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Introduction: ATR

Recursively defined family

Given a well-order X and a formula ϕ(n, x ,Z ), we define

Hϕ(X ,Y ) :⇐⇒ Y = {(x , n) ∈ X × N | ϕ(n, x ,Y x)},

where Y x := {(y , n) ∈ Y | y <X x}.

Intuition: ϕ computes Yx := {n | (x , n) ∈ Y } using Yy for y <X x .

Arithmetical Transfinite Recursion (ATR)

For any well-order X and arithmetical ϕ(n, x ,Z ), there exists a

set Y with Hϕ(X ,Y ).

Question: Can we apply recursion in weaker systems?

Arithmetical comprehension along a well-order =̂ ATR

∆0
1-comprehension along a well-order =̂ ETR 1



Introduction: WETR

Effective Transfinite Recursion originates from recursion theory

(Church, Kleene, Rogers).

Weak Effective Transfinite Recursion (WETR)
For any well-order X and Σ0

1-formulas ϕ(n, x ,Z ) and ψ(n, x ,Z )

with

∀n ∈ N ∀x ∈ X ∀Z ⊆ N
(
ϕ(n, x ,Z )↔ ¬ψ(n, x ,Z )

)
,

there exists a set Y with Hϕ(X ,Y ).

Proposition (Dzhafarov, Flood, Solomon, Westrick 2017)

ACA0 proves WETR.

2



Introduction: SETR

Weak Effective Transfinite Recursion is too restrictive.

Strong Effective Transfinite Recursion (SETR)
For any well-order X and Σ0

1-formulas ϕ(n, x ,Z ) and ψ(n, x ,Z )

with

Hϕ(X �x ,Z )→ ∀n ∈ N
(
ϕ(n, x ,Z )↔ ¬ψ(n, x ,Z )

)
for all x ∈ X and Z ⊆ N, there exists a set Y with Hϕ(X ,Y ).

Proposition (Freund 2021)

ACA0 proves SETR.
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Introduction: Comparison of Recursion principles

Principle ϕ(n, x ,Z ) Strength

ATR arithmetical ATR0

SETR ∆0
1 if Hϕ(X �x ,Z ) ≤ ACA0

WETR ∆0
1 ≤ ACA0

Questions

� Is WETR properly weaker than SETR?

� What are the precise strengths of SETR and WETR?

� Can we say something about SETRX and WETRX for

fixed well-orders X?
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SETR: Main results

Theorem (RCA0)

For any well-order X , the following are equivalent:

� SETRX

� Π0
2-induction along X

� α 7→ αX preserves well-orders

Corollary (RCA0)

SETR is equivalent to ACA0.
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SETR: Recursion implies Induction

SETRX =⇒ Π0
2-induction along X

Progressive Q(x) := ∀n ∃m P(x , n,m) for a ∆0
0-formula P(x , n,m)

ϕ(n, x ,Z ) := ∃m P(x , n,m)

¬ψ(n, x ,Z ) := ?

Given Y with Hϕ(X ,Y ), we have (x , n) ∈ Y ←→ ∃m P(x , n,m).
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SETR: Recursion implies Induction

SETRX =⇒ Π0
2-induction along X

Progressive Q(x) := ∀n ∃m P(x , n,m) for a ∆0
0-formula P(x , n,m)

ϕ(n, x ,Z ) := ∃m (P(x , n,m) ∧ ∀(y , n′) ≤N m (y <X x → (y , n′) ∈ Z ))

¬ψ(n, x ,Z ) := ∀y <X x ∀n′ (∀m <N (y , n′) ¬P(x , n,m)→ (y , n′) ∈ Z )

Show that Hϕ(X �x ,Z ) implies ϕ(n, x ,Z )↔ ¬ψ(n, x ,Z ).

Given Y with Hϕ(X ,Y ) and (y , l) ∈ Y for all y <X x and l ∈ N,

we have (x , n) ∈ Y ←→ ∃m P(x , n,m).
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SETR: Induction implies Well-ordering principle

Π0
2-induction along X =⇒ α 7→ αX preserves well-orders

� Assume infinite descending sequence (fi )i∈N in αX

(and that X has a top element >).

� For any x ∈ X , restrict fi to αX≥x with

X≥x := {x ′ ∈ X |x ′ ≥ x}.
� Show (using Π0

2-induction) that the resulting sequences

descend infinitely often.

� Consider the restriction to αX≥> ≡ α.
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SETR: Well-ordering principle implies Recursion (1/3)

α 7→ αX preserves well-orders =⇒ SETRX

Idea: Compute Y with Hϕ(X ,Y ) using term-evaluation

Terms:

� 0, 1, P(n, x , s) for n ∈ N, x ∈ X , and 0-1-sequences s that may

have another term as last member

Transition rules:

� P(n, x , s) for sequence s:

� If ϕ0(n, x , s) ∨ ψ0(n, x , s), then P(n, x , s) 7→ b with b = 1 iff

ϕ0(n, x , s).

� Otherwise, P(n, x , s) 7→ P(n, x , s ∗ 〈t〉) with t = P(m, y , 〈〉) if

|s| = (m, y) for y <X x , else t = 0.

� P(n, x , s ∗ 〈t〉) for sequence s and term t /∈ {0, 1}:
P(n, x , s ∗ 〈t〉) 7→ P(n, x , s ∗ 〈t ′〉) for t 7→ t ′.
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SETR: Well-ordering principle implies Recursion (2/3)

α 7→ αX preserves well-orders =⇒ SETRX

Define (n, x) ∈ Y iff P(n, x , 〈〉) 7→ 1

Use the preserving α 7→ αX to show that this is decidable: Define

T := {0T , 1T , (n, x , t, b) | n ∈ N, x ∈ X , t ∈ T (n, x), b ∈ 2}.

Map each term t to an element β(t) in TX :

� t ∈ {0, 1}, then β(t) = 0TX .

� t = P(n, x , s) for sequence s:

� If ϕ0(n, x , s) ∨ ψ0(n, x , s), then β(t) := 1TX .

� Otherwise, β(t) := T x · (n, x , s, 1).

� t = P(n, x , s ∗ 〈t ′〉) for sequence s and term t ′ /∈ {0, 1}:
β(t) := T x · (n, x , s, 0) + β(t ′).

Evaluation of P(n, x , 〈〉) results in descending sequence in TX .
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SETR: Well-ordering principle implies Recursion (3/3)

α 7→ αX preserves well-orders =⇒ SETRX

Tiny caveat: T is far from a well-order:

� Not linear because of T (n, x)

(can be solved immediately using Kleene-Brouwer-order)

� Not well-founded if ϕ(n, x ,Z ) ∨ ψ(n, x ,Z ) does not hold for

all Z

=⇒ descending sequence in TX not an (immediate) contradiction

Solution:

� Let (gi )i∈N with g0 := P(n, x , 〈〉) and gi 7→ gi+1.

� Define T ′ as restriction of T to terms occurring in (β(gi ))i∈N.

� Show that T ′ is well-order

� Contradiction via descending (gi )i∈N in T ′X
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WETR: Main results

Theorem (RCA0)

For any well-order X , the following are equivalent:

� WETRX

� The disjunction of WKL and Π0
2-induction along X

Corollary (RCA0)

WETR is equivalent to WKL0.
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WETR: WKL0 implies Recursion (1/2)

WKL =⇒ WETR

Use WKL to define t : N× X → N with

ϕ(n, x ,Z )←→ ϕ0(n, x ,Z [t(n, x)]).

Compute ϕ(n, x ,Z ) (for Z with Hϕ(X �x ,Z )) using a program

e :⊆ N× X → {0, 1}:

� Compute e(m, y) for all m ∈ N, y <X x with

(m, y) <N t(n, x).

� Define s ∈ {0, 1}∗ with |s| = t(n, x) and si = e(m, y) if

(m, y) has code i (otherwise si = 0).

� Return 1 if and only if ϕ0(n, x , s) holds.

If e is total, then Hϕ(X ,Y ) holds for Y with

(n, x) ∈ Y :←→ e(n, x) = 1. 13



WETR: WKL0 implies Recursion (2/2)

WKL =⇒ WETR

Prove that e :⊆ N× X → {0, 1} is total. Consider the tree:

(m′, y ′) · · ·
(m, y)

...

(n, x)
...

...

Show that tree is finite:

� Using linear order: Define sequence (xi )i∈N s.t. xi is the

maximal element in X occurring on height i .

Show xi >X xi+1 for all i ∈ N.

� Using WKL: Infinite path corresponds to sequence (ni , xi )i∈N

with xi >X xi+1 for all i ∈ N.

Starting from the leaves, compute e(n, x) in finitely many steps. 14



WETR: RCA0 admits Recursion Rule

RCA0 ` ϕ is ∆0
1 =⇒ RCA0 ` Recursion on ϕ

Idea:

� Prove t(n, x) ↓ in WKL0

� Convert this into a proof in RCA0 using conservation theorem

(Harrington)

Also: Conservation theorem holds for Π1
1-sentences

=⇒ Allow arbitrary Σ1
1-formula as premise (on both sides)
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WETR: Recursion implies WKL or Strong Recursion (1/3)

WETRX ∧ ¬WKL =⇒ Π0
2-induction along X

Idea: Reuse the proof for “SETRX → Π0
2-induction along X”

Problem: We can only prove ϕ(n, x ,Z )↔ ¬ψ(n, x ,Z ) using

Hϕ(X �x ,Z ).

Reason: Hϕ(X �x ,Z ) and (y , n) ∈ Z for y < x imply existence of

m with P(y , n,m).

Solution: Code witness m for P(y , n,m) directly into Z .

Requirement: (Continuous) mapping from 2N to N.
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WETR: Recursion implies WKL or Strong Recursion (2/3)

WETRX ∧ ¬WKL =⇒ Π0
2-induction along X

Requirement: (Continuous) mapping from 2N to N.

Assume ¬WKL =⇒ infinite tree T without path

Collect all lengths in L such that there exists sequence s with (∗)

� s /∈ T

� s ′ ∈ T for all proper initial segments s ′ of s

Set L is infinite ⇒ surjective f : L→ N

Define:

Z 7→ m

iff there is an l ∈ L with f (l) = m and Z [l ] satisfies (∗).
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WETR: Recursion implies WKL or Strong Recursion (3/3)

WETRX ∧ ¬WKL =⇒ Π0
2-induction along X

Final step: Adapt proof of SETRX =⇒ Π0
2-induction along X

Before:

ϕ(n, x ,Z ) := ∃m (P(x , n,m) ∧
∀(y , n′) ≤N m (y <X x → (y , n′) ∈ Z ))

After:

ϕ((n, i), x ,Z ) := ∃m
(
P(x , n,m) ∧ seq(m)i = 1 ∧

∀(y , n′) ≤N m
(
y <X x → ∃m′

(
Zy ,n′ 7→ m′ ∧ P(y , n′,m′)

)))
Rest of the proof: Analogous but a bit more complex.
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Conclusion

Revisiting the table:

Principle ϕ(n, x ,Z ) Strength

ATR arithmetical ATR0

SETR ∆0
1 if Hϕ(X �x ,Z ) ACA0

SETRX Π0
2-induction along X

WETR ∆0
1 WKL0 (rule version: RCA0)

WETRX WKL0 ∨SETRX

Additional results:

� RCA0 ` Π0
2-induction along X

←→ α 7→ αX preserves well-orders

� RCA0 0 ∀n ∈ N WETRn
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