The Domination Monoid

Main Results

Some Details

The domination monoid in o-minimal theories

Rosario Mennuni

University of Leeds

21st May 2020

The Domination Monoid

Main Results

Some Details

Motivation

In [HHM08] to \mathfrak{U} is associated $(\widetilde{Inv}(\mathfrak{U}), \otimes) \coloneqq (S^{inv}(\mathfrak{U}), \otimes) / \sim_{\mathrm{D}}$. Theorem (Haskell, Hrushovski, Macpherson)

In ACVF $(k := \text{residue field}, \Gamma := \text{value group})$

 $\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong \widetilde{\operatorname{Inv}}(k)\oplus \widetilde{\operatorname{Inv}}(\Gamma)$

The Domination Monoid

Main Results

Some Details

Motivation

In [HHM08] to \mathfrak{U} is associated $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes) \coloneqq (S^{\operatorname{inv}}(\mathfrak{U}), \otimes) / \sim_{\mathrm{D}}$. Theorem (Haskell, Hrushovski, Macpherson) In ACVF ($_{k := \text{ residue field}, \Gamma := \text{ value group}}$) ($k \models \mathsf{ACF}, \Gamma \models \mathsf{DOAG}$)

 $\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong \widetilde{\operatorname{Inv}}(k)\oplus \widetilde{\operatorname{Inv}}(\Gamma)$

ACF strongly minimal $\implies \widetilde{\text{Inv}}(k) \cong \mathbb{N}$. DOAG is o-minimal.

The Domination Monoid

Main Results

Some Details

Motivation

In [HHM08] to \mathfrak{U} is associated $(\widetilde{Inv}(\mathfrak{U}), \otimes) \coloneqq (S^{\operatorname{inv}}(\mathfrak{U}), \otimes) / \sim_{\mathrm{D}}$. Theorem (Haskell, Hrushovski, Macpherson) In ACVF ($_{k := \text{ residue field, } \Gamma := \text{ value group})} (k \vDash \mathsf{ACF}, \Gamma \vDash \mathsf{DOAG})$

$$\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong\widetilde{\operatorname{Inv}}(k)\oplus\widetilde{\operatorname{Inv}}(\Gamma)\cong\mathbb{N}\oplus(\mathscr{P}_{\mathrm{fin}}(X),\cup)$$

ACF strongly minimal $\implies \widetilde{\text{Inv}}(k) \cong \mathbb{N}$. DOAG is o-minimal.

Main Results

Some Details

Motivation

In [HHM08] to \mathfrak{U} is associated $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes) \coloneqq (S^{\operatorname{inv}}(\mathfrak{U}), \otimes) / \sim_{\mathrm{D}}$. Theorem (Haskell, Hrushovski, Macpherson) In ACVF ($_{k := \text{ residue field}, \Gamma := \text{ value group}}$) ($k \vDash \mathsf{ACF}, \Gamma \vDash \mathsf{DOAG}$)

$$\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong\widetilde{\operatorname{Inv}}(k)\oplus\widetilde{\operatorname{Inv}}(\Gamma)\cong\mathbb{N}\oplus(\mathscr{P}_{\operatorname{fin}}(X),\cup)$$

ACF strongly minimal $\implies \widetilde{\text{Inv}}(k) \cong \mathbb{N}$. DOAG is *o-minimal*. Question What shape can $\widetilde{\text{Inv}}(\mathfrak{U})$ have in an o-minimal theory?

Main Results

Some Details

Motivation

In [HHM08] to \mathfrak{U} is associated $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes) \coloneqq (S^{\operatorname{inv}}(\mathfrak{U}), \otimes) / \sim_{\mathrm{D}}$. Theorem (Haskell, Hrushovski, Macpherson) In ACVF ($_{k := \text{ residue field, } \Gamma := \text{ value group}}$) ($k \vDash \mathsf{ACF}, \Gamma \vDash \mathsf{DOAG}$)

$$\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong\widetilde{\operatorname{Inv}}(k)\oplus\widetilde{\operatorname{Inv}}(\Gamma)\cong\mathbb{N}\oplus(\mathscr{P}_{\operatorname{fin}}(X),\cup)$$

ACF strongly minimal $\implies \widetilde{Inv}(k) \cong \mathbb{N}$. DOAG is *o-minimal*. Question

What shape can $Inv(\mathfrak{U})$ have in an o-minimal theory?

Theorem (Ealy, Haskell, Maříková) In RCVF ($k \models$ RCF, $\Gamma \models$ DOAG)

 $\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong\widetilde{\operatorname{Inv}}(k)\oplus\widetilde{\operatorname{Inv}}(\Gamma)$

Main Results

Some Details

Motivation

In [HHM08] to \mathfrak{U} is associated $(\widetilde{\operatorname{Inv}}(\mathfrak{U}), \otimes) \coloneqq (S^{\operatorname{inv}}(\mathfrak{U}), \otimes) / \sim_{\mathrm{D}}$. Theorem (Haskell, Hrushovski, Macpherson) In ACVF ($_{k := \text{ residue field}, \Gamma := \text{ value group}}$) ($k \vDash \mathsf{ACF}, \Gamma \vDash \mathsf{DOAG}$)

$$\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong\widetilde{\operatorname{Inv}}(k)\oplus\widetilde{\operatorname{Inv}}(\Gamma)\cong\mathbb{N}\oplus(\mathscr{P}_{\operatorname{fin}}(X),\cup)$$

ACF strongly minimal $\implies \widetilde{Inv}(k) \cong \mathbb{N}$. DOAG is *o-minimal*. Question

What shape can $Inv(\mathfrak{U})$ have in an o-minimal theory?

Theorem (Ealy, Haskell, Maříková) In RCVF ($k \models$ RCF, $\Gamma \models$ DOAG)

 $\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong\widetilde{\operatorname{Inv}}(k)\oplus\widetilde{\operatorname{Inv}}(\Gamma)\cong \textcircled{?}\oplus(\mathscr{P}_{\operatorname{fin}}(X),\cup)$

 $\begin{array}{l} \textbf{O-minimality and Types} \\ \bullet \circ \circ \circ \end{array}$

The Domination Monoid

Main Results

Some Details

Dense Linear Orders

Definition

DLO is the theory of *Dense Linear Orders* (with no endpoints).

The Domination Monoid

Main Results

Some Details

Dense Linear Orders

Definition

DLO is the theory of *Dense Linear Orders* (with no endpoints).

Fact

DLO eliminates quantifiers in $L = \{<\}$.

The Domination Monoid

Main Results

Some Details

Dense Linear Orders

Definition

DLO is the theory of *Dense Linear Orders* (with no endpoints).

Fact

```
DLO eliminates quantifiers in L = \{<\}.
```

Corollary

 $\mathfrak{U} \models \mathsf{DLO} \Longrightarrow L(\mathfrak{U})$ -definable subsets of \mathfrak{U}^1 are finite unions of intervals and points.

The Domination Monoid

Main Results

Some Details

Dense Linear Orders

Definition

DLO is the theory of *Dense Linear Orders* (with no endpoints).

Fact

```
DLO eliminates quantifiers in L = \{<\}.
```

Corollary

 $\mathfrak{U} \vDash \mathsf{DLO} \Longrightarrow L(\mathfrak{U})$ -definable subsets of \mathfrak{U}^1 are finite unions of intervals and points.

The Domination Monoid

Main Results

Some Details

Dense Linear Orders

Definition

DLO is the theory of *Dense Linear Orders* (with no endpoints).

Fact

```
DLO eliminates quantifiers in L = \{<\}.
```

Corollary

 $\mathfrak{U} \models \mathsf{DLO} \Longrightarrow L(\mathfrak{U})$ -definable subsets of \mathfrak{U}^1 are finite unions of intervals and points.

The Domination Monoid

Main Results

Some Details

Dense Linear Orders

Definition

DLO is the theory of *Dense Linear Orders* (with no endpoints).

Fact

DLO eliminates quantifiers in $L = \{<\}$.

Corollary

 $\mathfrak{U} \models \mathsf{DLO} \Longrightarrow L(\mathfrak{U})$ -definable subsets of \mathfrak{U}^1 are finite unions of intervals and points.

Definable subsets of \mathfrak{U}^2 are also quite simple. We have e.g. the set of points above the diagonal, but that is essentially as complicated as it gets.

The Domination Monoid

Main Results

Some Details

O-minimality

Definition $(L \supseteq \{<\})$

T is o-minimal iff for every $M \vDash T$ every definable subset of M^1 is a finite union of points and intervals.

The Domination Monoid

Main Results

Some Details

O-minimality

Definition $(L \supseteq \{<\})$

T is o-minimal iff for every $M \vDash T$ every definable subset of M^1 is a finite union of points and intervals.

Note: no requirement on subsets of M^2 .

The Domination Monoid

Main Results

Some Details

O-minimality

Definition $(L \supseteq \{<\})$

T is o-minimal iff for every $M \vDash T$ every definable subset of M^1 is a finite union of points and intervals.

Note: no requirement on subsets of M^2 . Non-example: $\text{Th}(\mathbb{R}, <, \sin)$.

O-minimality

Definition $(L \supseteq \{<\})$

T is *o-minimal* iff for every $M \vDash T$ every definable subset of M^1 is a finite union of points and intervals.

Note: no requirement on subsets of M^2 . Non-example: Th($\mathbb{R}, <, \sin$). Examples:

- DLO, by quantifier elimination.
- DOAG, by q.e. (semilinear sets, e.g. polyhedra).
- RCF, by q.e. (Tarski) (semialgebraic sets, e.g. discs).
- $\operatorname{Th}(\mathbb{R}, +, \cdot, \exp)$ (Wilkie).
- $\bullet\,$ Restricted analytic functions, Pfaffian functions,...

O-minimality

Definition $(L \supseteq \{<\})$

T is *o-minimal* iff for every $M \vDash T$ every definable subset of M^1 is a finite union of points and intervals.

Note: no requirement on subsets of M^2 . Non-example: Th($\mathbb{R}, <, \sin$). Examples:

- DLO, by quantifier elimination.
- DOAG, by q.e. (semilinear sets, e.g. polyhedra).
- RCF, by q.e. (Tarski) (semialgebraic sets, e.g. discs).
- $\operatorname{Th}(\mathbb{R}, +, \cdot, \exp)$ (Wilkie).
- Restricted analytic functions, Pfaffian functions, \ldots

Tame behaviour of definable sets and functions, even in higher dimension: e.g. piecewise differentiability, *cell decomposition*, dcl is a pregeometry with nice dimension theory, and more.

O-minimality

Definition $(L \supseteq \{<\})$

T is o-minimal iff for every $M \vDash T$ every definable subset of M^1 is a finite union of points and intervals.

Note: no requirement on subsets of M^2 . Non-example: Th($\mathbb{R}, <, \sin$). Examples:

- DLO, by quantifier elimination.
- DOAG, by q.e. (semilinear sets, e.g. polyhedra).
- RCF, by q.e. (Tarski) (semialgebraic sets, e.g. discs).
- $\operatorname{Th}(\mathbb{R}, +, \cdot, \exp)$ (Wilkie).
- Restricted analytic functions, Pfaffian functions,...

Tame behaviour of definable sets and functions, even in higher dimension: e.g. piecewise differentiability, *cell decomposition*, dcl is a pregeometry with nice dimension theory, and more.

Applications in: (real) algebraic geometry, tame topology, number theory,...

The Domination Monoid

Main Results

Types

Throughout: letters may denote tuples, e.g. $x = x_0, \ldots, x_{n-1}, a = a_0, \ldots, a_{m-1}$.

The Domination Monoid

Main Results

Types

Throughout: letters may denote tuples, e.g. $x = x_0, \ldots, x_{n-1}, a = a_0, \ldots, a_{m-1}$. Go-to example for this talk: DLO.

The Domination Monoid

Main Results

Types

Throughout: letters may denote tuples, e.g. $x = x_0, \ldots, x_{n-1}, a = a_0, \ldots, a_{m-1}$. Go-to example for this talk: DLO. Fix a parameter set B.

The Domination Monoid

Main Results

Types

Throughout: letters may denote tuples, e.g. $x = x_0, \ldots, x_{n-1}, a = a_0, \ldots, a_{m-1}$. Go-to example for this talk: DLO. Fix a parameter set B.

 $tp(a/B) = \{ \text{formulas over } B \text{ satisfied by } a \}.$

 $\operatorname{tp}(a^0/B) = \operatorname{tp}(a^1/B) \neq \operatorname{tp}(a^2/B)$

The Domination Monoid

Main Results

Types

Throughout: letters may denote tuples, e.g. $x = x_0, \ldots, x_{n-1}, a = a_0, \ldots, a_{m-1}$. Go-to example for this talk: DLO. Fix a parameter set B.

 $tp(a/B) = \{ \text{formulas over } B \text{ satisfied by } a \}.$

 $\{x \ge b \mid a^0 \ge b \in \mathbf{B}\} \cup \{x \le b \mid a^0 \le b \in \mathbf{B}\} = \operatorname{tp}(a^0/\mathbf{B}) = \operatorname{tp}(a^1/\mathbf{B}) \neq \operatorname{tp}(a^2/\mathbf{B})$

The Domination Monoid

Main Results

Types

Throughout: letters may denote tuples, e.g. $x = x_0, \ldots, x_{n-1}, a = a_0, \ldots, a_{m-1}$. Go-to example for this talk: DLO. Fix a parameter set B.

 $tp(a/B) = \{ \text{formulas over } B \text{ satisfied by } a \}.$

 $\{x \ge b \mid a^0 \ge b \in B\} \cup \{x \le b \mid a^0 \le b \in B\} = \operatorname{tp}(a^0/B) = \operatorname{tp}(a^1/B) \neq \operatorname{tp}(a^2/B)$ Space of types: $S_x(B)$. Equivalent descriptions of $p(x) \in S_x(B)$:

•
$$p(x) = \operatorname{tp}(a/B)$$

The Domination Monoid

Main Results

Types

Throughout: letters may denote tuples, e.g. $x = x_0, \ldots, x_{n-1}, a = a_0, \ldots, a_{m-1}$. Go-to example for this talk: DLO. Fix a parameter set B.

 $tp(a/B) = \{ \text{formulas over } B \text{ satisfied by } a \}.$

 $\{x \ge b \mid a^0 \ge b \in B\} \cup \{x \le b \mid a^0 \le b \in B\} = \operatorname{tp}(a^0/B) = \operatorname{tp}(a^1/B) \neq \operatorname{tp}(a^2/B)$ Space of types: $S_x(B)$. Equivalent descriptions of $p(x) \in S_x(B)$:

• $p(x) = \operatorname{tp}(a/B)$ for a in some $N \succ M \supseteq B$

The Domination Monoid

Main Results

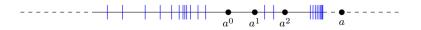
Types

Throughout: letters may denote tuples, e.g. $x = x_0, \ldots, x_{n-1}, a = a_0, \ldots, a_{m-1}$. Go-to example for this talk: DLO. Fix a parameter set B.

 $tp(a/B) = \{ \text{formulas over } B \text{ satisfied by } a \}.$

 $\{x \ge b \mid a^0 \ge b \in B\} \cup \{x \le b \mid a^0 \le b \in B\} = \operatorname{tp}(a^0/B) = \operatorname{tp}(a^1/B) \neq \operatorname{tp}(a^2/B)$ Space of types: $S_x(B)$. Equivalent descriptions of $p(x) \in S_x(B)$:

- $p(x) = \operatorname{tp}(a/B)$ for a in some $N \succ M \supseteq B$
- p(x) = a maximal consistent set of $\varphi(x) \in L(B)$



Types

Throughout: letters may denote tuples, e.g. $x = x_0, \ldots, x_{n-1}, a = a_0, \ldots, a_{m-1}$. Go-to example for this talk: DLO. Fix a parameter set B.

 $tp(a/B) = \{ \text{formulas over } B \text{ satisfied by } a \}.$

 $\{x \ge b \mid a^0 \ge b \in B\} \cup \{x \le b \mid a^0 \le b \in B\} = \operatorname{tp}(a^0/B) = \operatorname{tp}(a^1/B) \neq \operatorname{tp}(a^2/B)$ Space of types: $S_x(B)$. Equivalent descriptions of $p(x) \in S_x(B)$:

- $p(x) = \operatorname{tp}(a/B)$ for a in some $N \succ M \supseteq B$
- p(x) = a maximal consistent set of $\varphi(x) \in L(B)$
- p(x) = an ultrafilter on the Boolean algebra $Def_x(B)$ (Stone duality)

Types

Throughout: letters may denote tuples, e.g. $x = x_0, \ldots, x_{n-1}, a = a_0, \ldots, a_{m-1}$. Go-to example for this talk: DLO. Fix a parameter set B.

 $tp(a/B) = \{ \text{formulas over } B \text{ satisfied by } a \}.$

 $\{x \ge b \mid a^0 \ge b \in B\} \cup \{x \le b \mid a^0 \le b \in B\} = \operatorname{tp}(a^0/B) = \operatorname{tp}(a^1/B) \neq \operatorname{tp}(a^2/B)$ Space of types: $S_x(B)$. Equivalent descriptions of $p(x) \in S_x(B)$:

- $p(x) = \operatorname{tp}(a/B)$ for a in some $N \succ M \supseteq B$
- p(x) = a maximal consistent set of $\varphi(x) \in L(B)$
- p(x) = an ultrafilter on the Boolean algebra $Def_x(B)$ (Stone duality)

T o-minimal \Rightarrow 1-types over A = cuts in dcl A.

Types

Throughout: letters may denote tuples, e.g. $x = x_0, \ldots, x_{n-1}, a = a_0, \ldots, a_{m-1}$. Go-to example for this talk: DLO. Fix a parameter set B.

 $tp(a/B) = \{ \text{formulas over } B \text{ satisfied by } a \}.$

 $\{x \ge b \mid a^0 \ge b \in B\} \cup \{x \le b \mid a^0 \le b \in B\} = \operatorname{tp}(a^0/B) = \operatorname{tp}(a^1/B) \neq \operatorname{tp}(a^2/B)$ Space of types: $S_x(B)$. Equivalent descriptions of $p(x) \in S_x(B)$:

- $p(x) = \operatorname{tp}(a/B)$ for a in some $N \succ M \supseteq B$
- p(x) = a maximal consistent set of $\varphi(x) \in L(B)$
- p(x) = an ultrafilter on the Boolean algebra $Def_x(B)$ (Stone duality)

T o-minimal \Rightarrow 1-types over A = cuts in dcl A.

Example (A 2-type in RCF)

The element of $S_{x_0,x_1}(\mathbb{R})$ axiomatised by $\{0 < x_1 < 1/n \mid n \in \mathbb{N}\} \cup \{0 < x_0\} \cup \{x_0^2 + x_1^2 = 1\}.$

The Domination Monoid

Main Results

Some Details

Monsters

Fix a "big enough" cardinal. say $\kappa > \exists_{\omega}|T|$ strong limit. Small means of size $< \kappa$.

Main Results

Some Details

Monsters

Fix a "big enough" cardinal. say $\kappa > \square_{\omega}|T|$ strong limit. Small means of size $< \kappa$.

Definition

 $\mathfrak U$ is a $(\kappa\text{-})monster \bmod f$ of T iff for all small $B\subset \mathfrak U$

• \mathfrak{U} realises all types in $S_{<\omega}(B)$ (κ -saturation)

Main Results

Some Details

Monsters

Fix a "big enough" cardinal. $\sup_{\kappa > \beth_{\omega}|T| \text{ strong limit.}} Small \text{ means of } size < \kappa$.

Definition

 \mathfrak{U} is a $(\kappa$ -)monster model of T iff for all small $B \subset \mathfrak{U}$

- \mathfrak{U} realises all types in $S_{<\omega}(B)$ (κ -saturation), and
- types = orbits, i.e. $tp(a^0/B) = tp(a^1/B)$ if and only if they are conjugate by the pointwise stabiliser Aut(\mathfrak{U}/A) (κ -strong homogeneity).

Monsters

Fix a "big enough" cardinal. $\sup_{\kappa > \beth_{\omega}|T| \text{ strong limit.}} Small \text{ means of } size < \kappa$.

Definition

 \mathfrak{U} is a $(\kappa$ -)monster model of T iff for all small $B \subset \mathfrak{U}$

- \mathfrak{U} realises all types in $S_{<\omega}(B)$ (κ -saturation), and
- types = orbits, i.e. $tp(a^0/B) = tp(a^1/B)$ if and only if they are conjugate by the pointwise stabiliser $Aut(\mathfrak{U}/A)$ (κ -strong homogeneity).

Fact (Monsters are everywhere)

For every κ , every T, and every $M \vDash T$, there is a κ -monster $\mathfrak{U} \succ M$.

Monsters

Fix a "big enough" cardinal. $\sup_{\kappa > \beth_{\omega}|T| \text{ strong limit.}} Small \text{ means of } size < \kappa$.

Definition

 \mathfrak{U} is a $(\kappa$ -)monster model of T iff for all small $B \subset \mathfrak{U}$

- \mathfrak{U} realises all types in $S_{<\omega}(B)$ (κ -saturation), and
- types = orbits, i.e. $tp(a^0/B) = tp(a^1/B)$ if and only if they are conjugate by the pointwise stabiliser $Aut(\mathfrak{U}/A)$ (κ -strong homogeneity).

Fact (Monsters are everywhere)

For every κ , every T, and every $M \vDash T$, there is a κ -monster $\mathfrak{U} \succ M$.

• We are going to work in $S_{<\omega}(\mathfrak{U})$, i.e. with types over \mathfrak{U} .

Monsters

Fix a "big enough" cardinal. $\sup_{\kappa > \beth_{\omega}|T| \text{ strong limit.}} Small \text{ means of } size < \kappa$.

Definition

 \mathfrak{U} is a $(\kappa$ -)monster model of T iff for all small $B \subset \mathfrak{U}$

- \mathfrak{U} realises all types in $S_{<\omega}(B)$ (κ -saturation), and
- types = orbits, i.e. $tp(a^0/B) = tp(a^1/B)$ if and only if they are conjugate by the pointwise stabiliser Aut(\mathfrak{U}/A) (κ -strong homogeneity).

Fact (Monsters are everywhere)

For every κ , every T, and every $M \vDash T$, there is a κ -monster $\mathfrak{U} \succ M$.

- We are going to work in $S_{<\omega}(\mathfrak{U})$, i.e. with types over \mathfrak{U} .
- We think of their realisations as living in a fixed bigger monster $\mathfrak{U}_1 \xrightarrow{+} \mathfrak{U}$.

The Domination Monoid

Main Results

Some Details

Invariant Types

Canonical extension and product

Definition $(p \in S(\mathfrak{U}), A \subseteq \mathfrak{U} \text{ small})$

p A-invariant: whether $p(x) \vdash \varphi(x; d)$ depends only on $\varphi(x; w)$ and $\operatorname{tp}(d/A)$.

Say $p \in S(\mathfrak{U})$ is *invariant* iff it is A-invariant for some small $A \subset \mathfrak{U}$.

The Domination Monoid

Main Results

Some Details

Invariant Types

Canonical extension and product

Definition $(p \in S(\mathfrak{U}), A \subseteq \mathfrak{U} \text{ small})$

p A-invariant: whether $p(x) \vdash \varphi(x; d)$ depends only on $\varphi(x; w)$ and $\operatorname{tp}(d/A)$.

Say $p \in S(\mathfrak{U})$ is *invariant* iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T = \mathsf{DLO}, A \mathsf{small}$) $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\}$

The Domination Monoid

Main Results

Some Details

Invariant Types

Canonical extension and product

Definition $(p \in S(\mathfrak{U}), A \subseteq \mathfrak{U} \text{ small})$

p A-invariant: whether $p(x) \vdash \varphi(x; d)$ depends only on $\varphi(x; w)$ and tp(d/A).

Say $p \in S(\mathfrak{U})$ is *invariant* iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T = \mathsf{DLO}, A \mathsf{small}$) $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \not> A\}$

The Domination Monoid

Main Results

Some Details

Invariant Types

Canonical extension and product

Definition $(p \in S(\mathfrak{U}), A \subseteq \mathfrak{U} \text{ small}, B \not\subseteq \mathfrak{U} \text{ arbitrary})$

p A-invariant: whether $p(x) \vdash \varphi(x; d)$ depends only on $\varphi(x; w)$ and $\operatorname{tp}(d/A)$.

Say $p \in S(\mathfrak{U})$ is *invariant* iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example ($T = \mathsf{DLO}, A$ small) $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\}$ $\downarrow p_{A^+}$ $\varphi(x; d) \in (p \mid \mathfrak{UB}) \stackrel{\text{def}}{\longleftrightarrow} \text{ for } \tilde{d} \in \mathfrak{U} \text{ such that } d \equiv_A \tilde{d}, \text{ we have } \varphi(x; \tilde{d}) \in p.$

The Domination Monoid

Main Results

Some Details

Invariant Types

Canonical extension and product

Definition $(p \in S(\mathfrak{U}), A \subseteq \mathfrak{U} \text{ small}, B \not\subseteq \mathfrak{U} \text{ arbitrary})$

p A-invariant: whether $p(x) \vdash \varphi(x; d)$ depends only on $\varphi(x; w)$ and $\operatorname{tp}(d/A)$.

Say $p \in S(\mathfrak{U})$ is *invariant* iff it is A-invariant for some small $A \subset \mathfrak{U}$.

The Domination Monoid

Main Results

Some Details

Invariant Types

Canonical extension and product

Definition $(p \in S(\mathfrak{U}), A \subseteq \mathfrak{U} \text{ small}, B \not\subseteq \mathfrak{U} \text{ arbitrary})$

p A-invariant: whether $p(x) \vdash \varphi(x; d)$ depends only on $\varphi(x; w)$ and $\operatorname{tp}(d/A)$.

Say $p \in S(\mathfrak{U})$ is *invariant* iff it is A-invariant for some small $A \subset \mathfrak{U}$.

Example $(T = \mathsf{DLO}, \mathbf{A} \text{ small})$ $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\}$ $p_{A^+}(x) \otimes p_{A^+}(y)$ $p_{A^+}(x) = \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\}$ $p_{A^+}(x) \otimes p_{A^+}(y)$ $p_{A^+}(x) \in (p \mid \mathfrak{U}_{B}) \stackrel{\text{def}}{\iff} \text{ for } \tilde{d} \in \mathfrak{U} \text{ such that } d \equiv_{\mathbf{A}} \tilde{d}, \text{ we have } \varphi(x; \tilde{d}) \in p.$

The Domination Monoid

Main Results

Some Details

Invariant Types

Canonical extension and product

Definition $(p \in S(\mathfrak{U}), A \subseteq \mathfrak{U} \text{ small}, B \not\subseteq \mathfrak{U} \text{ arbitrary})$

p A-invariant: whether $p(x) \vdash \varphi(x; d)$ depends only on $\varphi(x; w)$ and $\operatorname{tp}(d/A)$.

Say $p \in S(\mathfrak{U})$ is *invariant* iff it is A-invariant for some small $A \subset \mathfrak{U}$.

The Domination Monoid

Main Results

Some Details

Invariant Types

Canonical extension and product

Definition ($p \in S(\mathfrak{U})$, $A \subseteq \mathfrak{U}$ small, $B \not\subseteq \mathfrak{U}$ arbitrary)

p A-invariant: whether $p(x) \vdash \varphi(x; d)$ depends only on $\varphi(x; w)$ and $\operatorname{tp}(d/A)$.

Say $p \in S(\mathfrak{U})$ is *invariant* iff it is A-invariant for some small $A \subset \mathfrak{U}$.

The Domination Monoid

Main Results

Some Details

Invariant Types

Canonical extension and product

Definition $(p \in S(\mathfrak{U}), A \subseteq \mathfrak{U} \text{ small}, B \not\subseteq \mathfrak{U} \text{ arbitrary})$

p A-invariant: whether $p(x) \vdash \varphi(x; d)$ depends only on $\varphi(x; w)$ and $\operatorname{tp}(d/A)$.

Say $p \in S(\mathfrak{U})$ is *invariant* iff it is A-invariant for some small $A \subset \mathfrak{U}$.

 \otimes is associative. \otimes commutative \Leftrightarrow T stable. O-minimal theories are unstable.

The Domination Monoid $0 \bullet 00$

Main Results

Some Details

Domination

Definition (Domination preorder on $S_{<\omega}^{inv}(\mathfrak{U})$; generalises Rudin-Keisler) $p_x \ge_D q_y$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{xy}(A)$ such that: p, q are A-invariant, $r \supseteq (p \upharpoonright A) \cup (q \upharpoonright A)$, and $p(x) \cup r(x, y) \vdash q(y)$

Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$.

Main Results

Domination

Definition (Domination preorder on $S_{<\omega}^{inv}(\mathfrak{U})$; generalises Rudin-Keisler) $p_x \ge_D q_y$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{xy}(A)$ such that: p, q are A-invariant, $r \supseteq (p \upharpoonright A) \cup (q \upharpoonright A)$, and $p(x) \cup r(x, y) \vdash q(y)$ Domination equivalence $p \sim_D q$ means $p \ge_D q \ge_D p$. Example (DLO, all types below are \emptyset -invariant)

 $\operatorname{tp}(x > \mathfrak{U})$

Main Results

Domination

Definition (Domination preorder on $S_{<\omega}^{inv}(\mathfrak{U})$; generalises Rudin-Keisler) $p_x \ge_D q_y$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{xy}(A)$ such that: p, q are A-invariant, $r \supseteq (p \upharpoonright A) \cup (q \upharpoonright A)$, and $p(x) \cup r(x, y) \vdash q(y)$

Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$.

Example (DLO, all types below are \emptyset -invariant) $\operatorname{tp}(x > \mathfrak{U}) \qquad \operatorname{tp}(y_1 > y_0 > \mathfrak{U})$

Main Results

Domination

Definition (Domination preorder on $S_{\leq\omega}^{inv}(\mathfrak{U})$; generalises Rudin-Keisler) $p_x \geq_D q_y$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{xy}(A)$ such that:

 $p, q \text{ are } A \text{-invariant}, r \supseteq (p \upharpoonright A) \cup (q \upharpoonright A), \text{ and } p(x) \cup r(x, y) \vdash q(y)$

Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$.

Example (DLO, all types below are \emptyset -invariant) tp $(x > \mathfrak{U}) \ge_{\mathbf{D}}$ tp $(y_1 > y_0 > \mathfrak{U})$ ("glue x and y_0 ", i.e. $r := \{y_0 = x\} \cup \ldots$)

Main Results

Domination

Definition (Domination preorder on $S_{<\omega}^{\text{inv}}(\mathfrak{U})$; generalises Rudin-Keisler) $p_x \ge_D q_y$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{xy}(A)$ such that:

p, q are A-invariant, $r \supseteq (p \upharpoonright A) \cup (q \upharpoonright A)$, and $p(x) \cup r(x, y) \vdash q(y)$

Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$.

Example (DLO, all types below are \emptyset -invariant) tp $(x > \mathfrak{U}) \ge_{\mathrm{D}} \operatorname{tp}(y_1 > y_0 > \mathfrak{U})$ ("glue x and y_0 ", i.e. $r \coloneqq \{y_0 = x\} \cup \ldots$)

Example (Random Graph)

 $p \geq_{\mathrm{D}} q \iff p \supseteq q \text{ after renaming/duplicating variables and ignoring realised ones.}$

Main Results

Domination

Definition (Domination preorder on $S_{<\omega}^{\text{inv}}(\mathfrak{U})$; generalises Rudin-Keisler) $p_x \ge_D q_y$ iff there are a small $A \subset \mathfrak{U}$ and $r \in S_{xy}(A)$ such that:

p, q are A-invariant, $r \supseteq (p \upharpoonright A) \cup (q \upharpoonright A)$, and $p(x) \cup r(x, y) \vdash q(y)$

Domination equivalence $p \sim_{\mathrm{D}} q$ means $p \geq_{\mathrm{D}} q \geq_{\mathrm{D}} p$.

Example (DLO, all types below are \emptyset -invariant) tp $(x > \mathfrak{U}) \ge_D$ tp $(y_1 > y_0 > \mathfrak{U})$ ("glue x and y_0 ", i.e. $r \coloneqq \{y_0 = x\} \cup \ldots$)

Example (Random Graph, or a set with no structure (degenerate domination)) $p \ge_D q \iff p \supseteq q$ after renaming/duplicating variables and ignoring realised ones.

The Domination Monoid $\circ \circ \bullet \circ$

Main Results

Some Details

The domination monoid

Let
$$\widetilde{\operatorname{Inv}}(\mathfrak{U}) \coloneqq S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathcal{D}}.$$

Fact

If \sim_{D} is a congruence with respect to \otimes , then

- $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{D})$ is an ordered monoid, the *domination monoid*;
- the neutral element (and minimum) is the (unique) class of realised types; and
- nothing else is invertible $(p \otimes q \text{ realised} \Longrightarrow p, q \text{ both realised!}).$

The Domination Monoid

Main Results

Some Details

The domination monoid

Let
$$\widetilde{\operatorname{Inv}}(\mathfrak{U}) \coloneqq S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathcal{D}}$$
.

Fact

If \sim_{D} is a congruence with respect to \otimes , then

- $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{D})$ is an ordered monoid, the *domination monoid*;
- the neutral element (and minimum) is the (unique) class of realised types; and
- nothing else is invertible $(p \otimes q \text{ realised} \Longrightarrow p, q \text{ both realised!}).$

Warning: there is a theory where \otimes and \sim_{D} are not compatible.

The Domination Monoid

Main Results

Some Details

The domination monoid

Let
$$\widetilde{\operatorname{Inv}}(\mathfrak{U}) \coloneqq S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}) / \sim_{\mathcal{D}}$$
.

Fact

If \sim_{D} is a congruence with respect to \otimes , then

- $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{D})$ is an ordered monoid, the *domination monoid*;
- the neutral element (and minimum) is the (unique) class of realised types; and
- nothing else is invertible $(p \otimes q \text{ realised} \Longrightarrow p, q \text{ both realised!}).$

Warning: there is a theory where \otimes and \sim_{D} are not compatible.

There are some conditions ensuring compatibility, but this is a different story.

The Domination Monoid 0000

Main Results

Some Details

Examples

(In all of these $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ is well-defined)

T strongly minimal (see here) $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{D}) \cong (\mathbb{N}, +, \leq).$

For T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_1 -categorical, or $\operatorname{Th}(\mathbb{Z}, +)$.

The Domination Monoid

Main Results

Some Details

Examples

(In all of these $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ is well-defined)

T strongly minimal (see here) $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{D}) \cong (\mathbb{N}, +, \leq).$

For T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_1 -categorical, or $\operatorname{Th}(\mathbb{Z}, +)$.

T superstable (*thin* is enough)

By classical results $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \bigoplus_{i < \lambda} (\mathbb{N}, +, \leq)$, for some $\lambda = \lambda(\mathfrak{U})$.

The Domination Monoid

Main Results

Some Details

Examples

(In all of these $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ is well-defined)

T strongly minimal (see here) $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{D}) \cong (\mathbb{N}, +, \leq).$

For T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_1 -categorical, or $\operatorname{Th}(\mathbb{Z}, +)$.

T superstable (thin is enough) By classical results $\widetilde{Inv}(\mathfrak{U}) \cong \bigoplus_{i < \lambda} (\mathbb{N}, +, \leq)$, for some $\lambda = \lambda(\mathfrak{U})$. DLO (see here) $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathrm{D}}) \cong (\mathscr{P}_{\mathrm{fin}}(\{\mathrm{invariant \ cuts}\}), \cup, \subseteq).$ Invariant cut = small cofinality on exactly one side.

The Domination Monoid

Main Results

Some Details

Examples

(In all of these $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ is well-defined)

T strongly minimal (see here) $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{D}) \cong (\mathbb{N}, +, \leq).$

For T stable, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_1 -categorical, or $\operatorname{Th}(\mathbb{Z}, +)$.

T superstable (*thin* is enough) By classical results $\widetilde{Inv}(\mathfrak{U}) \cong \bigoplus_{i < \lambda} (\mathbb{N}, +, \leq)$, for some $\lambda = \lambda(\mathfrak{U})$. DLO (see here)

 $(\widetilde{\mathrm{Inv}}(\mathfrak{U}),\otimes,\leq_{\mathrm{D}})\cong(\mathscr{P}_{\mathrm{fin}}(\{\mathrm{invariant\ cuts}\}),\cup,\subseteq).$

Invariant cut = small cofinality on exactly one side.

Random Graph (see here)

 $\sim_{\mathbf{D}}$ is degenerate, $(\widetilde{\mathrm{Inv}}(\mathfrak{U}), \otimes)$ resembles $(S^{\mathrm{inv}}_{<\omega}(\mathfrak{U}), \otimes)$, e.g. it is noncommutative.

The Domination Monoid

Main Results ●00 Some Details

Weak orthogonality

I swear this is the last definition for this talk

Definition

p(x) is weakly orthogonal to q(y) iff $p(x) \cup q(y)$ is complete. Write $p \perp^{w} q$.

Example

In any o-minimal T with $0 \in L$, these two are \emptyset -invariant 1-types:

 $p(x) \coloneqq \operatorname{tp}(+\infty/\mathfrak{U}) \coloneqq \{x > d \mid \in \mathfrak{U}\} \qquad q(y) \coloneqq \operatorname{tp}(0^+/\mathfrak{U}) \coloneqq \{0 < y < d \mid d \in \mathfrak{U}, d > 0\}$

The Domination Monoid

Main Results ●00 Some Details

Weak orthogonality

I swear this is the last definition for this talk

Definition

p(x) is weakly orthogonal to q(y) iff $p(x) \cup q(y)$ is complete. Write $p \perp^{w} q$.

Example

In any o-minimal T with $0 \in L$, these two are \emptyset -invariant 1-types:

 $p(x) \coloneqq \operatorname{tp}(+\infty/\mathfrak{U}) \coloneqq \{x > d \mid \in \mathfrak{U}\} \qquad q(y) \coloneqq \operatorname{tp}(0^+/\mathfrak{U}) \coloneqq \{0 < y < d \mid d \in \mathfrak{U}, d > 0\}$

In DOAG, $p \perp^{w} q$, but in RCF $p \not\perp^{w} q$. Reason: "dcl $(p) \cap q \neq \emptyset$ ": is $x \ge 1/y$?

The Domination Monoid

Main Results ●00 Some Details

Weak orthogonality

I swear this is the last definition for this talk

Definition

p(x) is weakly orthogonal to q(y) iff $p(x) \cup q(y)$ is complete. Write $p \perp^{w} q$.

Example

In any o-minimal T with $0 \in L$, these two are \emptyset -invariant 1-types:

 $p(x) \coloneqq \operatorname{tp}(+\infty/\mathfrak{U}) \coloneqq \{x > d \mid \in \mathfrak{U}\} \qquad q(y) \coloneqq \operatorname{tp}(0^+/\mathfrak{U}) \coloneqq \{0 < y < d \mid d \in \mathfrak{U}, d > 0\}$

In DOAG, $p \perp^{w} q$, but in RCF $p \not\perp^{w} q$. Reason: "dcl $(p) \cap q \neq \emptyset$ ": is $x \ge 1/y$? Fact

• (*T* o-minimal) If $p, q \in S_1(\mathfrak{U})$, then $p \not\perp^{w} q$ iff $p \sim_{\mathrm{D}} q$ iff $f_*p = q$ for some \mathfrak{U} -definable bijection f.

The Domination Monoid

Main Results ●00 Some Details

Weak orthogonality

I swear this is the last definition for this talk

Definition

p(x) is weakly orthogonal to q(y) iff $p(x) \cup q(y)$ is complete. Write $p \perp^{w} q$.

Example

In any o-minimal T with $0 \in L$, these two are \emptyset -invariant 1-types:

 $p(x) \coloneqq \operatorname{tp}(+\infty/\mathfrak{U}) \coloneqq \{x > d \mid \in \mathfrak{U}\} \qquad q(y) \coloneqq \operatorname{tp}(0^+/\mathfrak{U}) \coloneqq \{0 < y < d \mid d \in \mathfrak{U}, d > 0\}$

In DOAG, $p \perp^{w} q$, but in RCF $p \not\perp^{w} q$. Reason: "dcl $(p) \cap q \neq \emptyset$ ": is $x \ge 1/y$? Fact

- (*T* o-minimal) If $p, q \in S_1(\mathfrak{U})$, then $p \not\perp^{w} q$ iff $p \sim_{\mathrm{D}} q$ iff $f_*p = q$ for some \mathfrak{U} -definable bijection f.
- $q \perp^{w} p_0 \geq_{\mathrm{D}} p_1 \Longrightarrow q \perp^{w} p_1$. So we may expand to $(\widetilde{\mathrm{Inv}}(\mathfrak{U}), \geq_{\mathrm{D}}, \otimes, \perp^{w})$.
- In particular if $q \perp^{w} p \geq_{\mathbf{D}} q$ then q is realised.

The Domination Monoid

Main Results ○●○ Some Details

Reduction to generation by 1-types

Theorem (M., T o-minimal)

If every $p \in S^{\text{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1-types, then $\widetilde{\text{Inv}}(\mathfrak{U})$ is well-defined, and $(\widetilde{\text{Inv}}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \bot^{\mathrm{w}}) \cong (\mathscr{P}_{\text{fin}}(X), \cup, \supseteq, D)$

The Domination Monoid

Main Results ○●○ Some Details

Reduction to generation by 1-types

Theorem (M., T o-minimal)

If every $p \in S^{\text{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1-types, then $\widetilde{\text{Inv}}(\mathfrak{U})$ is well-defined, and $(\widetilde{\text{Inv}}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \bot^{\mathrm{w}}) \cong (\mathscr{P}_{\text{fin}}(X), \cup, \supseteq, D)$, for X any maximal set of pairwise \bot^{w} invariant 1-types

The Domination Monoid

Main Results 0●0 Some Details

Reduction to generation by 1-types

Theorem (M., T o-minimal)

If every $p \in S^{\text{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1-types, then $\operatorname{Inv}(\mathfrak{U})$ is well-defined, and $(\operatorname{Inv}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \bot^{\mathrm{w}}) \cong (\mathscr{P}_{\operatorname{fin}}(X), \cup, \supseteq, D)$, for X any maximal set of pairwise \bot^{w} invariant 1-types and $D(x, y) \coloneqq x \cap y = \emptyset$.

The Domination Monoid

Main Results ○●○ Some Details

Reduction to generation by 1-types

Theorem (M., T o-minimal)

If every $p \in S^{\text{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1-types, then $\widetilde{\text{Inv}}(\mathfrak{U})$ is well-defined, and $(\widetilde{\text{Inv}}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \bot^{\mathrm{w}}) \cong (\mathscr{P}_{\text{fin}}(X), \cup, \supseteq, D)$, for X any maximal set of pairwise \bot^{w} invariant 1-types and $D(x, y) \coloneqq x \cap y = \emptyset$.

Hence, given an o-minimal T, to conclude the study of $Inv(\mathfrak{U})$ it is enough to:

- 1. show that invariant types are equivalent to a product of 1-types, and
- 2. identify a nice set of representatives for $\not \perp^{w}$ -classes of invariant 1-types.

The Domination Monoid

Main Results ○●○ Some Details

Reduction to generation by 1-types

Ok, I lied, technically there is a definition here

Theorem (M., T o-minimal)

f

If every $p \in S^{\text{inv}}(\mathfrak{U})$ is \sim_{D} to a product of 1-types, then $\widetilde{\text{Inv}}(\mathfrak{U})$ is well-defined, and $(\widetilde{\text{Inv}}(\mathfrak{U}), \otimes, \geq_{\mathrm{D}}, \bot^{\mathrm{w}}) \cong (\mathscr{P}_{\text{fin}}(X), \cup, \supseteq, D)$, for X any maximal set of pairwise \bot^{w} invariant 1-types and $D(x, y) \coloneqq x \cap y = \emptyset$.

Hence, given an o-minimal T, to conclude the study of $Inv(\mathfrak{U})$ it is enough to:

- 1. show that invariant types are equivalent to a product of 1-types, and
- 2. identify a nice set of representatives for $\not\perp^w$ -classes of invariant 1-types. Sufficient condition for 1: if c is a \mathfrak{U} -independent tuple, then

$$\bigcup_{T \in \mathcal{F}_T^{|x|,1}} \operatorname{tp}_{w_f}(f(c)/\mathfrak{U}) \cup \left\{ w_f = f(x) \mid f \in \mathcal{F}_T^{|x|,1} \right\} \vdash \operatorname{tp}_x(c/\mathfrak{U})$$
(†)

 $\mathcal{F}_T^{|x|,1}\coloneqq \text{set of } \emptyset\text{-definable functions of }T \text{ with domain }\mathfrak{U}^{|x|} \text{ and codomain }\mathfrak{U}^1.$

The Domination Monoid

Main Results 00● Some Details

Applications

Theorem ([HHM08]) In DOAG, $\widetilde{Inv}(\mathfrak{U}) \cong \mathscr{P}_{fin}(\{\text{invariant convex subgroups}\}).$

The Domination Monoid

Main Results 00● Some Details

Applications

Theorem ([HHM08]) In DOAG, $\widetilde{Inv}(\mathfrak{U}) \cong \mathscr{P}_{fin}(\{\text{invariant convex subgroups}\}).$ Here (†) holds by q.e. and the fact that e.g.

$$\lambda_0 c_0 + \mu_0 d_0 \le \lambda_1 c_1 + \mu_1 d_1 \iff \underbrace{\lambda_0 c_0 - \lambda_1 c_1}_{\lambda_0(\cdot) - \lambda_1(\cdot) \in \mathcal{F}_T^{2,1}} \le \underbrace{\mu_1 d_1 - \mu_0 d_0}_{\in \mathfrak{U}}$$

Τł

Main Results 000

Applications

Theorem ([HHM08]) In DOAG, $\widetilde{Inv}(\mathfrak{U}) \cong \mathscr{P}_{fin}(\{\text{invariant convex subgroups}\}).$ Here (†) holds by q.e. and the fact that e.g.

$$\begin{split} \lambda_0 c_0 + \mu_0 d_0 &\leq \lambda_1 c_1 + \mu_1 d_1 \iff \underbrace{\lambda_0 c_0 - \lambda_1 c_1}_{\lambda_0(\cdot) - \lambda_1(\cdot) \in \mathcal{F}_T^{2,1}} \leq \underbrace{\mu_1 d_1 - \mu_0 d_0}_{\in \mathfrak{U}} \end{split}$$

Theorem (M.)
In RCF, $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\operatorname{fin}}(\{\operatorname{invariant convex subrings}\}). \end{split}$

The Domination Monoid

Main Results 00● Some Details

Applications

Theorem ([HHM08]) In DOAG, $\widetilde{Inv}(\mathfrak{U}) \cong \mathscr{P}_{fin}(\{\text{invariant convex subgroups}\}).$ Here (†) holds by q.e. and the fact that e.g.

$$\lambda_0 c_0 + \mu_0 d_0 \le \lambda_1 c_1 + \mu_1 d_1 \iff \underbrace{\lambda_0 c_0 - \lambda_1 c_1}_{\lambda_0(\cdot) - \lambda_1(\cdot) \in \mathcal{F}_T^{2,1}} \le \underbrace{\mu_1 d_1 - \mu_0 d_0}_{\in \mathfrak{U}}$$

m (M.)

Theorem (M.)

In RCF, $\widetilde{Inv}(\mathfrak{U}) \cong \mathscr{P}_{fin}(\{\text{invariant convex subrings}\}).$

"Enough of (\dagger) " can be shown to hold using some valuation theory. Exact statement (here). Ask to see it at your own risk.

The Domination Monoid

Main Results 00● Some Details

Applications

Theorem ([HHM08]) In DOAG, $\widetilde{Inv}(\mathfrak{U}) \cong \mathscr{P}_{fin}(\{\text{invariant convex subgroups}\}).$ Here (†) holds by q.e. and the fact that e.g.

$$\lambda_0 c_0 + \mu_0 d_0 \le \lambda_1 c_1 + \mu_1 d_1 \iff \underbrace{\lambda_0 c_0 - \lambda_1 c_1}_{\lambda_0(\cdot) - \lambda_1(\cdot) \in \mathcal{F}_T^{2,1}} \le \underbrace{\mu_1 d_1 - \mu_0 d_0}_{\in \mathfrak{U}}$$

Theorem (M.)

In RCF, $\widetilde{Inv}(\mathfrak{U}) \cong \mathscr{P}_{fin}(\{\text{invariant convex subrings}\}).$

"Enough of (\dagger) " can be shown to hold using some valuation theory. Exact statement (here). Ask to see it at your own risk.

Corollary

In RCVF, by [EHM19] $\widetilde{\text{Inv}}(\mathfrak{U}) \cong \widetilde{\text{Inv}}(k) \oplus \widetilde{\text{Inv}}(\Gamma)$. So $\widetilde{\text{Inv}}(\mathfrak{U}) \cong \mathscr{P}_{\text{fin}}(X)$, where

 $X = \{ \text{invariant convex subrings of } k \} \sqcup \{ \text{invariant convex subgroups of } \Gamma \}$

O-minimality and Types 0000

The Domination Monoid

Main Results

Some Details

The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, $M \prec^+ N \prec^+ \mathfrak{U}$) If $b \vDash p \in S_1^{\text{inv}}(\mathfrak{U}, M)$ then $p(\operatorname{dcl}(Nb))$ is cofinal and coinitial in $p(\operatorname{dcl}(\mathfrak{U}b))$. The Domination Monoid

Main Results

Some Details

The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, $M \prec^+ N \prec^+ \mathfrak{U}$) If $b \models p \in S_1^{\text{inv}}(\mathfrak{U}, M)$ then $p(\operatorname{dcl}(Nb))$ is cofinal and coinitial in $p(\operatorname{dcl}(\mathfrak{U}b))$.

Example

If $b > \mathfrak{U} \models \mathsf{RCF}$, then $\{b, b^2, b^3, \ldots\}$ is cofinal in dcl($\mathfrak{U}b$).

The Domination Monoid

Main Results

Some Details

The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, $M \prec^+ N \prec^+ \mathfrak{U}$) If $b \vDash p \in S_1^{\text{inv}}(\mathfrak{U}, M)$ then $p(\operatorname{dcl}(Nb))$ is cofinal and coinitial in $p(\operatorname{dcl}(\mathfrak{U}b))$.

Example

If $b > \mathfrak{U} \models \mathsf{RCF}$, then $\{b, b^2, b^3, \ldots\}$ is cofinal in dcl($\mathfrak{U}b$).

Corollary

If T is o-minimal and $p \in S_1^{\text{inv}}(\mathfrak{U})$ then $p(y) \otimes p(z) \sim_{\mathrm{D}} p(x)$.

Proof.

A small type is enough to say e.g. "x = z and $y > p(\operatorname{dcl}(Nz))$ ".

The Domination Monoid

Main Results

Some Details

The Idempotency Lemma

Lemma (M., Idempotency Lemma, T o-minimal, $M \prec^+ N \prec^+ \mathfrak{U}$) If $b \vDash p \in S_1^{\text{inv}}(\mathfrak{U}, M)$ then $p(\operatorname{dcl}(Nb))$ is cofinal and coinitial in $p(\operatorname{dcl}(\mathfrak{U}b))$.

Example

If $b > \mathfrak{U} \models \mathsf{RCF}$, then $\{b, b^2, b^3, \ldots\}$ is cofinal in dcl($\mathfrak{U}b$).

Corollary

If T is o-minimal and $p \in S_1^{\text{inv}}(\mathfrak{U})$ then $p(y) \otimes p(z) \sim_{\mathrm{D}} p(x)$.

Proof.

A small type is enough to say e.g. "x = z and y > p(dcl(Nz))".

Proof idea for the Lemma: use the Monotonicity Theorem to show that, otherwise, there is $d \in \mathfrak{U}$ such that $b, f(b, d), f(f(b, d), d), \ldots$ is an infinite N-independent sequence. By Steinitz exchange this is nonsense: d depends on a long enough piece of the sequence. N is used to "copy" parameters of definable functions.

Main Results

Further Directions/Work in Progress

Questions:

- 1. In the Idempotency Lemma, can we replace N with M?
- 2. Can we adapt the RCF proof to, say, polynomially bounded structures?
- 3. Is $\widetilde{Inv}(\mathfrak{U})$ generated by 1-types in every o-minimal theory? In \mathbb{R}_{exp} ?
- 4. For $T \supseteq \mathsf{RCF}$, can we take X to be the set of invariant T-convex subrings?
- 5. Can these techniques be adapted to other contexts?

E.g. weakly o-minimal theories, or other "tame" generalisations of o-minimality. Here the RCVF result is promising. Other related context: \mathbb{Q}_p ? More generally, the big question is:

5. Is $(\widetilde{Inv}(\mathfrak{U}), \otimes)$ well-defined under NIP? NIP₂? Commutativity under NIP?

Main Results

Further Directions/Work in Progress

Questions:

- 1. In the Idempotency Lemma, can we replace N with M?
- 2. Can we adapt the RCF proof to, say, polynomially bounded structures?
- 3. Is $\widetilde{Inv}(\mathfrak{U})$ generated by 1-types in every o-minimal theory? In \mathbb{R}_{exp} ?
- 4. For $T \supseteq \mathsf{RCF}$, can we take X to be the set of invariant T-convex subrings?
- 5. Can these techniques be adapted to other contexts?

E.g. weakly o-minimal theories, or other "tame" generalisations of o-minimality. Here the RCVF result is promising. Other related context: \mathbb{Q}_p ? More generally, the big question is:

5. Is $(\widetilde{Inv}(\mathfrak{U}), \otimes)$ well-defined under NIP? NIP₂? Commutativity under NIP?

Thanks for listening!

Bibliography

this is not a proper bibliography, it's just a list of the sources mentioned in these slides

[EHM19] C. EALY, D. HASKELL, and J. MAŘÍKOVÁ. Residue field domination in real closed valued fields. Notre Dame Journal of Formal Logic, 60(3):333–351, 2019.

[EK19] P.A. ESTEVAN and I. KAPLAN. Non-forking and preservation of NIP and dp-rank. https://arxiv.org/abs/1909.04626, preprint, 2019.

[HHM08] D. HASKELL, E. HRUSHOVSKI and D. MACPHERSON, Stable Domination and Independence in Algebraically Closed Valued Fields. Lecture Notes in Logic 30, Cambridge University Press 2008.

[Men20] R. MENNUNI. Product of invariant types modulo domination-equivalence. Archive for Mathematical Logic, 59:1–29, 2020.

[EK19] P. A. Estevan and I. Kaplan. Non-forking and preservation of NIP and dp-rank. https://arxiv.org/abs/1909.04626, preprint, 2019.

[Tan15] P. TANOVIĆ, Generically stable regular types. The Journal of Symbolic Logic, 80:308–321 (2015).

More examples: Branches

Example

Let T be the theory in the language $\{P_{\sigma} \mid \sigma \in 2^{<\omega}\}$ asserting that every point belongs to every $P_{\eta \mid n}$ for exactly one $\eta \in 2^{\omega}$. Then $\operatorname{Inv}(\mathfrak{U}) \cong \bigoplus_{2^{\aleph_0}} \mathbb{N}$. Basically, $\operatorname{Inv}(\mathfrak{U})$ here is counting how many new points are in a "branch".

More Examples: Generic Equivalence Relation

Equivalence relation E with infinitely many infinite classes (and no finite classes). A set of generators for $\widetilde{Inv}(\mathfrak{U})$ looks like this:

- a single \sim_D -class $\llbracket 0 \rrbracket$ for realised types
- if $p_a(x) \coloneqq \{E(x,a)\} \cup \{x \notin \mathfrak{U}\}$, then $\llbracket p_a \rrbracket = \llbracket p_b \rrbracket$ if and only if $\vDash E(a,b)$; corresponds to new points in an existing equivalence class
- a single $\sim_{\mathbf{D}}$ -class $\llbracket p_g \rrbracket$, where $p_g \coloneqq \{\neg E(x, a) \mid a \in \mathfrak{U}\}$; corresponds to new equivalence classes.

The product adds new points/new classes. So, if \mathfrak{U} has κ equivalence classes,

$$\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong\mathbb{N}\oplus\bigoplus_{\kappa}\mathbb{N}$$

More Examples: Cross-cutting Equivalence Relations

 $T_n := n$ generic equivalence relations E_i ; intersection of classes of different E_i always infinite. Here $(\widetilde{Inv}(\mathfrak{U}), \otimes)$ is generated by:

- a single \sim_D -class $\llbracket 0 \rrbracket$ for realised types
- if $p_a(x) \coloneqq \{E_i(x, a) \mid i < n\} \cup \{x \notin \mathfrak{U}\}$, then $\llbracket p_a \rrbracket = \llbracket p_b \rrbracket$ if and only if $\models \bigwedge_{i < n} E_i(a, b)$; corresponds to new points in E_i -relation with a for all i
- For each i < n, a class $\llbracket p_i \rrbracket$ saying x is in a new E_i class, but in existing E_j -classes for $j \neq i$ (does not matter which)

 So

$$\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong\prod_{i< n}\mathbb{N}\oplus \bigoplus_{\kappa}\mathbb{N}$$

Why \prod instead of \bigoplus ? If we allow, say, \aleph_0 equivalence relations, then

$$\widetilde{\operatorname{Inv}}(\mathfrak{U})\cong\prod_{i<\aleph_0}^{\operatorname{bdd}}\mathbb{N}\oplus\bigoplus_\kappa\mathbb{N}$$

Other Notions

One can define a finer equivalence relation:

Definition

 $p \equiv_{\mathbf{D}} q$ is defined as $p \sim_{\mathbf{D}} q$, but by asking the same r to work in both directions: $p \cup r \vdash q$ and $q \cup r \vdash p$.

Another notion classically studied is:

Definition

 $p \geq_{\rm RK} q$ iff every model realising p realises q.

This behaves best in totally transcendental theories (because of prime models). It corresponds to $p(x) \cup \{\varphi(x, y)\} \vdash q(y)$.

But even there, modulo $\sim_{\rm RK}$ it is *not* true that every type decomposes as a product of $\geq_{\rm RK}$ -minimal types (but in non-multidimensional totally transcendental theories every type decomposes as a product of strongly regular types).

A classical example where $\geq_{\rm D}$ differs from $\geq_{\rm RK}$: generic equivalence relation with a bijection s such that $\forall x \ E(x, s(x))$.

Hrushovski's Counterexample

Example (Hrushovski)

In DLO plus a dense-codense predicate P, $\overline{Inv}(\mathfrak{U})$ is not commutative.

Proof idea.

Let $p(x) \coloneqq \{P(x)\} \cup \{x > \mathfrak{U}\}$ and $q(y) \coloneqq \{\neg P(x)\} \cup \{y > \mathfrak{U}\}$. Then p, q do not commute, even modulo $\equiv_{\mathbf{D}}$ (but they do modulo $\sim_{\mathbf{D}}$).

The predicate P forbids to "glue" variables. One will be "left behind": e.g. if $r \vdash x_0 < y_0 < y_1 < x_1$, knowing that $y_1 > \mathfrak{U}$ does not imply $x_0 > \mathfrak{U}$.

In this case, for each cut C there are generators $[\![p_{C,P}]\!]$ and $[\![p_{C,\neg P}]\!]$, with relations

- $\bullet \ \llbracket p_{C,P} \rrbracket \otimes \llbracket p_{C,P} \rrbracket = \llbracket p_{C,\neg P} \rrbracket \otimes \llbracket p_{C,P} \rrbracket = \llbracket p_{C,P} \rrbracket$
- (same relations swapping P and $\neg P$)
- $[\![p_{C_0,-}]\!] \otimes [\![p_{C_1,-}]\!] = [\![p_{C_1,-}]\!] \otimes [\![p_{C_0,-}]\!]$ whenever $C_0 \neq C_1$.

Stable Case

In a stable theory, \leq_D , \sim_D and \equiv_D can be expressed in terms of forking: Definition $a \geq_E b$ iff, for all c,

$$a \underset{E}{\downarrow} c \Longrightarrow b \underset{E}{\downarrow} c$$

 $p \triangleright_E q$ (*p* dominates *q* over *E*) iff there are $a \vDash p$ and $b \vDash q$ such that $a \triangleright_E b$ $p \bowtie_E q$ (*p* and *q* are domination equivalent) iff $p \triangleright_E q \triangleright_E p$, i.e. there are $\underset{\models p}{\overset{a}{\models}} \underset{\models q}{\overset{b}{\models}} \underset{\models q}{\overset{b}{\models}} \underset{\models p}{\overset{c}{\models}} \underset{p \Rightarrow E}{\overset{c}{\models}} q$ (*p* and *q* are equidominant over *E*) iff there are $a \vDash p$ and $b \vDash q$ such that $a \triangleright_E b \triangleright_E a$

These are well-behaved with non-forking extensions: we can drop E.

Comparison

Proposition (T stable)

The previous definitions of $\leq_{D} = \triangleleft$, $\sim_{D} = \bowtie$ and $\equiv_{D} = \doteq$.

Remark

The proof uses crucially stationarity of types over models.

In almost all examples we saw before, $\sim_{\rm D}$ coincides with $\equiv_{\rm D}$.

Exception: in DLO with a predicate, $(\overline{Inv}(\mathfrak{U}), \otimes)$ is not commutative, while $(\widetilde{Inv}(\mathfrak{U}), \otimes)$ is (in fact, it is the same as in DLO).

Fact

Even in the stable case, \sim_{D} and \equiv_{D} are generally different.

Classical Results

In the thin case (generalises superstable), this is classical:

Theorem (T thin) $\widetilde{Inv}(\mathfrak{U})$ is a direct sum of copies of \mathbb{N} . If T is moreover superstable, $(\widetilde{Inv}(\mathfrak{U}), \otimes)$ is generated by $\{\llbracket p \rrbracket \mid p \text{ regular}\}$.

Superstability (even just thinness) implies that $\equiv_{\rm D}$ and $\sim_{\rm D}$ coincide.

The behaviour of \geq_{D} in general seems related to the existence of some kind of prime models (in the stable case, "prime a-models" are the way to go). Also, some suitable generalisation of the Omitting Types Theorem would help.

(Non-multi)Dimensionality

At least in the superstable case, independence of $\widetilde{Inv}(\mathfrak{U})$ on \mathfrak{U} already had a name:

Definition

T is (non-multi)dimensional iff no type is orthogonal to (every type that does not fork over) \emptyset . If $\mathfrak{U}_0 \prec^+ \mathfrak{U}_1$ one has a map $\mathfrak{e} \colon \widetilde{\mathrm{Inv}}(\mathfrak{U}_0) \to \widetilde{\mathrm{Inv}}(\mathfrak{U}_1)$.

Proposition (T thin)

 \mathfrak{e} surjective $\iff T$ dimensional.

Question

Is this true under stability? It boils down to the image of \mathfrak{e} being downward closed. I suspect this should follow from classical results. (Back)

Generically Stable Part

Proposition

 $q \leq_{\mathrm{D}} p$ definable/finitely satisfiable/generically stable \Longrightarrow so is q.

As generically stable types commute with everything, in any theory the monoid generated by their classes is well-defined. (Warning: p generically stable $\neq p \otimes p$ generically stable)

g.s. part

Hope

At least in special cases, get decompositions similar to $\widetilde{\operatorname{Inv}}(\mathfrak{U}) \cong \widetilde{\widetilde{\operatorname{Inv}}(k)} \times \widetilde{\operatorname{Inv}}(\Gamma)$. Probably one should really work in T^{eq} :

Example

In $T = \mathsf{DLO} + equivalence$ relation with (no finite classes and infinitely many) dense classes, Inv(\mathfrak{U}) grows when passing to T^{eq} , which has more generically stable types.

Question

How can the generically stable part look like?

Interaction with Weak Orthogonality

Definition

p(x) is weakly orthogonal to q(y) iff $p \cup q$ is complete.

Remark

Weakly orthogonal types commute.

Proposition

Weak orthogonality strongly negates domination: $q \perp^{w} p_0 \geq_{D} p_1 \Longrightarrow q \perp^{w} p_1$. In particular if $q \perp^{w} p \geq_{D} q$ then q is realised.

Question

Under which conditions if $p \not\perp^w q$ then they dominate a common nonzero class? Known:

- Superstable (or *thin*) is enough. See here
- Fails in the Random Graph.

 $f\in {\rm Aut}(\mathfrak{U})$ acts on $p\in S(\mathfrak{U})$ by changing parameters in formulas:

 $f \cdot p \coloneqq \{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U}/A)$.

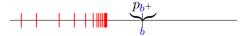
 $f\in {\rm Aut}(\mathfrak{U})$ acts on $p\in S(\mathfrak{U})$ by changing parameters in formulas:

 $f \cdot p \coloneqq \{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U}/A)$.

Example

$$T = \mathsf{DLO}, \text{ consider } p_{b^+}(x) \coloneqq \{x < d \mid d > b\} \cup \{x > d \mid d \le b\}$$



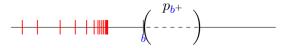
 $f\in {\rm Aut}(\mathfrak{U})$ acts on $p\in S(\mathfrak{U})$ by changing parameters in formulas:

 $f \cdot p \coloneqq \{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U}/A)$.

Example

$$T = \mathsf{DLO}, \text{ consider } p_{b^+}(x) \coloneqq \{x < d \mid d > b\} \cup \{x > d \mid d \le b\}$$



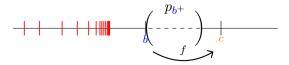
 $f\in {\rm Aut}(\mathfrak{U})$ acts on $p\in S(\mathfrak{U})$ by changing parameters in formulas:

 $f \cdot p \coloneqq \{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U}/A)$.

Example

 $T = \mathsf{DLO}, \text{ consider } p_{b^+}(x) \coloneqq \{x < d \mid d > b\} \cup \{x > d \mid d \le b\} \text{ and let } f \in \operatorname{Aut}(\mathfrak{U}/A) \text{ be such that } f(b) = c.$



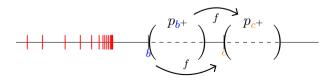
 $f\in {\rm Aut}(\mathfrak{U})$ acts on $p\in S(\mathfrak{U})$ by changing parameters in formulas:

 $f \cdot p \coloneqq \{\varphi(x, f(d)) \mid \varphi(x, d) \in p\}$

Consider this action restricted to $\operatorname{Aut}(\mathfrak{U}/A)$.

Example

$$\begin{split} T &= \mathsf{DLO}, \text{ consider } p_{b^+}(x) \coloneqq \{x < d \mid d > b\} \cup \{x > d \mid d \le b\} \text{ and let } \\ f &\in \operatorname{Aut}(\mathfrak{U}/A) \text{ be such that } f(b) = c. \text{ Then } f \cdot p_{b^+} = p_{c^+}. \end{split}$$



How to canonically extend an invariant type to bigger sets

Recall: $p \in S_x^{\text{inv}}(\mathfrak{U}, A) \iff$ whether $p(x) \vdash \varphi(x; d)$ or not depends only on $\operatorname{tp}(d/A)$ Fact (*B* arbitrary, *A* small) Every $p \in S_x^{\text{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U}B) \in S_x^{\text{inv}}(\mathfrak{U}B, A)$

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_x^{\text{inv}}(\mathfrak{U}, A) \iff$ whether $p(x) \vdash \varphi(x; d)$ or not depends only on $\operatorname{tp}(d/A)$ Fact (B arbitrary, A small)Every $p \in S_x^{\text{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U}B) \in S_x^{\text{inv}}(\mathfrak{U}B, A)$: for tuples d from $\mathfrak{U}B$

$$\varphi(x;d) \in (p \mid \mathfrak{U}B) \iff \text{for } \tilde{d} \in \mathfrak{U} \text{ such that } d \equiv_A \tilde{d}, \text{ we have } \varphi(x;\tilde{d}) \in p.$$

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_x^{\text{inv}}(\mathfrak{U}, A) \iff$ whether $p(x) \vdash \varphi(x; d)$ or not depends only on $\operatorname{tp}(d/A)$ Fact (B arbitrary, A small)Every $p \in S_x^{\text{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U}B) \in S_x^{\text{inv}}(\mathfrak{U}B, A)$: for tuples d from $\mathfrak{U}B$

$$\varphi(x; d) \in (p \mid \mathfrak{U}B) \iff \text{for } \tilde{d} \in \mathfrak{U} \text{ such that } d \equiv_{A} \tilde{d}, \text{ we have } \varphi(x; \tilde{d}) \in p.$$

Example ($T = \mathsf{DLO}$, A small) $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\}$

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_x^{\text{inv}}(\mathfrak{U}, A) \iff$ whether $p(x) \vdash \varphi(x; d)$ or not depends only on $\operatorname{tp}(d/A)$ Fact (B arbitrary, A small)Every $p \in S_x^{\text{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U}B) \in S_x^{\text{inv}}(\mathfrak{U}B, A)$: for tuples d from $\mathfrak{U}B$

$$\varphi(x; d) \in (p \mid \mathfrak{U}B) \iff \text{for } \tilde{d} \in \mathfrak{U} \text{ such that } d \equiv_{A} \tilde{d}, \text{ we have } \varphi(x; \tilde{d}) \in p.$$

Example ($T = \mathsf{DLO}, A \mathsf{small}$) $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\}$

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_x^{\text{inv}}(\mathfrak{U}, A) \iff$ whether $p(x) \vdash \varphi(x; d)$ or not depends only on $\operatorname{tp}(d/A)$ Fact (B arbitrary, A small)Every $p \in S_x^{\text{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U}B) \in S_x^{\text{inv}}(\mathfrak{U}B, A)$: for tuples d from $\mathfrak{U}B$

$$\varphi(x;d) \in (p \mid \mathfrak{U}B) \iff \text{for } \tilde{d} \in \mathfrak{U} \text{ such that } d \equiv_{A} \tilde{d}, \text{ we have } \varphi(x;\tilde{d}) \in p.$$

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_x^{\text{inv}}(\mathfrak{U}, A) \iff$ whether $p(x) \vdash \varphi(x; d)$ or not depends only on $\operatorname{tp}(d/A)$ Fact (B arbitrary, A small)Every $p \in S_x^{\text{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U}B) \in S_x^{\text{inv}}(\mathfrak{U}B, A)$: for tuples d from $\mathfrak{U}B$

$$\varphi(x;d) \in (p \mid \mathfrak{U}B) \iff \text{for } \tilde{d} \in \mathfrak{U} \text{ such that } d \equiv_{\mathbf{A}} \tilde{d}, \text{ we have } \varphi(x;\tilde{d}) \in p.$$

How to canonically extend an invariant type to bigger sets

Recall: $p \in S_x^{\text{inv}}(\mathfrak{U}, A) \iff$ whether $p(x) \vdash \varphi(x; d)$ or not depends only on $\operatorname{tp}(d/A)$ Fact (*B* arbitrary, *A* small) Every $p \in S_x^{\text{inv}}(\mathfrak{U}, A)$ has a unique extension $(p \mid \mathfrak{U}B) \in S_x^{\text{inv}}(\mathfrak{U}B, A)$: for tuples *d* from $\mathfrak{U}B$

$$\varphi(x;d) \in (p \mid \mathfrak{U}B) \iff \text{for } \tilde{d} \in \mathfrak{U} \text{ such that } d \equiv_A \tilde{d}, \text{ we have } \varphi(x;\tilde{d}) \in p.$$

Example (T = DLO, A small) $p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\} \quad "="(p_{A^+} \mid \mathfrak{U}B)(x) \pmod{d \in \mathfrak{U}B}$ $\xrightarrow{p_{A^+}} (p_{A^+} \mid B)$

Product of Invariant Types

 $\begin{array}{l} \text{Definition } (p \text{ invariant}) \\ \varphi(x,y;d) \in p(x) \otimes q(y) & \xleftarrow{\text{def}} \varphi(x;b,d) \in p \mid \mathfrak{U}b \\ \end{array} (b \vDash q)$

 $\operatorname{Appendix}$

Product of Invariant Types

Definition
$$(p \text{ invariant})$$

 $\varphi(x, y; d) \in p(x) \otimes q(y) \iff \varphi(x; b, d) \in p \mid \mathfrak{U}b \qquad (b \models q)$
Example
 $(p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\}) \qquad p_{A^+}(x) \otimes p_{A^+}(y)$

Product of Invariant Types

Definition
$$(p \text{ invariant})$$

 $\varphi(x, y; d) \in p(x) \otimes q(y) \stackrel{\text{def}}{\Longrightarrow} \varphi(x; b, d) \in p \mid \mathfrak{U}b \quad (b \models q)$
Example
 $(p_{A^+}(x) \coloneqq \{x < d \mid d > A\} \cup \{x > d \mid d \neq A\}) \quad p_{A^+}(x) \otimes p_{A^+}(y)$
 $p_{A^+}(x) \mapsto p_{A^+}(x) \otimes p_{A^+}(y)$

Product of Invariant Types

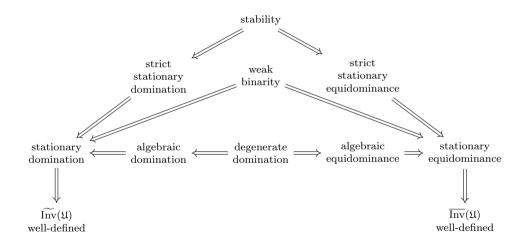
Product of Invariant Types

Product of Invariant Types

Fact

 \otimes is associative. It is commutative if and only if T is stable.

Map of Sufficient Conditions



Sufficient Conditions

Proposition

 $q_0 \geq_D q_1 \Longrightarrow p \otimes q_0 \geq_D p \otimes q_1$ is implied by any of the following:

- q_1 algebraic over q_0 : every $c \models q_1$ is algebraic over some $b \models q_0$. E.g. $q_1 = f_*q_0$ for some definable function f. Reason: $\{c \mid (b,c) \models r\}$ does not grow with \mathfrak{U} .
- Or even weakly binary: $tp(a/\mathfrak{U}) \cup tp(b/\mathfrak{U}) \cup tp(ab/M) \vDash tp(ab/\mathfrak{U})$: few questions about $a \vDash p$ and $c \vDash q_1$.
- T is stable.

Any condition in the Proposition implies that if there is some $r \in S_{uz}(M)$ witnessing $q_0(y) \geq_D q_1(z)$, then there is one such that, in addition, if

- $b, c \in \mathfrak{U}_1 \xrightarrow{+} \mathfrak{U}$ are such that $(b, c) \models q_0 \cup r$,
- $p \in S^{\text{inv}}(\mathfrak{U}, M)$ and $a \models p(x) \mid \mathfrak{U}_1$.
- $r[p] \coloneqq \operatorname{tp}_{xuz}(abc/M) \cup \{x = w\}.$

then $p \otimes q_0 \cup r[p] \vdash p \otimes q_1$. We call this stationary domination.

A Counterexample

(with SOP and IP_2)

Idea:

DLO

A Counterexample

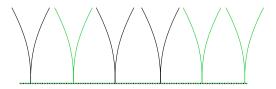
(with SOP and IP_2)

Idea: 2-coloured DLO

A Counterexample

(with SOP and IP_2)

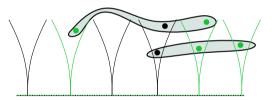
Idea: fiber over a 2-coloured DLO



A Counterexample

(with SOP and $\mathsf{IP}_2)$

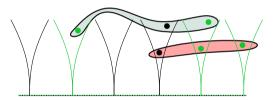
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on triples of fibers:



A Counterexample

(with SOP and IP_2)

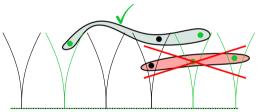
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$



A Counterexample

(with SOP and IP_2)

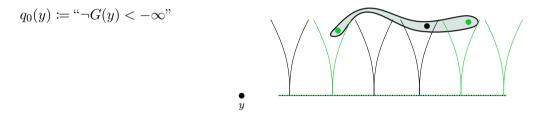
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$ (for some permutation of x, z, w)



A Counterexample

(with SOP and IP_2)

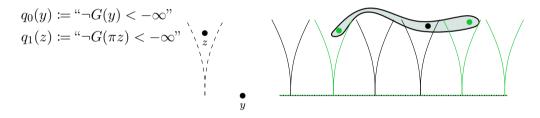
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$ (for some permutation of x, z, w)



A Counterexample

(with SOP and IP_2)

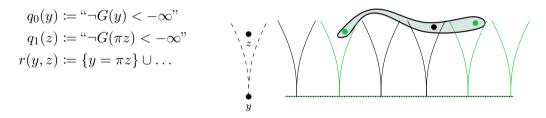
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$ (for some permutation of x, z, w)



A Counterexample

(with SOP and IP_2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$ (for some permutation of x, z, w)

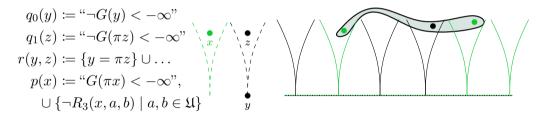


 $q_0 \cup r \vdash q_1$: no hyperedges to decide.

A Counterexample

(with SOP and IP_2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$ (for some permutation of x, z, w)

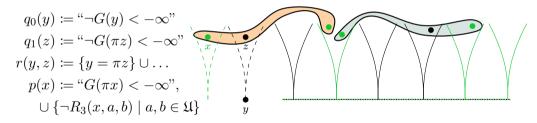


 $q_0 \cup r \vdash q_1$: no hyperedges to decide.

A Counterexample

(with SOP and IP_2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$ (for some permutation of x, z, w)



 $q_0 \cup r \vdash q_1$: no hyperedges to decide. But does $p \otimes q_0(x, y) \ge_D p \otimes q_1(t, z)$?

A Counterexample

(with SOP and IP_2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$ (for some permutation of x, z, w) $q_0(y) \coloneqq "\neg G(y) < -\infty"$ $q_1(z) \coloneqq "\neg G(\pi z) < -\infty"$ $r(y, z) \coloneqq \{y = \pi z\} \cup \dots$ $p(x) \coloneqq "G(\pi x) < -\infty",$ $\cup \{\neg R_3(x, a, b) \mid a, b \in \mathfrak{U}\}$

 $q_0 \cup r \vdash q_1$: no hyperedges to decide. But does $p \otimes q_0(x, y) \ge_D p \otimes q_1(t, z)$? No: even with x = t no small type can decide all hyperedges involving x and z!

A Counterexample

(with SOP and IP₂)

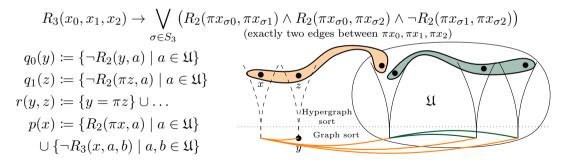
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some triples of fibers: $R_3(x, z, w) \rightarrow (G(\pi x) < \neg G(\pi z) < G(\pi w))$ (for some permutation of x, z, w) $q_0(y) \coloneqq "\neg G(y) < -\infty"$ $q_1(z) \coloneqq "\neg G(\pi z) < -\infty"$ $r(y, z) \coloneqq \{y = \pi z\} \cup \dots$ $p(x) \coloneqq "G(\pi x) < -\infty",$ $\cup \{\neg R_3(x, a, b) \mid a, b \in \mathfrak{U}\}$

 $q_0 \cup r \vdash q_1$: no hyperedges to decide. But does $p \otimes q_0(x, y) \ge_D p \otimes q_1(t, z)$? No: even with x = t no small type can decide all hyperedges involving x and z! Supersimple version (here). Also works for a number of (variations) of \sim_D .

Another Counterexample

Ternary, supersimple, ω -categorical, can be tweaked to have degenerate algebraic closure

Replacing the densely coloured DLO with a random graph R_2 yields a supersimple counterexample of SU-rank 2; forking is $a \underset{C}{\downarrow} b \iff (a \cap b \subseteq C) \land (\pi a \cap \pi b \subseteq \pi C)$.



 $q_0 \cup r \vdash q_1$: no hyperedges to decide. Same problem: $p \otimes q_0(x, y) \not\geq_D p \otimes q_1(t, z)$.

Strongly Minimal Theories

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ well-defined by stability

Example

If T is strongly minimal, $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathbf{D}}) \cong (\mathbb{N}, +, \leq).$

 $(\text{for }T\text{ stable, }\widetilde{\text{Inv}}(\mathfrak{U})\cong\mathbb{N}\Leftrightarrow T\text{ is unidimensional, e.g. countable and }\aleph_1\text{-categorical, or }\text{Th}(\mathbb{Z},+))$

Strongly Minimal Theories

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ well-defined by stability

Example

If T is strongly minimal, $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathbf{D}}) \cong (\mathbb{N}, +, \leq).$

(for T stable, $\widetilde{Inv}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_1 -categorical, or $Th(\mathbb{Z}, +)$)

In this case, $\operatorname{Inv}(\mathfrak{U})$ is basically "counting the dimension". E.g.: in ACF₀ we have $p(x_1, \ldots, x_n) \sim_{\mathrm{D}} q(y_1, \ldots, y_m) \iff \operatorname{tr} \operatorname{deg}(x/\mathfrak{U}) = \operatorname{tr} \operatorname{deg}(y/\mathfrak{U})$. Glue transcendence bases; recover the rest with one formula.

Strongly Minimal Theories

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ well-defined by stability

Example

If T is strongly minimal, $(\widetilde{Inv}(\mathfrak{U}), \otimes, \leq_{\mathbf{D}}) \cong (\mathbb{N}, +, \leq).$

(for T stable, $\widetilde{Inv}(\mathfrak{U}) \cong \mathbb{N} \Leftrightarrow T$ is unidimensional, e.g. countable and \aleph_1 -categorical, or $Th(\mathbb{Z}, +)$)

In this case, $\operatorname{Inv}(\mathfrak{U})$ is basically "counting the dimension". E.g.: in ACF₀ we have $p(x_1, \ldots, x_n) \sim_{\mathrm{D}} q(y_1, \ldots, y_m) \iff \operatorname{tr} \operatorname{deg}(x/\mathfrak{U}) = \operatorname{tr} \operatorname{deg}(y/\mathfrak{U})$. Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if $(a, b) \models p \otimes q$, then $\dim(a/\mathfrak{U}b) = \dim(a/\mathfrak{U})$, and in strongly minimal theories

$$\dim(ab/\mathfrak{U}) = \dim(b/\mathfrak{U}) + \dim(a/\mathfrak{U}b)$$

More generally, in superstable theories (or even thin theories), by classical results $\widehat{Inv}(\mathfrak{U}) \cong \bigoplus_{i < \lambda} (\mathbb{N}, +, \leq)$, for some λ .

Dense Linear Orders

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).

Dense Linear Orders

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ well-defined by binarity

- $\bullet\,$ Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- $(\widetilde{Inv}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p(x_0) \otimes p(y_0) \sim_{\mathrm{D}} p(y_1) \otimes p(x_1)$ by gluing: $r := \{x_0 = y_1 \land y_0 = x_1\} \cup \ldots$

Dense Linear Orders

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).

viο

- $(\widetilde{Inv}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p(x_0) \otimes p(y_0) \sim_{\mathrm{D}} p(y_1) \otimes p(x_1)$ by gluing: $r := \{x_0 = y_1 \land y_0 = x_1\} \cup \ldots$
- Every element is idempotent: e.g. if $p(x) = \operatorname{tp}(x > \mathfrak{U})$, then $p(x) \sim_{\mathrm{D}} p(y_1) \otimes p(y_0)$ (seen before: glue x and y_0):

Dense Linear Orders

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- $(\widetilde{Inv}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p(x_0) \otimes p(y_0) \sim_{\mathrm{D}} p(y_1) \otimes p(x_1)$ by gluing: $r := \{x_0 = y_1 \land y_0 = x_1\} \cup \ldots$
- Every element is idempotent: e.g. if $p(x) = \operatorname{tp}(x > \mathfrak{U})$, then $p(x) \sim_{\mathrm{D}} p(y_1) \otimes p(y_0)$ (seen before: glue x and y_0):

Dense Linear Orders

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- $(\widetilde{Inv}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p(x_0) \otimes p(y_0) \sim_{\mathrm{D}} p(y_1) \otimes p(x_1)$ by gluing: $r := \{x_0 = y_1 \land y_0 = x_1\} \cup \ldots$
- Every element is idempotent: e.g. if $p(x) = \operatorname{tp}(x > \mathfrak{U})$, then $p(x) \sim_{\mathrm{D}} p(y_1) \otimes p(y_0)$ (seen before: glue x and y_0):

Dense Linear Orders

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ well-defined by binarity

- Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
- $(\widetilde{Inv}(\mathfrak{U}), \otimes)$ is commutative: e.g. $p(x_0) \otimes p(y_0) \sim_{\mathrm{D}} p(y_1) \otimes p(x_1)$ by gluing: $r := \{x_0 = y_1 \land y_0 = x_1\} \cup \ldots$
- Every element is idempotent: e.g. if $p(x) = \operatorname{tp}(x > \mathfrak{U})$, then $p(x) \sim_{\mathrm{D}} p(y_1) \otimes p(y_0)$ (seen before: glue x and y_0):

$$- - - - - \begin{vmatrix} - & - & - \\ y_0 = x & y_1 \end{vmatrix}$$

 $\operatorname{Inv}(\mathfrak{U})$ is the free idempotent commutative monoid generated by the invariant cuts:

$$(\widetilde{\mathrm{Inv}}(\mathfrak{U}),\otimes,\leq_{\mathrm{D}})\cong(\mathscr{P}_{\mathrm{fin}}(\{\mathrm{invariant\ cuts}\}),\cup,\subseteq)$$

Random Graph

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ well-defined by binarity

In the Random Graph, $\sim_{\mathbf{D}}$ is degenerate and $(Inv(\mathfrak{U}), \otimes)$ resembles closely $(S_{<\omega}^{inv}(\mathfrak{U}), \otimes)$. For instance, it is not commutative:

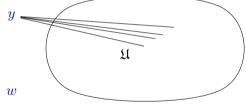
Random Graph

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ well-defined by binarity

In the Random Graph, $\sim_{\mathbf{D}}$ is degenerate and $(\operatorname{Inv}(\mathfrak{U}), \otimes)$ resembles closely $(S_{\leq \omega}^{\operatorname{inv}}(\mathfrak{U}), \otimes)$. For instance, it is not commutative:

Example (All types Ø-invariant)

These types do not commute, even modulo $\sim_{\rm D}$:



$$\begin{aligned} q(y) &\coloneqq \{ E(y,b) \mid b \in \mathfrak{U} \} \\ p(w) &\coloneqq \{ \neg E(w,b) \mid b \in \mathfrak{U} \} \end{aligned}$$

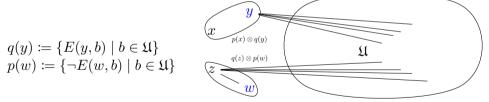
Random Graph

 $(\widetilde{\operatorname{Inv}}(\mathfrak{U}),\otimes)$ well-defined by binarity

In the Random Graph, $\sim_{\mathbf{D}}$ is degenerate and $(\operatorname{Inv}(\mathfrak{U}), \otimes)$ resembles closely $(S_{<\omega}^{\operatorname{inv}}(\mathfrak{U}), \otimes)$. For instance, it is not commutative:

Example (All types Ø-invariant)

These types do not commute, even modulo $\sim_{\rm D}$:



Proof Idea.

As $p_x \otimes q_y \vdash \neg E(x, y)$ and $q_z \otimes p_w \vdash E(z, w)$, gluing cannot work. But in the random graph domination is degenerate and there is not much more one can do.

Properties Preserved by Domination

Domination equivalence is quite coarse; for instance it does not preserve Morley rank (generic equivalence relation), nor dp-rank (DLO).

Properties Preserved by Domination

Domination equivalence is quite coarse; for instance it does not preserve Morley rank (generic equivalence relation), nor dp-rank (DLO). Anyway:

Theorem (M.)

If $p \geq_{\mathrm{D}} q$ and p has any of the following properties, then so does q:

- Definability
- Finite satisfiability
- Generic stability
- Weak orthogonality to a fixed type

Properties Preserved by Domination

Domination equivalence is quite coarse; for instance it does not preserve Morley rank (generic equivalence relation), nor dp-rank (DLO). Anyway:

Theorem (M.)

If $p \geq_{\mathrm{D}} q$ and p has any of the following properties, then so does q:

- Definability (over *some* small set, not necessarily the same as q)
- Finite satisfiability (in *some* small set, not necessarily the same as q)
- Generic stability (over *some* small set, not necessarily the same as q)
- Weak orthogonality to a fixed type

Generic stability is particularly interesting:

- It is possible to have $\widetilde{Inv}(\mathfrak{U}) \neq \widetilde{Inv}(\mathfrak{U}^{eq})$ (more g.s. types, e.g. DLO +dense eq. rel.).
- Using [Tan15], strongly regular g.s. types are \leq_D -minimal (among the nonrealised ones).
- $(\widetilde{Inv}^{gs}(\mathfrak{U}), \otimes, \leq_D)$ makes sense in any theory (can be trivial).

You asked for it

Let T be o-minimal. Let $p(x) \in S^{inv}(\mathfrak{U}, M_0)$, let $c \vDash p$ be \mathfrak{U} -independent.

- 1. There is a tuple $b \in dcl(\mathfrak{U}c)$ of maximal length among those satisfying a product of nonrealised invariant 1-types.
- 2. Let b be as above, and let $q \coloneqq \operatorname{tp}(b/\mathfrak{U}) = q_0 \otimes \ldots \otimes q_n$, where $q_i \in S_1^{\operatorname{inv}}(\mathfrak{U})$. Up to replacing q_i with $\tilde{q}_i \sim_{\mathrm{D}} q_i$, we may assume that either $q_i \perp^{\mathrm{w}} q_j$ or $q_i = q_j$.
- Let b, q as above, $q_i \in S^{\text{inv}}(\mathfrak{U}, M)$ and $M_0 \preceq M \prec^+ N \prec^+ N_1 \prec^+ \mathfrak{U}$.
 - 3. Up to replacing b with another $\tilde{b} \vDash q$, we may assume $b \in dcl(Nc)$.
 - 4. Let b, q be as above, $r \coloneqq \operatorname{tp}_{xy}(cb/N_1)$, and $\mathcal{F}_{T(M)}^{m,1}$ the set of T(M)-definable functions with domain \mathfrak{U}^m and codomain \mathfrak{U}^1 . Then $p(x) \cup r(x, y) \vdash q(y)$ and

$$q(y) \cup r(x,y) \vdash \pi_M(x) \coloneqq \bigcup_{f \in \mathcal{F}_{T(M)}^{|x|,1}} \operatorname{tp}_{w_f}(f(c)/\mathfrak{U}) \cup \left\{ w_f = f(x) \mid f \in \mathcal{F}_{T(M)}^{|x|,1} \right\}$$

Using this and some valuation theory, in RCF, it can be shown that $q \cup r \vdash p$.

