19] Ĩnv(U) ∼= Ĩnv(k)⊕ Ĩnv(Γ). So Ĩnv(U) ∼= Pfin(X), where

X = {invariant convex subrings of k} t {invariant convex subgroups of Γ}

O-minimality and Types The Domination Monoid Main Results Some Details

The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, M ≺+ N ≺+ U)
If b � p ∈ Sinv

1 (U,M) then p(dcl(Nb)) is cofinal and coinitial in p(dcl(Ub)).

Example
If b > U � RCF, then {b, b2, b3, . . .} is cofinal in dcl(Ub).

Corollary
If T is o-minimal and p ∈ Sinv

1 (U) then p(y)⊗ p(z) ∼D p(x).

Proof.
A small type is enough to say e.g. “x = z and y > p(dcl(Nz))”.
Proof idea for the Lemma: use the Monotonicity Theorem to show that, otherwise,
there is d ∈ U such that b, f(b, d), f(f(b, d), d), . . . is an infinite N -independent
sequence. By Steinitz exchange this is nonsense: d depends on a long enough piece
of the sequence. N is used to “copy” parameters of definable functions.

O-minimality and Types The Domination Monoid Main Results Some Details

The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, M ≺+ N ≺+ U)
If b � p ∈ Sinv

1 (U,M) then p(dcl(Nb)) is cofinal and coinitial in p(dcl(Ub)).

Example
If b > U � RCF, then {b, b2, b3, . . .} is cofinal in dcl(Ub).

Corollary
If T is o-minimal and p ∈ Sinv

1 (U) then p(y)⊗ p(z) ∼D p(x).

Proof.
A small type is enough to say e.g. “x = z and y > p(dcl(Nz))”.
Proof idea for the Lemma: use the Monotonicity Theorem to show that, otherwise,
there is d ∈ U such that b, f(b, d), f(f(b, d), d), . . . is an infinite N -independent
sequence. By Steinitz exchange this is nonsense: d depends on a long enough piece
of the sequence. N is used to “copy” parameters of definable functions.

O-minimality and Types The Domination Monoid Main Results Some Details

The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, M ≺+ N ≺+ U)
If b � p ∈ Sinv

1 (U,M) then p(dcl(Nb)) is cofinal and coinitial in p(dcl(Ub)).

Example
If b > U � RCF, then {b, b2, b3, . . .} is cofinal in dcl(Ub).

Corollary
If T is o-minimal and p ∈ Sinv

1 (U) then p(y)⊗ p(z) ∼D p(x).

Proof.
A small type is enough to say e.g. “x = z and y > p(dcl(Nz))”.

Proof idea for the Lemma: use the Monotonicity Theorem to show that, otherwise,
there is d ∈ U such that b, f(b, d), f(f(b, d), d), . . . is an infinite N -independent
sequence. By Steinitz exchange this is nonsense: d depends on a long enough piece
of the sequence. N is used to “copy” parameters of definable functions.

O-minimality and Types The Domination Monoid Main Results Some Details

The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, M ≺+ N ≺+ U)
If b � p ∈ Sinv

1 (U,M) then p(dcl(Nb)) is cofinal and coinitial in p(dcl(Ub)).

Example
If b > U � RCF, then {b, b2, b3, . . .} is cofinal in dcl(Ub).

Corollary
If T is o-minimal and p ∈ Sinv

1 (U) then p(y)⊗ p(z) ∼D p(x).

Proof.
A small type is enough to say e.g. “x = z and y > p(dcl(Nz))”.
Proof idea for the Lemma: use the Monotonicity Theorem to show that, otherwise,
there is d ∈ U such that b, f(b, d), f(f(b, d), d), . . . is an infinite N -independent
sequence. By Steinitz exchange this is nonsense: d depends on a long enough piece
of the sequence. N is used to “copy” parameters of definable functions.

O-minimality and Types The Domination Monoid Main Results Some Details

Further Directions/Work in Progress
Questions:

1. In the Idempotency Lemma, can we replace N with M?
2. Can we adapt the RCF proof to, say, polynomially bounded structures?
3. Is Ĩnv(U) generated by 1-types in every o-minimal theory? In Rexp?
4. For T ⊇ RCF, can we take X to be the set of invariant T -convex subrings?
5. Can these techniques be adapted to other contexts?

E.g. weakly o-minimal theories, or other “tame” generalisations of o-minimality.
Here the RCVF result is promising. Other related context: Qp?
More generally, the big question is:

5. Is (Ĩnv(U),⊗) well-defined under NIP? NIP2? Commutativity under NIP?

Thanks for listening!

O-minimality and Types The Domination Monoid Main Results Some Details

Further Directions/Work in Progress
Questions:

1. In the Idempotency Lemma, can we replace N with M?
2. Can we adapt the RCF proof to, say, polynomially bounded structures?
3. Is Ĩnv(U) generated by 1-types in every o-minimal theory? In Rexp?
4. For T ⊇ RCF, can we take X to be the set of invariant T -convex subrings?
5. Can these techniques be adapted to other contexts?

E.g. weakly o-minimal theories, or other “tame” generalisations of o-minimality.
Here the RCVF result is promising. Other related context: Qp?
More generally, the big question is:

5. Is (Ĩnv(U),⊗) well-defined under NIP? NIP2? Commutativity under NIP?

Thanks for listening!

Appendix

Bibliography
this is not a proper bibliography, it’s just a list of the sources mentioned in these slides

[EHM19] C. Ealy, D. Haskell, and J. Maříková.
Residue field domination in real closed valued fields.
Notre Dame Journal of Formal Logic, 60(3):333–351, 2019.

[EK19] P.A. Estevan and I. Kaplan.
Non-forking and preservation of NIP and dp-rank.
https://arxiv.org/abs/1909.04626, preprint, 2019.

[HHM08] D. Haskell, E. Hrushovski and D. Macpherson,
Stable Domination and Independence in Algebraically Closed Valued Fields.
Lecture Notes in Logic 30, Cambridge University Press 2008.

[Men20] R. Mennuni.
Product of invariant types modulo domination–equivalence.
Archive for Mathematical Logic, 59:1–29, 2020.

[EK19] P. A. Estevan and I. Kaplan.
Non-forking and preservation of NIP and dp-rank.
https://arxiv.org/abs/1909.04626, preprint, 2019.

[Tan15] P. Tanović,
Generically stable regular types.
The Journal of Symbolic Logic, 80:308–321 (2015).

https://arxiv.org/abs/1909.04626
https://arxiv.org/abs/1909.04626

Appendix

More examples: Branches

Example
Let T be the theory in the language {Pσ | σ ∈ 2<ω} asserting that every point
belongs to every Pη�n for exactly one η ∈ 2ω. Then Ĩnv(U) ∼=

⊕
2ℵ0 N.

Basically, Ĩnv(U) here is counting how many new points are in a “branch”.

Appendix

More Examples: Generic Equivalence Relation

Equivalence relation E with infinitely many infinite classes (and no finite classes).
A set of generators for Ĩnv(U) looks like this:
• a single ∼D-class J0K for realised types
• if pa(x) := {E(x, a)} ∪ {x /∈ U}, then JpaK = JpbK if and only if � E(a, b);
corresponds to new points in an existing equivalence class

• a single ∼D-class JpgK, where pg := {¬E(x, a) | a ∈ U}; corresponds to new
equivalence classes.

The product adds new points/new classes. So, if U has κ equivalence classes,

Ĩnv(U) ∼= N⊕
⊕
κ

N

Appendix

More Examples: Cross-cutting Equivalence Relations
Tn := n generic equivalence relations Ei; intersection of classes of different Ei
always infinite. Here (Ĩnv(U),⊗) is generated by:
• a single ∼D-class J0K for realised types
• if pa(x) := {Ei(x, a) | i < n} ∪ {x /∈ U}, then JpaK = JpbK if and only if
�
∧
i<nEi(a, b); corresponds to new points in Ei-relation with a for all i

• For each i < n, a class JpiK saying x is in a new Ei class, but in existing
Ej-classes for j 6= i (does not matter which)

So
Ĩnv(U) ∼=

∏
i<n

N⊕
⊕
κ

N

Why
∏

instead of
⊕

? If we allow, say, ℵ0 equivalence relations, then

Ĩnv(U) ∼=
bdd∏
i<ℵ0

N⊕
⊕
κ

N

Back

Appendix

Other Notions
One can define a finer equivalence relation:

Definition
p ≡D q is defined as p ∼D q, but by asking the same r to work in both directions:
p ∪ r ` q and q ∪ r ` p.
Another notion classically studied is:

Definition
p ≥RK q iff every model realising p realises q.
This behaves best in totally transcendental theories (because of prime models). It
corresponds to p(x) ∪ {ϕ(x, y)} ` q(y).
But even there, modulo ∼RK it is not true that every type decomposes as a product
of ≥RK-minimal types (but in non-multidimensional totally transcendental theories
every type decomposes as a product of strongly regular types).
A classical example where ≥D differs from ≥RK: generic equivalence relation with a
bijection s such that ∀x E(x, s(x)). Back

Appendix

Hrushovski’s Counterexample

Example (Hrushovski)
In DLO plus a dense-codense predicate P , Inv(U) is not commutative.

Proof idea.
Let p(x) := {P (x)} ∪ {x > U} and q(y) := {¬P (x)} ∪ {y > U}. Then p, q do not
commute, even modulo ≡D (but they do modulo ∼D).
The predicate P forbids to “glue” variables. One will be “left behind”: e.g. if
r ` x0 < y0 < y1 < x1, knowing that y1 > U does not imply x0 > U.
In this case, for each cut C there are generators JpC,P K and JpC,¬P K, with relations
• JpC,P K⊗ JpC,P K = JpC,¬P K⊗ JpC,P K = JpC,P K
• (same relations swapping P and ¬P)
• JpC0,−K⊗ JpC1,−K = JpC1,−K⊗ JpC0,−K whenever C0 6= C1.
Back

Appendix

Stable Case

In a stable theory, ≤D, ∼D and ≡D can be expressed in terms of forking:

Definition
a .E b iff, for all c,

a |̂
E

c =⇒ b |̂
E

c

p .E q (p dominates q over E) iff there are a � p and b � q such that a .E b
p ./E q (p and q are domination equivalent) iff p .E q .E p, i.e. there are
a︸︷︷︸
�p

.E b︸︷︷︸
�q

.E c︸︷︷︸
�p

p
.
=E q (p and q are equidominant over E) iff there are a � p and b � q such that

a .E b .E a

These are well-behaved with non-forking extensions: we can drop E .

Appendix

Comparison

Proposition (T stable)
The previous definitions of ≤D= /, ∼D=./ and ≡D=

.
=.

Remark
The proof uses crucially stationarity of types over models.

In almost all examples we saw before, ∼D coincides with ≡D.

Exception: in DLO with a predicate, (Inv(U),⊗) is not commutative, while
(Ĩnv(U),⊗) is (in fact, it is the same as in DLO).

Fact
Even in the stable case, ∼D and ≡D are generally different.

Appendix

Classical Results

In the thin case (generalises superstable), this is classical:

Theorem (T thin)
Ĩnv(U) is a direct sum of copies of N.
If T is moreover superstable, (Ĩnv(U),⊗) is generated by {JpK | p regular}.

Superstability (even just thinness) implies that ≡D and ∼D coincide.

The behaviour of ≥D in general seems related to the existence of some kind of
prime models (in the stable case, “prime a-models” are the way to go).
Also, some suitable generalisation of the Omitting Types Theorem would help.

Back

Appendix

(Non-multi)Dimensionality

At least in the superstable case, independence of Ĩnv(U) on U already had a name:

Definition
T is (non-multi)dimensional iff no type is orthogonal to (every type that does not fork over) ∅.
If U0 ≺+ U1 one has a map e : Ĩnv(U0)→ Ĩnv(U1).

Proposition (T thin)
e surjective ⇐⇒ T dimensional.

Question
Is this true under stability? It boils down to the image of e being downward closed.
I suspect this should follow from classical results. Back

Appendix

Generically Stable Part

Proposition
q ≤D p definable/finitely satisfiable/generically stable =⇒ so is q.
As generically stable types commute with everything, in any theory the monoid
generated by their classes is well-defined. (Warning: p generically stable 6⇒ p⊗ p generically stable)

Hope
At least in special cases, get decompositions similar to Ĩnv(U) ∼=

g.s. part︷ ︸︸ ︷
Ĩnv(k)× Ĩnv(Γ).

Probably one should really work in T eq:

Example
In T = DLO+equivalence relation with (no finite classes and infinitely many) dense classes,
Ĩnv(U) grows when passing to T eq, which has more generically stable types.

Question
How can the generically stable part look like?

Appendix

Interaction with Weak Orthogonality
Definition
p(x) is weakly orthogonal to q(y) iff p ∪ q is complete.

Remark
Weakly orthogonal types commute.

Proposition
Weak orthogonality strongly negates domination: q ⊥w p0 ≥D p1 =⇒ q ⊥w p1.
In particular if q ⊥w p ≥D q then q is realised.

Question
Under which conditions if p 6⊥wq then they dominate a common nonzero class?
Known:
• Superstable (or thin) is enough. See here

• Fails in the Random Graph.

Appendix

Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider

pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b}

and let
f ∈ Aut(U/A) be such that f(b) = c. Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

Back

Appendix

Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b}

and let
f ∈ Aut(U/A) be such that f(b) = c. Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

pb+︸︷︷︸

Back

Appendix

Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b}

and let
f ∈ Aut(U/A) be such that f(b) = c. Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

()pb+

Back

Appendix

Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b} and let
f ∈ Aut(U/A) be such that f(b) = c.

Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

()pb+

|
c

f

Back

Appendix

Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b} and let
f ∈ Aut(U/A) be such that f(b) = c. Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

()pb+

|
c

f

()pc+
f

Back

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A)

: for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} “ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A): for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} “ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A): for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

“ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A): for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

“ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||
pA+︸︷︷︸

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A): for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

“ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||
()pA+

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A): for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

“ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||
()pA+

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A): for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} “ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||
()pA+

|
)(

x

(pA+ | B)

Appendix

Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y) ` x < y

| | | | | ||||||||||

Fact
⊗ is associative. It is commutative if and only if T is stable.

Appendix

Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y)

` x < y

| | | | | ||||||||||
pA+︸︷︷︸

Fact
⊗ is associative. It is commutative if and only if T is stable.

Appendix

Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y)

` x < y

| | | | | ||||||||||
()pA+

Fact
⊗ is associative. It is commutative if and only if T is stable.

Appendix

Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y)

` x < y

| | | | | ||||||||||
()pA+

|
y

Fact
⊗ is associative. It is commutative if and only if T is stable.

Appendix

Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y) ` x < y

| | | | | ||||||||||
()pA+

|
y

|
x

Fact
⊗ is associative. It is commutative if and only if T is stable.

Appendix

Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y) ` x < y

| | | | | ||||||||||
()pA+

|
y

|
x

Fact
⊗ is associative. It is commutative if and only if T is stable.

Appendix

Map of Sufficient Conditions

stability

weak
binarity

degenerate
domination

algebraic
domination

strict
stationary
domination

stationary
domination

Ĩnv(U)
well-defined

algebraic
equidominance

strict
stationary

equidominance

stationary
equidominance

Inv(U)
well-defined

Back

Appendix

Sufficient Conditions
Proposition
q0 ≥D q1 =⇒ p⊗ q0 ≥D p⊗ q1 is implied by any of the following:
• q1 algebraic over q0: every c � q1 is algebraic over some b � q0. E.g. q1 = f∗q0
for some definable function f . Reason: {c | (b, c) � r} does not grow with U.

• Or even weakly binary: tp(a/U) ∪ tp(b/U) ∪ tp(ab/M) � tp(ab/U): few
questions about a � p and c � q1.

• T is stable.

Any condition in the Proposition implies that if there is some r ∈ Syz(M)
witnessing q0(y) ≥D q1(z), then there is one such that, in addition, if
• b, c ∈ U1

+� U are such that (b, c) � q0 ∪ r,
• p ∈ Sinv(U,M) and a � p(x) | U1,
• r[p] := tpxyz(abc/M) ∪ {x = w}.

then p⊗ q0 ∪ r[p] ` p⊗ q1. We call this stationary domination. Back

Appendix

A Counterexample
(with SOP and IP2)

Idea:

fiber over a 2-coloured

DLO

; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea:

fiber over a

2-coloured DLO

; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO

; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on

some

triples of fibers:

R3(x, z, w)→
(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)

(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”

q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”

r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .

p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide.

But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide.

But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•

?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?

No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!

Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D. Back

Appendix

Another Counterexample
Ternary, supersimple, ω-categorical, can be tweaked to have degenerate algebraic closure

Replacing the densely coloured DLO with a random graph R2 yields a supersimple
counterexample of SU-rank 2; forking is a |̂

C

b ⇐⇒ (a ∩ b ⊆ C) ∧ (πa ∩ πb ⊆ πC).

R3(x0, x1, x2)→
∨
σ∈S3

(
R2(πxσ0, πxσ1) ∧R2(πxσ0, πxσ2) ∧ ¬R2(πxσ1, πxσ2)

(exactly two edges between πx0, πx1, πx2)

)
q0(y) := {¬R2(y, a) | a ∈ U}
q1(z) := {¬R2(πz, a) | a ∈ U}
r(y, z) := {y = πz} ∪ . . .
p(x) := {R2(πx, a) | a ∈ U}
∪ {¬R3(x, a, b) | a, b ∈ U}

U

• •••

•
y

•
z

•
x

Hypergraph
sort

Graph sort

q0 ∪ r ` q1: no hyperedges to decide. Same problem: p⊗ q0(x, y) 6≥D p⊗ q1(t, z).
Back

Appendix

Strongly Minimal Theories
(Ĩnv(U),⊗) well-defined by stability

Example
If T is strongly minimal, (Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
(for T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+))

In this case, Ĩnv(U) is basically “counting the dimension”. E.g.: in ACF0 we have
p(x1, . . . , xn) ∼D q(y1, . . . , ym) ⇐⇒ tr deg(x/U) = tr deg(y/U).
Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if (a, b) � p⊗ q, then
dim(a/Ub) = dim(a/U), and in strongly minimal theories

dim(ab/U) = dim(b/U) + dim(a/Ub)

More generally, in superstable theories (or even thin theories), by classical results Ĩnv(U) ∼=
⊕
i<λ(N,+,≤), for some λ.

Back

Appendix

Strongly Minimal Theories
(Ĩnv(U),⊗) well-defined by stability

Example
If T is strongly minimal, (Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
(for T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+))

In this case, Ĩnv(U) is basically “counting the dimension”. E.g.: in ACF0 we have
p(x1, . . . , xn) ∼D q(y1, . . . , ym) ⇐⇒ tr deg(x/U) = tr deg(y/U).
Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if (a, b) � p⊗ q, then
dim(a/Ub) = dim(a/U), and in strongly minimal theories

dim(ab/U) = dim(b/U) + dim(a/Ub)

More generally, in superstable theories (or even thin theories), by classical results Ĩnv(U) ∼=
⊕
i<λ(N,+,≤), for some λ.

Back

Appendix

Strongly Minimal Theories
(Ĩnv(U),⊗) well-defined by stability

Example
If T is strongly minimal, (Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
(for T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+))

In this case, Ĩnv(U) is basically “counting the dimension”. E.g.: in ACF0 we have
p(x1, . . . , xn) ∼D q(y1, . . . , ym) ⇐⇒ tr deg(x/U) = tr deg(y/U).
Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if (a, b) � p⊗ q, then
dim(a/Ub) = dim(a/U), and in strongly minimal theories

dim(ab/U) = dim(b/U) + dim(a/Ub)

More generally, in superstable theories (or even thin theories), by classical results Ĩnv(U) ∼=
⊕
i<λ(N,+,≤), for some λ.

Back

Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).

• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)

Back

Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)

Back

Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

y0

|

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)

Back

Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

y0

|
y1

|

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)

Back

Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

y1

|
y0=x
|

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)

Back

Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

y1

|
y0=x
|

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)

Back

Appendix

Random Graph
(Ĩnv(U),⊗) well-defined by binarity

In the Random Graph, ∼D is degenerate and (Ĩnv(U),⊗) resembles closely
(Sinv
<ω(U),⊗). For instance, it is not commutative:

Example (All types ∅-invariant)
These types do not commute, even modulo ∼D:

q(y) := {E(y, b) | b ∈ U}
p(w) := {¬E(w, b) | b ∈ U}

U

y

w

x

z

p(x)⊗ q(y)

q(z)⊗ p(w)

Proof Idea.
As px ⊗ qy ` ¬E(x, y) and qz ⊗ pw ` E(z, w), gluing cannot work. But in the
random graph domination is degenerate and there is not much more one can do.
More examples here Back to examples Back to counterexamples

Appendix

Random Graph
(Ĩnv(U),⊗) well-defined by binarity

In the Random Graph, ∼D is degenerate and (Ĩnv(U),⊗) resembles closely
(Sinv
<ω(U),⊗). For instance, it is not commutative:

Example (All types ∅-invariant)
These types do not commute, even modulo ∼D:

q(y) := {E(y, b) | b ∈ U}
p(w) := {¬E(w, b) | b ∈ U}

U

y

w

x

z

p(x)⊗ q(y)

q(z)⊗ p(w)

Proof Idea.
As px ⊗ qy ` ¬E(x, y) and qz ⊗ pw ` E(z, w), gluing cannot work. But in the
random graph domination is degenerate and there is not much more one can do.
More examples here Back to examples Back to counterexamples

Appendix

Random Graph
(Ĩnv(U),⊗) well-defined by binarity

In the Random Graph, ∼D is degenerate and (Ĩnv(U),⊗) resembles closely
(Sinv
<ω(U),⊗). For instance, it is not commutative:

Example (All types ∅-invariant)
These types do not commute, even modulo ∼D:

q(y) := {E(y, b) | b ∈ U}
p(w) := {¬E(w, b) | b ∈ U}

U

y

w

x

z

p(x)⊗ q(y)

q(z)⊗ p(w)

Proof Idea.
As px ⊗ qy ` ¬E(x, y) and qz ⊗ pw ` E(z, w), gluing cannot work. But in the
random graph domination is degenerate and there is not much more one can do.
More examples here Back to examples Back to counterexamples

Appendix

Properties Preserved by Domination
Domination equivalence is quite coarse; for instance it does not preserve Morley
rank (generic equivalence relation), nor dp-rank (DLO).

Anyway:

Theorem (M.)
If p ≥D q and p has any of the following properties, then so does q:
• Definability (over some small set, not necessarily the same as q)

• Finite satisfiability (in some small set, not necessarily the same as q)

• Generic stability (over some small set, not necessarily the same as q)

• Weak orthogonality to a fixed type

Generic stability is particularly interesting:
• It is possible to have Ĩnv(U) 6= Ĩnv(Ueq) (more g.s. types, e.g. DLO+dense eq. rel.).

• Using [Tan15], strongly regular g.s. types are ≤D-minimal (among the nonrealised ones).

• (Ĩnv
gs
(U),⊗,≤D) makes sense in any theory (can be trivial).

Back

Appendix

Properties Preserved by Domination
Domination equivalence is quite coarse; for instance it does not preserve Morley
rank (generic equivalence relation), nor dp-rank (DLO). Anyway:

Theorem (M.)
If p ≥D q and p has any of the following properties, then so does q:
• Definability

(over some small set, not necessarily the same as q)

• Finite satisfiability

(in some small set, not necessarily the same as q)

• Generic stability

(over some small set, not necessarily the same as q)

• Weak orthogonality to a fixed type

Generic stability is particularly interesting:
• It is possible to have Ĩnv(U) 6= Ĩnv(Ueq) (more g.s. types, e.g. DLO+dense eq. rel.).

• Using [Tan15], strongly regular g.s. types are ≤D-minimal (among the nonrealised ones).

• (Ĩnv
gs
(U),⊗,≤D) makes sense in any theory (can be trivial).

Back

Appendix

Properties Preserved by Domination
Domination equivalence is quite coarse; for instance it does not preserve Morley
rank (generic equivalence relation), nor dp-rank (DLO). Anyway:

Theorem (M.)
If p ≥D q and p has any of the following properties, then so does q:
• Definability (over some small set, not necessarily the same as q)

• Finite satisfiability (in some small set, not necessarily the same as q)

• Generic stability (over some small set, not necessarily the same as q)

• Weak orthogonality to a fixed type

Generic stability is particularly interesting:
• It is possible to have Ĩnv(U) 6= Ĩnv(Ueq) (more g.s. types, e.g. DLO+dense eq. rel.).

• Using [Tan15], strongly regular g.s. types are ≤D-minimal (among the nonrealised ones).

• (Ĩnv
gs
(U),⊗,≤D) makes sense in any theory (can be trivial). Back

Appendix

You asked for it
Let T be o-minimal. Let p(x) ∈ Sinv(U,M0), let c � p be U-independent.

1. There is a tuple b ∈ dcl(Uc) of maximal length among those satisfying a
product of nonrealised invariant 1-types.

2. Let b be as above, and let q := tp(b/U) = q0 ⊗ . . .⊗ qn, where qi ∈ Sinv
1 (U). Up

to replacing qi with q̃i ∼D qi, we may assume that either qi ⊥w qj or qi = qj .
Let b, q as above, qi ∈ Sinv(U,M) and M0 �M ≺+ N ≺+ N1 ≺+ U.

3. Up to replacing b with another b̃ � q, we may assume b ∈ dcl(Nc).
4. Let b, q be as above, r := tpxy(cb/N1), and Fm,1T (M) the set of T (M)-definable

functions with domain Um and codomain U1. Then p(x) ∪ r(x, y) ` q(y) and

q(y) ∪ r(x, y) ` πM (x) :=
⋃

f∈F |x|,1
T (M)

tpwf (f(c)/U) ∪
{
wf = f(x)

∣∣∣ f ∈ F |x|,1T (M)

}

Using this and some valuation theory, in RCF, it can be shown that q ∪ r ` p.
Back

	O-minimality and Types
	The Domination Monoid
	Main Results
	Some Details

