Weak and Strong Versions of Effective Transfinite Recursion

Leeds-Ghent Logic Seminar

Patrick Uftring

March 16, 2022

TU Darmstadt Fachbereich Mathematik – Arbeitsgruppe Logik

Introduction: ATR

Recursively defined family

Given a well-order X and a formula $\varphi(n, x, Z)$, we define

$$H_{\varphi}(X,Y): \Longleftrightarrow Y = \{(x,n) \in X \times \mathbb{N} \mid \varphi(n,x,Y^{x})\},$$

where $Y^{x} := \{(y, n) \in Y \mid y <_{X} x\}.$

Intuition: φ computes $Y_x := \{n \mid (x, n) \in Y\}$ using Y_y for $y <_X x$.

Arithmetical Transfinite Recursion (ATR)

For any well-order X and arithmetical $\varphi(n, x, Z)$, there exists a set Y with $H_{\varphi}(X, Y)$.

Question: Can we apply recursion in weaker systems?

 $\begin{array}{rcl} \mbox{Arithmetical comprehension along a well-order} & \triangleq & \mbox{ATR} \\ \Delta^0_1\mbox{-comprehension along a well-order} & \triangleq & \mbox{ETR} \end{array}$

1

Introduction: WETR

Effective Transfinite Recursion originates from recursion theory (Church, Kleene, Rogers).

Weak Effective Transfinite Recursion (WETR) For any well-order X and Σ_1^0 -formulas $\varphi(n, x, Z)$ and $\psi(n, x, Z)$ with

$$\forall n \in \mathbb{N} \ \forall x \in X \ \forall Z \subseteq \mathbb{N} \ \big(\varphi(n, x, Z) \leftrightarrow \neg \psi(n, x, Z)\big),$$

there exists a set Y with $H_{\varphi}(X, Y)$.

Proposition (Dzhafarov, Flood, Solomon, Westrick 2017) ACA₀ *proves* WETR. Weak Effective Transfinite Recursion is too restrictive.

Strong Effective Transfinite Recursion (SETR) For any well-order X and Σ_1^0 -formulas $\varphi(n, x, Z)$ and $\psi(n, x, Z)$ with

$$H_{\varphi}(X \upharpoonright x, Z) \to \forall n \in \mathbb{N} \ \big(\varphi(n, x, Z) \leftrightarrow \neg \psi(n, x, Z)\big)$$

for all $x \in X$ and $Z \subseteq \mathbb{N}$, there exists a set Y with $H_{\varphi}(X, Y)$.

Proposition (Freund 2021) ACA₀ *proves* SETR.

Introduction: Comparison of Recursion principles

Principle	$\varphi(n, x, Z)$	Strength
ATR	arithmetical	ATR ₀
SETR	Δ^0_1 if $H_{arphi}(X {\upharpoonright} x, Z)$	$\leq ACA_0$
WETR	Δ_1^0	$\leq ACA_0$

Questions

- Is WETR properly weaker than SETR?
- What are the precise strengths of SETR and WETR?
- Can we say something about SETR_X and WETR_X for fixed well-orders X?

Strong Effective Transfinite Recursion

Theorem (RCA₀)

For any well-order X, the following are equivalent:

- SETR_X
- Π_2^0 -induction along X
- $\alpha \mapsto \alpha^X$ preserves well-orders

Corollary (RCA₀**)** SETR *is equivalent to* ACA₀*.*

$SETR_X \implies \Pi_2^0$ -induction along X

Progressive $Q(x) := \forall n \exists m P(x, n, m)$ for a Δ_0^0 -formula P(x, n, m)

$$\varphi(n, x, Z) := \exists m \ P(x, n, m)$$
$$\neg \psi(n, x, Z) := ?$$

Given Y with $H_{\varphi}(X, Y)$, we have $(x, n) \in Y \longleftrightarrow \exists m \ P(x, n, m)$.

 $SETR_X \implies \Pi_2^0$ -induction along X

Progressive $Q(x) := \forall n \exists m P(x, n, m)$ for a Δ_0^0 -formula P(x, n, m)

$$\begin{split} \varphi(n, x, Z) &:= \exists m \ (P(x, n, m) \land \forall (y, n') \leq_{\mathbb{N}} m \ (y <_X x \to (y, n') \in Z)) \\ \neg \psi(n, x, Z) &:= \forall y <_X x \ \forall n' \ (\forall m <_{\mathbb{N}} (y, n') \ \neg P(x, n, m) \to (y, n') \in Z) \end{split}$$

Show that $H_{\varphi}(X \upharpoonright x, Z)$ implies $\varphi(n, x, Z) \leftrightarrow \neg \psi(n, x, Z)$.

Given Y with $H_{\varphi}(X, Y)$ and $(y, l) \in Y$ for all $y <_X x$ and $l \in \mathbb{N}$, we have $(x, n) \in Y \longleftrightarrow \exists m \ P(x, n, m)$.

 Π_2^0 -induction along $X \implies \alpha \mapsto \alpha^X$ preserves well-orders

- Assume infinite descending sequence (f_i)_{i∈ℕ} in α^X (and that X has a top element ⊤).
- For any $x \in X$, restrict f_i to $\alpha^{X_{\geq x}}$ with $X_{\geq x} := \{x' \in X | x' \geq x\}.$
- Show (using Π⁰₂-induction) that the resulting sequences descend infinitely often.
- Consider the restriction to $\alpha^{X_{\geq \top}} \equiv \alpha$.

SETR: Well-ordering principle implies Recursion (1/3)

 $\alpha \mapsto \alpha^X$ preserves well-orders \implies SETR_X

Idea: Compute Y with $H_{\varphi}(X, Y)$ using term-evaluation

Terms:

0, 1, P(n,x,s) for n ∈ N, x ∈ X, and 0-1-sequences s that may have another term as last member

Transition rules:

- P(n, x, s) for sequence s:
 - If $\varphi_0(n, x, s) \lor \psi_0(n, x, s)$, then $P(n, x, s) \mapsto b$ with b = 1 iff $\varphi_0(n, x, s)$.
 - Otherwise, $P(n, x, s) \mapsto P(n, x, s * \langle t \rangle)$ with $t = P(m, y, \langle \rangle)$ if |s| = (m, y) for $y <_X x$, else t = 0.
- $P(n, x, s * \langle t \rangle)$ for sequence s and term $t \notin \{0, 1\}$: $P(n, x, s * \langle t \rangle) \mapsto P(n, x, s * \langle t' \rangle)$ for $t \mapsto t'$.

SETR: Well-ordering principle implies Recursion (2/3)

 $\alpha \mapsto \alpha^X$ preserves well-orders \implies SETR_X

Define $(n, x) \in Y$ iff $P(n, x, \langle \rangle) \mapsto 1$

Use the preserving $\alpha \mapsto \alpha^X$ to show that this is decidable: Define $\mathcal{T} := \{0_T, 1_T, (n, x, t, b) \mid n \in \mathbb{N}, x \in X, t \in \mathcal{T}(n, x), b \in 2\}.$

Map each term t to an element $\beta(t)$ in T^X :

- $t \in \{0, 1\}$, then $\beta(t) = 0_{T^X}$.
- t = P(n, x, s) for sequence s:
 - If $\varphi_0(n, x, s) \lor \psi_0(n, x, s)$, then $\beta(t) := 1_{T^X}$.
 - Otherwise, $\beta(t) := T^{\times} \cdot (n, x, s, 1)$.
- $t = P(n, x, s * \langle t' \rangle)$ for sequence s and term $t' \notin \{0, 1\}$: $\beta(t) := T^{\times} \cdot (n, x, s, 0) + \beta(t').$

Evaluation of $P(n, x, \langle \rangle)$ results in descending sequence in T^X .

SETR: Well-ordering principle implies Recursion (3/3)

 $\alpha \mapsto \alpha^X$ preserves well-orders \implies SETR_X

Tiny caveat: *T* is far from a well-order:

- Not linear because of T(n, x)
 (can be solved immediately using Kleene-Brouwer-order)
- Not well-founded if $\varphi(n, x, Z) \lor \psi(n, x, Z)$ does not hold for all Z
- \Longrightarrow descending sequence in \mathcal{T}^X not an (immediate) contradiction

Solution:

- Let $(g_i)_{i\in\mathbb{N}}$ with $g_0 := P(n, x, \langle \rangle)$ and $g_i \mapsto g_{i+1}$.
- Define T' as restriction of T to terms occurring in $(\beta(g_i))_{i \in \mathbb{N}}$.
- Show that T' is well-order
- Contradiction via descending $(g_i)_{i\in\mathbb{N}}$ in T'^X

Weak Effective Transfinite Recursion

Theorem (RCA₀)

For any well-order X, the following are equivalent:

- WETR_X
- The disjunction of WKL and Π_2^0 -induction along X

Corollary (RCA₀**)** WETR *is equivalent to* WKL₀. $WKL \implies WETR$

Use WKL to define $t : \mathbb{N} \times X \to \mathbb{N}$ with

 $\varphi(n, x, Z) \longleftrightarrow \varphi_0(n, x, Z[t(n, x)]).$

Compute $\varphi(n, x, Z)$ (for Z with $H_{\varphi}(X \upharpoonright x, Z)$) using a program $e :\subseteq \mathbb{N} \times X \to \{0, 1\}$:

- Compute e(m, y) for all $m \in \mathbb{N}$, $y <_X x$ with $(m, y) <_{\mathbb{N}} t(n, x)$.
- Define $s \in \{0,1\}^*$ with |s| = t(n,x) and $s_i = e(m,y)$ if (m, y) has code i (otherwise $s_i = 0$).
- Return 1 if and only if $\varphi_0(n, x, s)$ holds.

If e is total, then $H_{\varphi}(X, Y)$ holds for Y with

$$(n,x) \in Y : \longleftrightarrow e(n,x) = 1.$$
 13

$$WKL \implies WETR$$

Prove that $e :\subseteq \mathbb{N} \times X \to \{0,1\}$ is total. Consider the tree:

Show that tree is finite:

- Using linear order: Define sequence (x_i)_{i∈N} s.t. x_i is the maximal element in X occurring on height i.
 Show x_i >_X x_{i+1} for all i ∈ N.
- Using WKL: Infinite path corresponds to sequence (n_i, x_i)_{i∈ℕ} with x_i >_X x_{i+1} for all i ∈ ℕ.

Starting from the leaves, compute e(n, x) in finitely many steps. ¹⁴

$$\mathsf{RCA}_0 \vdash \varphi \text{ is } \Delta^0_1 \implies \mathsf{RCA}_0 \vdash \mathsf{Recursion} \text{ on } \varphi$$

Idea:

- Prove $t(n, x) \downarrow$ in WKL₀
- Convert this into a proof in RCA_0 using conservation theorem (Harrington)

Also: Conservation theorem holds for Π_1^1 -sentences

 \Longrightarrow Allow arbitrary $\Sigma^1_1\text{-}\text{formula}$ as premise (on both sides)

 $\operatorname{WETR}_X \land \neg \operatorname{WKL} \implies \Pi_2^0$ -induction along X

Idea: Reuse the proof for "SETR_X $\rightarrow \Pi_2^0$ -induction along X" **Problem**: We can only prove $\varphi(n, x, Z) \leftrightarrow \neg \psi(n, x, Z)$ using $H_{\varphi}(X \upharpoonright x, Z)$.

Reason: $H_{\varphi}(X \upharpoonright x, Z)$ and $(y, n) \in Z$ for y < x imply existence of m with P(y, n, m).

Solution: Code witness *m* for P(y, n, m) directly into *Z*.

Requirement: (Continuous) mapping from $2^{\mathbb{N}}$ to \mathbb{N} .

WETR: Recursion implies WKL or Strong Recursion (2/3)

 $\mathsf{WETR}_X \land \neg \mathsf{WKL} \implies \mathsf{\Pi}_2^0\text{-induction along } X$

Requirement: (Continuous) mapping from $2^{\mathbb{N}}$ to \mathbb{N} .

Assume \neg WKL \implies infinite tree T without path

Collect all lengths in L such that there exists sequence s with (*)

- *s* ∉ *T*
- $s' \in T$ for all proper initial segments s' of s

Set *L* is infinite \Rightarrow surjective $f : L \rightarrow \mathbb{N}$

Define:

$$Z \mapsto m$$

iff there is an $l \in L$ with f(l) = m and Z[l] satisfies (*).

WETR: Recursion implies WKL or Strong Recursion (3/3)

WETR_X $\land \neg$ WKL $\implies \Pi_2^0$ -induction along X

Final step: Adapt proof of $SETR_X \implies \Pi_2^0$ -induction along X **Before:**

$$\begin{aligned} \varphi(n, x, Z) &:= \exists m \ (P(x, n, m) \land \\ \forall (y, n') \leq_{\mathbb{N}} m \ (y <_X x \to (y, n') \in Z)) \end{aligned}$$

After:

$$\varphi((n, i), x, Z) := \exists m \ (P(x, n, m) \land seq(m)_i = 1 \land \\ \forall (y, n') \leq_{\mathbb{N}} m \ (y <_X x \to \exists m' \ (Z_{y, n'} \mapsto m' \land P(y, n', m'))))$$

Rest of the proof: Analogous but a bit more complex.

Conclusion

Revisiting the table:

Principle	$\varphi(n, x, Z)$	Strength
ATR	arithmetical	ATR ₀
SETR	Δ_1^0 if $H_{\varphi}(X \upharpoonright x, Z)$	ACA ₀
$SETR_X$		Π_2^0 -induction along X
WETR	Δ_1^0	WKL_0 (rule version: RCA_0)
$WETR_X$		$WKL_0 \lor SETR_X$

Additional results:

- $\mathsf{RCA}_0 \vdash \Pi^0_2$ -induction along X $\longleftrightarrow \alpha \mapsto \alpha^X$ preserves well-orders
- $\mathsf{RCA}_0 \nvDash \forall n \in \mathbb{N} \ \mathsf{WETR}_n$

Preprint: arXiv:2202.05611