Borel sets in effective descriptive set theory

Philipp Schlicht, University of Bristol

Ghent-Leeds online seminar 10 September 2020

Acknowledgements

- This is an ongoing project with Philip Welch (University of Bristol) and Merlin Carl (Europa-Universität Flensburg).
- This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 794020 (IMIC).

Problem 1: Borel ranks of definable sets

Effective descriptive set theory studies simply definable subsets of the Baire space ω^{ω} .

A Σ_1^1 set is a projection of a closed subset [T] of $\omega^{\omega} \times \omega^{\omega}$, where T is a computable tree. Equivalently, it is definable by a Σ_1^1 -formula

$$
\exists y \; \varphi(x, y),
$$

where φ is Σ_0 .

- A Π_1^1 set is a complement of a Σ_1^1 set.
- A Σ_2^1 set is a projection of a Π_1^1 set, etc.

Where in the Borel hierarchy do these sets appear?

Δ_1^1 sets

An ordinal is called computable if it is coded by a computable real. ω_1^{ck} is the supremum of computable ordinals.

Fact

The supremum of Borel ranks of Δ_1^1 sets is ω_1^{ck} .

This uses an effective version of Lusin's separation theorem: Any two disjoint Σ_1^1 sets are separated by a hyperarithmetic set, i.e. a Borel set with a computable code.

 $L_{\omega_1^{ck}}$ is the least admissible set. An *admissible set* is a transitive model of KP: Axioms of set theory with only Σ_1 -collection and Δ_0 -separation. In particular, Σ_1 -recursion is allowed.

Theorem (Louveau 1980 "Louveau Separation")

Given a Δ_1^1 set that is also Σ_α^0 , there is a Σ_α^0 -code in $L_{\omega_1^{ck}}$.

Thus KP suffices to calculate Borel ranks of Δ_1^1 sets.

Σ_1^1 Borel sets

- $A \Sigma_1^1$ set is either
	- Truly Σ_1^1 (i.e. not Borel), or
	- Borel.

Assuming Σ_1^1 -determinacy, all truly Σ_1^1 sets are Wadge equivalent. It remains to understand Σ_1^1 Borel sets.

What is the supremum of Borel ranks of Σ_1^1 Borel sets?

This was calculated by Kechris, Marker and Sami (1989). We simplified the result. Let τ denote the supremum of ordinals Π_1 -definable over $L_{\omega_1^V}$.

Proposition (Welch, Carl, S.)

The supremum equals τ .

Thus we need witnesses to Σ_2 -statements in $L_{\omega_1^V}$ to calculate ranks of Σ_1^1 Borel sets.

Δ_2^1 Borel sets

A Borel code is a subset of ω that codes a tree which describes the way the Borel set is built up from basic open sets.

An ∞ -Borel set is defined by allowing wellordered unions and intersections. An ∞-Borel code is a set of ordinals coding a tree which describes the way the ∞-Borel set is built up from basic open sets.

Do all Δ_2^1 Borel sets have ∞ -Borel codes in $L_{\omega_1^V}$?

A set is absolutely Δ_2^1 if it has a uniform Δ_2^1 -definition in generic extensions.

Proposition (Welch, Carl, S.)

Suppose that either

- a. ω_1^V is inaccessible in L, or
- b. V is a generic extension of L by proper forcing.

Then any absolutely Δ_2^1 Borel set has an ∞ -Borel code of the same rank in L_{τ} .

There is no such result for Σ_2^1 , since Π_2^1 singletons can exist outside of L.

Δ_2^1 Borel sets

Proposition (Welch, Carl, S.)

Under additional assumptions, any absolutely Δ_2^1 Borel set has an ∞ -Borel code of the same rank in L_{τ} .

We ultimately aim to obtain this result in **ZFC**. This would simultaneously generalise:

- The above result of Kechris, Marker and Sami
- The Mansfield-Solovay theorem: Countable Δ_2^1 sets are contained in L
- Stern's theorem on Δ_2^1 Borel sets that corresponds to the first case.
- Shoenfield absoluteness

Problem 2: The length of ranks

Fix a class of sets such as Π_1^1 or Σ_2^1 . A rank in this class is an abstraction of the quasiordering given by the halting times of infinite computations. The essential property is that rank comparison is both Π_1^1 and Σ_1^1 (for Π_1^1 -ranks).

For instance, any Π_1^1 -set can be written in a canonical way as an increasing union of Borel subsets, inducing a rank.

Example

Let WO denote the Π_1^1 set of wellorders on ω . Let $\text{WO}_{\leq \alpha}$ denote the Borel subset of wellorders of order type $\leq \alpha$.

Ranks often arise from transfinite iterations of derivation processes such as the Cantor-Bendixson derivative.

Theorem (Welch, Carl, S.)

The supremum of lengths of countable ranks in the following classes equals τ :

- a. Π_1^1 -ranks
- b. Σ^1_2 -ranks

Σ^1_2 $\frac{1}{2}$ -ranks

Fact

 $A \prod_{1}^{1} set$ is Borel if and only if it admits a countable Π_{1}^{1} -rank.

This holds by the boundedness theorem for Π^1_1 -ranks.

What does it mean for a Σ^1_2 -set to admit a countable rank?

Theorem (Welch, Carl, S.)

The following conditions are equivalent for any Π^1_2 -singleton x:

- a. $x \in L$.
- b. x is covered by a countable Δ_2^1 -set.
- c. The complement of $\{x\}$ admits a countable Σ^1_2 -rank.

Decision times

Hamkins' and Kidder's infinite time Turing machine (ittm) is a Turing machine that may run for ordinal time via a limit rule.

A set A of reals is called ittm-semidecidable by a program p if

 $A = \{x \mid p(x)\downarrow\}.$

The decision time of an ittm-program is the supremum of (transfinite) halting times over all real inputs.

What is the supremum of countable decision times?

Theorem (Welch, Carl, S.)

- 1. The supremum of countable decision times of ittm-decidable sets equals σ .
- 2. The supremum of countable decision times of ittm-semidecidable sets equals τ .

Any ittm-semidecidable set with countable decision time is Borel:

Decision time
$$
\leq \omega \cdot \alpha \implies
$$
 Borel rank $\leq \alpha + 1$

Borel ranks

σ and τ

Definition

Let σ (τ) denote the supremum of ordinals Σ_1 -definable (Σ_2 -definable) in $L_{\omega_1^V}$.

Fact

- 1. σ is least with $L_{\sigma} \prec_{\Sigma_1} L$.
- 2. σ equals δ_2^1 , the supremum lengths of Δ_2^1 -wellorders on ω .

Lemma (Welch, Carl, S.)

 τ equals the supremum of ordinals Π_1 -definable in $L_{\omega_1^V}$.

Let τ_* be least such that L_{τ_*} and $L_{\omega_1^V}$ agree on Σ_2 -truth. Let τ^* be least with $L_{\tau^*} \prec_{\Sigma_2} L_{\omega_1^V}.$ Then $\tau_* \leq \tau \leq \tau^*$.

Lemma (Welch, Carl, S.) 1. If $\omega_1^L = \omega_1^V$, then $\tau_* = \tau = \tau^*$. 2. If $\omega_1^L < \omega_1^V$, then $\tau_* < \omega_1^L < \tau < \tau^*$.

The lower bound

Lemma (Kechris, Marker, Sami)

For any $\alpha < \tau$, there is a Π_1^1 Borel set A of Borel rank at least α .

Proof.

Let α_x denote the order type of $x \in WO$.

Suppose that $\delta > \omega^{\alpha}$ is a Π_1 -singleton defined by $\varphi(x)$. Let

$$
A = \{(x, y) \in \text{WO}^2 \mid \alpha_y \text{ is least with } L_{\alpha_y} \models \text{``φ defines } \alpha_x\text{''}\} \in \Pi_1^1.
$$

Let $\xi > \delta$ be least with $L_{\xi} \models \text{``}\varphi$ defines δ ". Note that for any $(x, y) \in A$, we have $\alpha_x \leq \delta$ and $\alpha_y \leq \xi$. Since for each ξ , the set WO_{ξ} of codes for ξ is Borel, A is a countable union of Borel sets and thus Borel.

For any code y of ξ , we obtain the slice WO_δ. But WO_δ has Borel rank at least α (Stern).

The converse, i.e. Borel ranks are all below τ , uses the Π_1^1 -boundedness theorem.

Similarly: There is a Σ^1_2 Borel set of Borel rank precisely τ .

Decision times

Ittm's

An infinite time Turing machine is a Turing machine with three tapes whose cells are indexed by natural numbers:

- The input tape
- The output tape
- The working tape

Ittm's

It behaves like a standard Turing machine at successor steps of a computation. At limit steps of computation:

- The head goes back to the first cell.
- The machine goes into a"limit" state.
- The value of each cell equals the lim inf of the values at previous stages of computation.

Borel \leftrightarrow decidable in countable time

Proposition (Welch, Carl, S.)

There is an open ittm-decidable set A that is not ittm-semidecidable in countable time.

Proof.

Let $\vec{\varphi} = \langle \varphi_n \mid n \in \omega \rangle$ be a computable enumeration of all Σ_1 -sentences.

Let B denote the set consisting of 0^{∞} and all 0^{n} $1^{\frown}x$, where x is the L-least code for the least L_{α} where φ_n holds. B is a countable closed set.

Let p denote an algorithm that semidecides B as follows: test if the input is of the form 0^{n} ^{\cap} x , run a wellfoundedness test for x (which takes at least α steps for codes for L_{α}), and then test whether α is least such that φ_n holds in L_{α} .

Thus p's decision time is at least σ . It is countable since B is countable.

Borel \leftrightarrow decidable in countable time

Proposition (Welch, Carl, S.)

There is an open ittm-decidable set A that is not ittm-semidecidable in countable time.

Proof, continued.

Let A denote the complement of B. Towards a contradiction, suppose that A is semidecidable in countable time by an ittm-program q.

Let r be the decision algorithm for B that runs p and q simultaneously. Then r has a countable decision time α and by Σ_2^1 -reflection, we have $\alpha < \sigma$. But this is clearly false, since p's decision time is at least σ .

Decision times for singletons

Theorem (Welch, Carl, S.)

The suprema of decision times for the following sets equal σ :

- 1. Singletons
- 2. Complements of singletons.

Some open problems

- In ZFC, does every Δ_2^1 Borel set have a Borel code in L?
- Is a countable Π^1_2 set contained in L if and only if its complements admits a countable Σ^1_2 -rank?

References

- Kechris, Marker, Sami, Π_1^1 Borel sets, J. Symb. Log. 54 (1989), no. 3, 915–920.
- Stern,

On Lusin's restricted continuum problem, Annals Math. 120 (1984), no. 1, 7–37.

Louveau,

A separation theorem for analytic sets, Trans. Americ. Math. Soc. 260 (1980), no. 2, 363–378

Carl, Schlicht, Welch,

Preprint on Borel sets in effective descriptive set theory, In preparation