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Introduction: ATR

Recursively defined family

Given a well-order X and a formula ¢(n, x, Z), we define
Ho(X,Y) <= Y ={(x,n) € X xN | ¢(n,x, Y*)},

where Y*:={(y,n) € Y | y <x x}.
Intuition: ¢ computes Yy := {n | (x,n) € Y} using Y, for y <x x.

Arithmetical Transfinite Recursion (ATR)

For any well-order X and arithmetical ¢(n, x, Z), there exists a
set Y with Hy(X, Y).

Question: Can we apply recursion in weaker systems?

ATR
ETR .

Arithmetical comprehension along a well-order

> 1>

AY-comprehension along a well-order



Introduction: WETR

Effective Transfinite Recursion originates from recursion theory
(Church, Kleene, Rogers).

Weak Effective Transfinite Recursion (WETR)
For any well-order X and > {-formulas ¢(n, x, Z) and #(n, x, Z)

with

VneNVxe XVZCN (ap(n,x,Z) & —\z/J(n,x,Z)),

there exists a set Y with H,(X, Y).

Proposition (Dzhafarov, Flood, Solomon, Westrick 2017)
ACAq proves WETR.



Introduction: SETR

Weak Effective Transfinite Recursion is too restrictive.

Strong Effective Transfinite Recursion (SETR)
For any well-order X and ¥9-formulas ¢(n, x, Z) and v(n, x, Z)
with

Hy(XIx,Z) —Vn €N (p(n,x,Z) ¢ —p(n, x, Z))

for all x € X and Z C N, there exists a set Y with H,(X, Y).

Proposition (Freund 2021)
ACAq proves SETR.



Introduction: Comparison of Recursion principles

Principle | ¢(n,x,2) | Strength

ATR arithmetical ATRg

SETR A% if Hy(X [x,2Z) < ACAq

WETR A? < ACAq
Questions

e Is WETR properly weaker than SETR?
e What are the precise strengths of SETR and WETR?
e Can we say something about SETRx and WETRx for

fixed well-orders X?
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SETR: Main results

Theorem (RCA)

For any well-order X, the following are equivalent:
e SETRx
e M3-induction along X

o o — o preserves well-orders

Corollary (RCAp)
SETR is equivalent to ACAg.



SETR: Recursion implies Induction

SETRx = M%-induction along X

Progressive Q(x) :=¥n 3m P(x,n, m) for a A-formula P(x, n, m)

o(n,x,Z) :=3Im P(x,n,m)
—p(n,x,Z) =7

Given Y with H,(X,Y), we have (x,n) € Y «— 3m P(x,n, m).



SETR: Recursion implies Induction

SETRx = M%induction along X

Progressive Q(x) := Vn Im P(x,n, m) for a Ad-formula P(x, n, m)

o(n,x,Z) :=3Im (P(x,n,m) A¥(y,n") <y m (y <x x = (y,n") € Z))
—p(n,x,Z) :=Vy <x x Vn' (Ym <y (y,n’) =P(x,n,m) — (y,n’) € Z)

Show that H,(X [ x, Z) implies ¢(n, x, Z) <> —)(n, x, Z).

Given Y with H (X, Y) and (y,/) € Y forall y <x x and | € N,
we have (x,n) € Y <— 3Im P(x, n, m).



SETR: Induction implies Well-ordering principle

MY-induction along X == a+ X preserves well-orders

X

Assume infinite descending sequence (f;);cn in «
(and that X has a top element T).

e For any x € X, restrict f; to a>x with
Xy = {x" € X|x' > x}.

Show (using MJ-induction) that the resulting sequences

descend infinitely often.

Consider the restriction to o”>T = a.



SETR: Well-ordering principle implies Recursion (1/3)

a +— o preserves well-orders = SETRx

Idea: Compute Y with H,(X, Y) using term-evaluation
Terms:
e 0,1, P(n,x,s) for n € N, x € X, and 0-1-sequences s that may
have another term as last member

Transition rules:
e P(n,x,s) for sequence s:
o If po(n,x,s)Vio(n,x,s), then P(n,x,s)— b with b =1 iff

wo(n, x,s).
e Otherwise, P(n,x,s) — P(n,x,s x (t)) with t = P(m, y, ()) if

Is| = (m,y) for y <x x, else t = 0.
e P(n,x,s* (t)) for sequence s and term t ¢ {0,1}:
P(n,x,s (t)) = P(n,x,sx (t')) for t — t'.



SETR: Well-ordering principle implies Recursion (2/3)

a +— o preserves well-orders = SETRx

Define (n,x) € Y iff P(n,x,()) — 1
Use the preserving a — aX to show that this is decidable: Define
T:={01,17,(n,x,t,b) | ne N,x € X, t € T(n,x),b € 2}.
Map each term t to an element §3(t) in TX:
e t € {0,1}, then B(t) = O7x.
e t = P(n,x,s) for sequence s:
o If o(n,x,s)Vo(n,x,s), then 5(t) := 17x.
e Otherwise, (t) := T*-(n,x,s,1).
e t = P(n,x,sx* (t')) for sequence s and term t’ ¢ {0,1}:
B(t) == T*-(n,x,s,0) + B(t).

Evaluation of P(n,x, ()) results in descending sequence in TX.
10



SETR: Well-ordering principle implies Recursion (3/3)

a +— o preserves well-orders = SETRx

Tiny caveat: T is far from a well-order:

e Not linear because of T(n, x)
(can be solved immediately using Kleene-Brouwer-order)

e Not well-founded if p(n, x, Z) V ¢(n, x, Z) does not hold for
all Z

— descending sequence in TX not an (immediate) contradiction
Solution:

o Let (gi)ien with go := P(n,x,()) and g — git1.
e Define T’ as restriction of T to terms occurring in (5(g;i))ien.
e Show that T is well-order

e Contradiction via descending (g;j)ien in T'X 1
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WETR: Main results

Theorem (RCA()

For any well-order X, the following are equivalent:

e WETRx
e The disjunction of WKL and I'Ig—induction along X

Corollary (RCA)
WETR is equivalent to WKLy.

12



WETR: WKL, implies Recursion (1/2)

WKL = WETR

Use WKL to define t : N x X — N with

o(n,x,Z) <— wo(n, x, Z[t(n,x)]).
Compute ¢(n, x, Z) (for Z with H (X [x, Z)) using a program
e:CNxX—{0,1}:

e Compute e(m,y) for all m € N, y <x x with
(m,y) <n t(n, x).

e Define s € {0,1}* with |s| = t(n, x) and s; = e(m, y) if
(m, y) has code i (otherwise s; = 0).

e Return 1 if and only if ¢o(n, x, s) holds.

If e is total, then H,(X, Y) holds for Y with

(n,x) € Y:i<—e(nx)=1. 13



WETR: WKL, implies Recursion (2/2)

WKL = WETR

Prove that e :C N x X — {0,1} is total. Consider the tree:

) —

(n,x)
Show that tree is finite:

e Using linear order: Define sequence (x;)jen S.t. X; is the
maximal element in X occurring on height .
Show x; >x xj41 for all i € N.

e Using WKL: Infinite path corresponds to sequence (n;, x;)ien
with x; >x xjy1 for all i € N.

Starting from the leaves, compute e(n, x) in finitely many steps. 14



WETR: RCA; admits Recursion Rule

RCAg - pis AY = RCAg I Recursion on ¢

Idea:
e Prove t(n, x) | in WKLy

e Convert this into a proof in RCA( using conservation theorem
(Harrington)

Also: Conservation theorem holds for Mi-sentences

= Allow arbitrary ¥1-formula as premise (on both sides)

ii5)



WETR: Recursion implies WKL or Strong Recursion (1/3)

WETRx A =WKL = M3-induction along X

Idea: Reuse the proof for “SETRx — I'Ig—induction along X"

Problem: We can only prove ¢(n, x, Z) <+ —)(n, x, Z) using
Hy,(X [ x, Z).

Reason: H,(X [x,Z) and (y,n) € Z for y < x imply existence of
m with P(y, n, m).

Solution: Code witness m for P(y, n, m) directly into Z.

Requirement: (Continuous) mapping from 2V to N.

16



WETR: Recursion implies WKL or Strong Recursion (2/3)

WETRx A =WKL = M3-induction along X

Requirement: (Continuous) mapping from 2" to N.

Assume - WKL = infinite tree T without path

Collect all lengths in L such that there exists sequence s with ()
es¢T
e s’ € T for all proper initial segments s’ of s

Set L is infinite = surjective f : L —+ N

Define:
Z—m

iff there is an / € L with (/) = m and Z[/] satisfies (x).

17



WETR: Recursion implies WKL or Strong Recursion (3/3)

WETRx A =WKL == M3-induction along X

Final step: Adapt proof of SETRy = I'Ig—induction along X

Before:

o(n,x,Z):= Im (P(x,n,m) A
V(y,n') Sum (y <x x = (y,n) € Z))

After:

SD((n’ i)7X7 Z) =dm (P(X, n, m) /\SGq(m),‘ =1A
V(y,n') <y m (y <x x — 3dm’ (Zym’ —m AP(y,n, m’))))

Rest of the proof: Analogous but a bit more complex.

18



Conclusion

Reuvisiting the table:

Principle | ¢(n, x, Z) Strength

ATR arithmetical ATRg

SETR A if Hy(X [x,Z) | ACAq

SETRx MY-induction along X
WETR A WKLy (rule version: RCAg)
WETRx WKLo VSETRx

Additional results:

e RCAg I MY-induction along X

+—— a +— o preserves well-orders
e RCAp ¥ Vne N WETR,
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