The universe constructed from a set (or class) of regular cardinals

Leeds/Gent Seminar, 27.x. 2021, Philip Welch, University of Bristol

Part I: Background: L[P] for a c.u.b. class $P \subseteq On$. The Härtig Quantifier Model C(I).

Part II: From L[Card] to L[Reg], and L[S] for $S \subseteq Reg$. The Regularity Quantifier Model C(R).

Part I

• Consider *closed and unbounded* (c.u.b) classes of ordinals $P \subseteq On$ and the universes $L[P] = \langle L[P], \in, P \rangle$ constructed from them, where:

$$L_{0}[P] = \emptyset;$$

$$L_{\alpha+1}[P] =_{df} Def_{\mathcal{L}(\dot{\in},\dot{P})}(\langle L_{\alpha}[P], \in, P \cap L_{\alpha}[P] \rangle)$$

$$L_{\lambda}[P] =_{df} \bigcup_{\alpha < \lambda} L_{\alpha}[P] \quad \text{(for Limit } \lambda)$$

$$L[P] =_{df} \bigcup_{\alpha \in On} L_{\alpha}[P].$$

Example: L[Card] where P = Card is the class of uncountable cardinals.

The Härtig quantifier I

Definition

$$\mathcal{M} \models |\mathsf{x} y \, \varphi(x, \vec{p}) \psi(y, \vec{p}) \leftrightarrow$$
$$|\{a \mid \mathcal{M} \models \varphi[a, \vec{p}]\}| = |\{b \mid \mathcal{M} \models \psi[b, \vec{p}]\}|$$

$$egin{array}{lll} L_0^{\mathsf{l}} &=& \varnothing \ L_{lpha+1}^{\mathsf{l}} &=& Def_{\mathcal{L}^{\mathsf{l}}}(L_{lpha}^{\mathsf{l}}) \ L_{\lambda}^{\mathsf{l}} &=& \bigcup_{lpha<\lambda} L_{lpha}^{\mathsf{l}} \end{array}$$

and then $L^{\mathsf{I}} = \bigcup_{\alpha \in On} L_{\alpha}^{\mathsf{I}}$.

- Then L^{I} is the Härtig quantifier model of [KMV], there written C(I).
- Then $L[Card] = L^{I}$.

[KMV] J. Kennedy, M. Magidor, J. Väänänen "Inner Models from Extended Logics" to appear.

Part I

• Consider c.u.b classes of ordinals $P \subseteq On$ and the universes $L[P] = \langle L[P], \in, P \rangle$ constructed from them.

Further examples: $L[C^n]$ where $C^n =_{df} \{ \alpha \mid (V_{\alpha}, \in) \prec_{\Sigma_n} (V, \in) \}$.

L[I]: where I is the class of uniform Silver indiscernibles thus:

$$I = \bigcap_{r \subseteq \omega; r^{\sharp} \text{ exists}} I^{r}.$$

•

• What do these models have in common, if anything?

- What are their properties? Are they models of *GCH*? What is the descriptive set-theoretic complexity of their reals?
- To what extent are their characteristics dependent on V? For example, are they invariant into forcing extension of V?

Assuming only modest large cardinals in V (below a measurable with Mitchell order > 0):

• These models all have the same reals:

$$\mathbb{R}^{L[C^{23}]} = \mathbb{R}^{L[I]} = \mathbb{R}^{L[Card]} = \cdots$$

• In fact they are all elementary equivalent:

$$\langle L[C^{17}], \in, C^{17} \rangle \equiv \langle L[I], \in, I \rangle \equiv \langle L[Card], \in, Card \rangle \cdots$$

where the elementary equivalence is in the language $\mathcal{L}_{\dot{\in},\dot{P}}$ with a predicate symbol \dot{P} for ordinals.

• They are invariant not only into forcing extensions of V, but indeed the above bullet points are invariant in $any\ ZFC$ preserving extensions.

Let $On \subseteq U \subseteq W$ be transitive ZFC models. Assuming modest countable iterable models in U we shall have that, for example:

$$(\langle L[C^{17}], \in, C^{17} \rangle)^W \equiv (\langle L[C^{17}], \in, C^{17} \rangle)^U$$

$$(\mathbb{R}^{L[C^{23}]})^U = (\mathbb{R}^{L[C^{23}]})^W = (\mathbb{R}^{L[I]})^U = (\mathbb{R}^{L[Card]})^W = \cdots$$

• Hence 'analysis', or the descriptive set theory of the continuum, is the same in all these models. Because: (1) the continuum is literally the same and (2) the influence of the large cardinal structure of the models on that continuum is identical - through being elementarily equivalent.

The reason behind this

• O^k is the sharp for the least inner model with a proper class of measurable cardinals. " O^k " is " O^{kukri} "

Theorem 1 (*ZFC*) Suppose O^k exists. There is a definable proper class $C \subseteq On$ that is cub beneath every uncountable cardinal, so that for any definable cub subclasses $P, Q \subseteq C$:

$$\mathbb{R}^{L[P]} = \mathbb{R}^{L[Q]}; \quad \langle L[P], \in, P \rangle \equiv \langle L[Q], \in, Q \rangle$$

where the elementary equivalence is in the language $\mathcal{L}_{\dot{\in},\dot{P}}$ with a predicate symbol \dot{P} . Moreover this theory is invariant into outer models of V, i.e. into ZFC-preserving extensions.

Slogan:

We are seeing if large cardinals affect the informational content of L[Card].

The conclusion is that they do not: once we get to O^k these models become in one sense the same.

Definition 1 Let O^k name the least sound active mouse of the form $M_0 =_{\mathrm{df}} \langle J_{\alpha_0}^{E^{M_0}}, E^{M_0}, F_0 \rangle$ so that

 $M_0 \models \text{``}F_0 \text{ is a normal measure on } \kappa_0 \land \exists \text{ arbitrarily large measurable cardinals below } \kappa_0.\text{''}$

- (i) M_0 is a countable structure.
- (ii) We may form iterated ultrapowers of M_0 repeatedly using the top measure F_0 and its images to form iterates $M_{\iota} =_{\mathrm{df}} \langle J_{\alpha_{\iota}}^{E_{M_{\iota}}}, E_{M_{\iota}}, F_{\iota} \rangle$ so that $M_{\iota} \models$ " F_{ι} is a normal measure on κ_{ι} ".
- (iii) These iterations generate, or "leave behind", an inner model

$$L[E_0] =_{\mathrm{df}} \bigcup_{\iota \in On} H_{\kappa_{\iota}}^{M_{\iota}} = \bigcup_{\iota \in On} H_{\kappa_{\iota}^+}^{M_{\iota}}.$$

- (iv) The cub class of critical points $C_{M_0} = \langle \kappa_{\iota} | \iota \in On \rangle$ forms a class of indiscernibles that is cub beneath each uncountable cardinal, for the inner model $L[E_0]$.
- (v) $L[E_0]$ is similarly the *minimal inner model of a proper class of measurables*: any other such is a simple iterated ultrapower model of $L[E_0]$.

• We iterate $L[E_0]$, or equivalently $O^k = M_0$, so that in the resulting model $L[E^C]$ (C = Card) the measurables are precisely the μ_{α} below.

Define the function:

$$c(\alpha) = \langle \aleph_{\omega \alpha + k} \mid 0 < k < \omega \rangle$$

and let

$$\mu_{\alpha} =_{\mathrm{df}} \aleph_{\omega\alpha+\omega}$$
.

• Moreover in $L[E^C]$ the full measure on μ_{α} is generated by $c(\alpha)$.

More general P

Definition 1 We say P is appropriate if it is any c.u.b. subclass of

$$C_{M_0} =_{\mathrm{df}} \{ \kappa_{\alpha} \mid \alpha \in On \}.$$

Let $\langle \lambda_{\iota} | \iota \in On \rangle$ be *P*'s increasing enumeration. Define the function:

$$c(\alpha) = c^{P}(\alpha) = \langle \lambda_{\omega \alpha + k} \mid 0 < k < \omega \rangle$$

and

$$\mu_{\alpha} = \mu_{\alpha}^{P} =_{\mathrm{df}} \lambda_{\omega \alpha + \omega}.$$

Theorem

Assume that O^k exists and P is an appropriate class.

(i) $K^{L[P]} = L[E^P]$ where E^P is a coherent filter sequence so that

 $L[E^P] \models$ " κ is measurable" $\Leftrightarrow \kappa = \mu_{\alpha}$ for some α .

(ii) The class $c^P =_{df} \langle c^P(\alpha) \mid \alpha \in On \rangle$ of ω -sequences is mutually \mathbb{P}^P -generic over $L[E^P]$ for the full product Prikry forcing \mathbb{P}^P ; moreover

$$L[P] = L[E^P][c^P] = L[c^P].$$

Secondary Statement of Main Theorem

Corollary 1 Assume O^k exists. Let P be any appropriate class. Then in L[P]:

- (i) Each μ_{α} is Jónsson, and c_{α} forms a coherent sequence of Ramsey cardinals below μ_{α} . But there are no measurable cardinals.
- (ii) For any L[P]-cardinal κ we have \diamondsuit_{κ} , \square_{κ} , $(\kappa, 1)$ -morasses etc. etc.
- (iii) The GCH holds but $V \neq HOD$.
- (iv) There is a Δ_3^1 wellorder of $\mathbb{R} = \mathbb{R}^{K^{L[P]}}$; $Det(\alpha \Pi_1^1)$ holds for any countable α , but $Det(\Sigma_1^0(\Pi_1^1))$ fails (Simms, Steel).

Part II: Going to L[Reg]

• $O^s = O^{sword}$ is the least inner mouse whose top measure concentrates on the measures below.

We form an iteration of $M_0 = O^s$ in blocks:

- (1) iterate the least measurable of M_0 to align onto \aleph_{ω} now in the model $M_{\aleph_{\omega}}$; then the least measurable of $M_{\aleph_{\omega}}$ above \aleph_{ω} to align onto $\aleph_{\omega \cdot 2}$ now in the model $M_{\aleph_{\omega \cdot 2}}$;
- (2) If V has, e.g., unboundedly many 1-inaccessibles, then there will be inaccessible stages λ where in M_{λ} λ is the image of critical points from below, arising from our alignment process. In this case we use the order zero measure on λ to form the ultrapower $M_{\lambda} \longrightarrow M_{\lambda+1}$.

We then iterate the least measure which has now appeared in $M_{\lambda+1}$ above λ up to the next simple $\aleph_{\tau+\omega}$.

Leaving measures behind

(3) If λ is of the form $\rho_{\omega}^{\lambda} =_{df} \sup \langle \rho_{k}^{\lambda} | k < \omega \rangle$ where $\pi_{\rho_{k}^{\lambda}, \rho_{k+1}^{\lambda}}(\rho_{k}^{\lambda}) = \rho_{k+1}^{\lambda}$ with $\rho_{k}^{\lambda} \in Inacc$, then use the next measure above λ in M_{λ} (if such exists); or else the order 1 measure of M_{λ} , to iterate up to the next simple limit \aleph .

However, here we have:

$$\pi_{
ho_k^{\lambda},
ho_{k+1}^{\lambda}}(E_{
ho_k^{\lambda}})=E_{
ho_{k+1}^{\lambda}}$$

And thus: $\pi_{\rho_k^{\lambda}, \rho_{\omega}^{\lambda}}(E_{\rho_k^{\lambda}})$ on $\lambda = \rho_{\omega}^{\lambda}$, is the measure that is left behind on λ .

(4) Otherwise: then $\lambda \in SingCard$, and not a simple limit \aleph , so then we finish as in (2) iterating the next unused measure to the next simple limit $\aleph_{\tau+\omega}$.

The upshot is that we have a model $L[E^R]$ (R = Reg) with: μ measurable in $L[E^R]$ iff

Either:

 $\mu = \mu_{\alpha} = \aleph_{\omega \cdot \alpha + \omega}$ for some α and the measure is generated by $\langle \aleph_{\omega \cdot \alpha + k} \rangle_{k < \omega}$.

Or:

 $\mu = \mu_{\alpha} = \rho_{\omega}^{\alpha}$ for some $\alpha = \sup\{\rho_{k}^{\alpha}\}_{k<\omega}$ and the measure is generated by inaccessibles $\langle \rho_{k}^{\alpha} \rangle_{k<\omega}$.

But also:

Lemma

All but at most finitely many V-inaccessibles are of the form ρ_n^{α} for some n, α .

Corollary

 $O^{\text{sword}} \notin L[\text{Reg}].$

Corollary

 $O^{\text{sword}} \notin L[\text{Reg}].$

We have conversely:

Lemma

Suppose O^{sword} exists. Then it is consistent that it is the $<^*$ -least mouse not in L[Reg]. Consequently it is consistent that the structure of Reg is such that the construction procedure above cannot be effected by any smaller mouse $N_0 <^* O^{\text{sword}}$.

This will be a special case of the next result.

Theorem

- (a) ZFC \vdash "Let $S_1 \subseteq \text{Reg be a set or proper class of infinite regular cardinals. Then <math>O^{\text{sword}} \notin L[S_1]$ ".
- (b) Both these results are best possible. In particular for (a) O^s cannot be replaced by any sound mouse $M <^* O^s$.

Corollary (to the argument)

If On is Mahlo, then O^s , if it exists, is $<^*$ -least not in L[Reg] and consequently we must use O^s and nothing smaller to generate an inner model W with $L[Reg] = W[\vec{c}]$.

The Regularity quantifier R

Definition

$$\mathcal{M} \models \mathsf{R} x \, \varphi(x, \vec{p}) \quad \Leftrightarrow \quad |\{a \mid \mathcal{M} \models \varphi[a, \vec{p}]\}| \in \mathit{Reg}.$$

$$egin{array}{lcl} L_0^{\mathsf{R}} &=& \varnothing \ L_{lpha+1}^{\mathsf{R}} &=& Def_{\mathcal{L}^{\mathsf{I}}}(L_{lpha}^{\mathsf{R}}) \ L_{\lambda}^{\mathsf{R}} &=& \bigcup_{lpha<\lambda}L_{lpha}^{\mathsf{R}} \end{array}$$

and then $L^{\mathsf{R}} = \bigcup_{\alpha \in On} L_{\alpha}^{\mathsf{R}}$.

When P = Card

Lemma 1 $C(I) (= L^{\mathsf{I}}) = L[Card].$

Theorem

$$\neg O^k \iff K^{C(I)} = K.$$

Corollary

$$(V = L[E]) \neg O^k \iff V = C(I).$$

When R = Reg

Lemma

$$C(R) (= L^{\mathsf{R}}) = L[Reg].$$

Theorem

$$\neg O^s \iff K^{C(R)} = K.$$

Corollary

$$(V = L[E]) \neg O^s \iff V = C(R).$$

Definition

For $\nu = \lambda_{\nu}^{P} = \kappa_{\nu} \in C_{M_0}$ let $\mathbb{P}^{\nu} = \mathbb{P}^{P,\nu}$ be the following set of function pairs $\langle h, H \rangle$:

(i)
$$H \in \Pi_{\alpha < \nu} U_{\alpha}$$
, $dom(h) = \nu$ and $supp(h)$ is finite where: $supp(h) =_{df} \{ \alpha \in dom(h) \mid h(\alpha) \neq \emptyset \}$.

(ii) [Various usual Prikry like conditions]

For
$$\langle f, F \rangle$$
, $\langle h, H \rangle \in \mathbb{P}^{\nu}$ set

$$\langle f, F \rangle \leq \langle h, H \rangle$$
 iff $\forall \alpha < \nu(f(\alpha) \supseteq h(\alpha) \land f(\alpha) \land h(\alpha) \subseteq H(\alpha))$.

We let G^{ν} be \mathbb{P}^{ν} -generic over $L[E^{P}]$, and we define $c=c_{G^{\nu}}$ by

$$c(\alpha) = \bigcup \{h(\alpha) \mid \exists H \langle h, H \rangle \in G^{\nu}\} \text{ for all } \alpha < \nu.$$

• \mathbb{P}^{ν} has the ν^+ - c.c. (and this is best possible).

Theorem (Mathias Condition - Fuchs)

A function d is \mathbb{P}^{ν} -generic over $L[E^{P}] \Leftrightarrow$

$$\forall X \in \prod_{\alpha < \nu} U_{\alpha} \cap L[E^{P}] \quad \bigcup_{\alpha < \nu} (d(\alpha) \backslash X(\alpha)) \text{ is finite.}$$

(Here U_{α} is on μ_{α} , the α 'th measurable of $L[E^{P}]$.)

G. Fuchs, "A Characterisation of Generalized Příkrý forcing", Archive for Math. Logic, 2005.

Theorem (Mathias Condition - Fuchs)

A function d is \mathbb{P}^{ν} -generic over $L[E^{P}] \Leftrightarrow$

$$\forall X \in \prod_{\alpha < \nu} U_{\alpha} \cap L[E^P] \bigcup_{\alpha < \nu} (d(\alpha) \backslash X(\alpha)) \text{ is finite.}$$

(Here U_{α} is on μ_{α} , the α 'th measurable of $L[E^{P}]$.)

Definition

A sequence $\vec{c} = \langle c(\alpha) \mid \alpha \in \Delta \rangle$ where Δ is a set of measurable cardinals, with U_{α} a normal measure on α , is said to have the \vec{U} -set property if for every sequence $\vec{A} = \langle A_{\alpha} \mid \alpha \in \Delta \rangle$ with each $A_{\alpha} \in U_{\alpha}$, then $\bigcup_{\alpha \in \Delta} (c(\alpha) \backslash A_{\alpha}) \text{ is finite.}$

• If $p = \langle h, H \rangle \in L[E^P]$, define $d(\alpha) = h(\alpha) \cup (c(\alpha) \cap H(\alpha))$. Thus we have a $d \in L[E^P][c]$ and $L[E^P][c] = L[E^P][d]$.

G. Fuchs, "A Characterisation of Generalized Příkrý forcing", Archive for Math. Logic, 2005.

Corollary

Let c be \mathbb{P}^{ν} -generic over $L[E^P]$. Let $p \in \mathbb{P}^{\nu}$. Then there exists a sequence d which is \mathbb{P}^{ν} -generic over $L[E^P]$ so that:

- (i) $|\bigcup_{\alpha<\nu}(c(\alpha)\triangle d(\alpha))|<\omega$;
- (ii) $p \in G_d$.

Consequently we have also:

Corollary (Weak Homogenity)

If $\varphi(v_0, \ldots, v_{n-1})$ is any formula and $\check{a}_1, \ldots \check{a}_{n-1}$ any forcing names for elements of $L[E^P]$, and $p \in \mathbb{P}^{\nu}$ we have

$$p \Vdash_{\mathbb{P}^{\nu}} \varphi(\check{a}_1,\ldots,\check{a}_{n-1}) \Rightarrow \mathbb{1} \Vdash_{\mathbb{P}^{\nu}} \varphi(\check{a}_1,\ldots,\check{a}_{n-1}).$$

• If $p = \langle h, H \rangle \in L[E^P]$, define $d(\alpha) = h(\alpha) \cup (c(\alpha) \cap H(\alpha))$. Thus we have a $d \in L[E^P][c]$ and $L[E^P][c] = L[E^P][d]$.

The class version: the full forcing $\mathbb{P}^{\infty} = \mathbb{P}^{P}$

If $\nu \in D =_{df} \{ \nu \in C \mid \nu = \lambda_{\nu} \}$, the top measurable of M_{ν} , we have $\mathbb{P}^{\nu} \in \Delta_{1}^{M_{\nu}}$. Then:

 c^{ν} is \mathbb{P}^{ν} -generic over $L[E^{C}] \iff c^{\nu}$ is \mathbb{P}^{ν} -generic over $H_{\nu^{+}}^{L[E^{C}]}$

- (1) "Stretch" $H^{\nu} =_{\text{df}} H^{L[E^C]}_{\nu^+}$ to $H_{\infty} =_{\text{df}} H^{"L[E^C]}_{On^+}$ ".
- (2) For $\iota, \nu \in D$, $\iota < \nu$, $\widetilde{\pi}_{\iota,\nu} : \langle H^{\iota}, \mathbb{P}^{\iota}, \Vdash_{\iota} \rangle \longrightarrow_{e} \langle H^{\nu}, \mathbb{P}^{\nu}, \Vdash_{\nu} \rangle$.
- (3) $\langle H^{\infty}, E, \Vdash_{\infty}, \mathbb{P}^{\infty}, \langle \widetilde{\pi}_{\iota, \infty} \rangle \rangle =_{\mathrm{df}} \mathrm{Lim}_{\iota \to \infty, \iota \in D} \langle H^{\iota}, \in, \Vdash_{\iota}, \mathbb{P}^{\iota}, \langle \widetilde{\pi}_{\iota, \nu} \rangle \rangle.$

• Note: \mathbb{P}^{∞} does not have the On-c.c. H^{∞} will be a natural Kelley-Morse model: but \mathbb{P}^{∞} is still a class forcing over this model.

- The definability of the forcing \mathbb{P}^{ν} over $H_{\nu^+}^{L[E^P]}$ for $\nu \in D$ together with
- (i) $L_{\nu}[E^P] \prec L[E^P]$; and
- (ii) its weak homogeneity,

yield the definability of the theory of $L[E^P][c]$ over any such $H_{\nu^+}^{L[E^P]}$.

The Härtig quantifier I

Definition

$$\mathcal{M} \models |\mathsf{x} \mathsf{y} \varphi(\mathsf{x}, \vec{p}) \psi(\mathsf{y}, \vec{p}) \leftrightarrow$$
$$|\{a \mid \mathcal{M} \models \varphi[a, \vec{p}]\}| = |\{b \mid \mathcal{M} \models \psi[b, \vec{p}]\}|$$

$$egin{array}{lll} L_0^{\mathsf{l}} &=& \varnothing \ L_{lpha+1}^{\mathsf{l}} &=& Def_{\mathcal{L}^{\mathsf{l}}}(L_{lpha}^{\mathsf{l}}) \ L_{\lambda}^{\mathsf{l}} &=& igcup_{lpha<\lambda}L_{lpha}^{\mathsf{l}} \end{array}$$

and then $L^{\mathsf{I}} = \bigcup_{\alpha \in On} L_{\alpha}^{\mathsf{I}}$.

• Then L^{I} is the Härtig quantifier model of [KMV], there written C(I).

[KMV] J. Kennedy, M. Magidor, J. Väänänen "Inner Models from Extended Logics" to appear.

Theorem

Assume that O^k exists and C = Card.

(i) $K^{L[C]} = L[E^C]$ where E^C is a coherent filter sequence so that

$$L[E^C] \models$$
 " κ is measurable" $\Leftrightarrow \kappa = \mu_{\alpha}$ for some α .

(ii) The class $\vec{c} =_{df} \langle c(\alpha) \mid \alpha \in On \rangle$ of ω -sequences is mutually \mathbb{P}^C -generic over $L[E^C]$ for the full product Prikry forcing \mathbb{P}^C ; moreover

$$L[Card] = L[E^C][\vec{c}] = L[\vec{c}].$$

Magidor genericity

To deduce Magidor genericity of the \vec{c} sequence needs a recent result of Ben-Neria.

Definition

Let \vec{c} be a set of ω -sequences with $c(\alpha) \subseteq \alpha$. Then \vec{c} has the *(strict)* separation property if only finitely many (respectively no) pairs of the form $\langle \nu, \kappa \rangle$ and $\langle \nu', \kappa' \rangle$ with $\nu \in c(\kappa), \nu' \in c(\kappa')$ are *interleaved*, that is satisfy $\nu \leq \nu' < \kappa < \kappa'$.

Theorem (Ben Neria)

If $\forall \nu \in Inacc : G \upharpoonright \nu =_{df} \langle c(\alpha) \mid \alpha < \nu \rangle$ has both the \vec{U}_{α} - Set and then Separation properties then:

$$G \upharpoonright \nu$$
 is \mathbb{P}_{ν} -Magidor-generic over $L[\vec{U}^R]$.

• Here $L[\vec{U}^R]$ is the least Kunen-style inner model constructed from the measure sequence $U_{\alpha}=_{df}E_{\mu_{\alpha}}^R$ where the latter $E_{\mu_{\alpha}}^R$ are the full measures of $L[E^R]$.

• The model $L[\vec{U}^R]$ actually is also an L[E]-model, call it $L[E_0^R]$ which has the same measurables as $L[E^R]$. It is just that our original iteration may not pick out the *least* inner model with exactly those measurables. (Compare: there are fine-structural L[E]-models with precisely one measurable cardinal, but that does not mean that L[E] is the least such - which is of the form $L[\mu]$.)

Secondary Statement of Main Theorem

Corollary 1 Assume O^k exists. Let P be any appropriate class. Then in L[P]:

- (i) Each μ_{α} is Jónsson, and c_{α} forms a coherent sequence of Ramsey cardinals below μ_{α} . But there are no measurable cardinals.
- (ii) For any L[P]-cardinal κ we have \diamondsuit_{κ} , \square_{κ} , $(\kappa, 1)$ -morasses etc. etc.
- (iii) The GCH holds but $V \neq HOD$.
- (iv) There is a Δ_3^1 wellorder of $\mathbb{R} = \mathbb{R}^{K^{L[P]}}$; $Det(\alpha \Pi_1^1)$ holds for any countable α , but $Det(\Sigma_1^0(\Pi_1^1))$ fails (Simms, Steel).

• Note in particular for P = Card that $(Card)^{L[Card]}$ will be very far from Card: all V-successors are Ramsey in L[Card].

- Now look at $L[Reg_0, Reg_1]$, and make the same moves with N the least mouse whose top measure is a limit of measurables that are limits of measurables.
- Iterate N to $L[E^R]$ so that the discrete measures sit on the cardinals $\aleph_{\omega \cdot \alpha + \omega}$ and are generated by $\langle \aleph_{\omega \cdot \alpha + k} \rangle_{0 < k}$ and the measurable limits of measurables on $\sigma_{\alpha} =_{df} \sup \{ \rho_{\omega \cdot \alpha + k} \}_k$ and are generated by $\langle \rho_{\omega \cdot \alpha + k} \rangle_{0 < k}$ where ρ_{τ} enumerates Reg_0 .
- Now need a Mathias condition for the enhanced forcing which countenances measurable limit of measurables, but (Turner) this appears quite feasible.

We thus set $c(\alpha) = \langle \aleph_{\omega \cdot \alpha + k} \rangle_{k < \omega}$, or $c(\alpha) = \langle \rho_k^{\alpha} \rangle_{k < \omega}$ depending.

We use a Magidor iteration of Prikry forcing. This is of the form $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \rangle$ where \mathbb{P}_{α} is the set of all p of the form $\langle \widetilde{p}_{\gamma} \mid \gamma < \alpha \rangle$ so that for every $\gamma < \alpha$:

a)
$$p \upharpoonright \gamma = \langle \widetilde{p}_{\beta} \mid \beta < \gamma \rangle$$
;

b) $p \upharpoonright \gamma \Vdash_{\mathbb{P}_{\gamma}}$ " \widetilde{p}_{γ} is a condition in the Prikry forcing $\langle \widetilde{\mathbb{Q}}_{\gamma}, \widetilde{\leq}, \widetilde{\leq}^* \rangle$ (or else a trivial forcing)."

Definition

$$p \leq_{\mathbb{P}_{\alpha}} q$$
 iff

- (1) $\forall \gamma < \alpha, p \upharpoonright \gamma \Vdash_{\mathbb{P}_{\gamma}} "\widetilde{p}_{\gamma} \leq_{\widetilde{Q}_{\gamma}} q_{\gamma} \text{ in the forcing } \widetilde{\mathbb{Q}}_{\gamma}";$
- (2) $\exists b \subseteq \alpha$, finite, s.t. $\forall \gamma \in \alpha \widetilde{\backslash} b$, $p \upharpoonright \gamma \Vdash_{\mathbb{P}_{\gamma}} \widetilde{p}_{\gamma} \leq_{\widetilde{Q}_{\gamma}}^* q_{\gamma}$ in the forcing $\widetilde{\mathbb{Q}}_{\gamma}$ ";

• If $b = \emptyset$ then we say p is a *direct* extension of q and write $p \leq_{\mathbb{P}_{\alpha}}^* q$.

Lemma

If δ is a limit, $D \subseteq \mathbb{P}_{\delta}$ is an open dense set, $p \in \mathbb{P}_{\delta}$, then for all sufficiently large $\nu < \delta \exists \mathbb{P}_{\nu}$ -name i for a condition in $\mathbb{P}_{[\nu,\delta)}$ s.t.

$$p \upharpoonright \nu \Vdash_{\mathbb{P}_{\nu}} \dot{t} \stackrel{*}{\geq} p \backslash \nu$$

and

$$D_{\dot{t}} = \{r \geq p \mid \nu \mid r \smallfrown \dot{t} \in D\} \subseteq \mathbb{P}_{\nu} \text{ is open dense }.$$

[If not pick ν_0 sufficiently large and construct $p^* \leq_{\mathbb{P}_{\delta}}^* p$, $p^* = \langle p_{\nu}^* \mid \nu < \delta \rangle$ s.t. $\forall \nu \in (\nu_0, \delta)$:

$$p^* \upharpoonright \nu \Vdash_{\mathbb{P}_{\nu}}$$
 " $\forall \dot{t} * \geq p \backslash \nu (t \notin D/\dot{G}_{\nu})$ ";

But such a p^* contradicts the open density of D.

H-degrees

Definition

$$x \leq_H y \leftrightarrow x \in L^{\mathsf{I}}(y)$$

• Note: to make this absolute it makes sense to assume " $\forall xx^k$ exists".

Lemma 1
$$x \leq_H y \leftrightarrow x \in M_0^y$$
.

Q. All sorts of questions about this degree structure. E.g., when does a countable collection of H-degrees of reals have a minimal upper bound?

- Now look at $L[Reg_0, Reg_1]$, and make the same moves with N the least mouse whose top measure is a limit of measurables that are limits of measurables.
- Iterate N to $L[E^R]$ so that the discrete measures sit on the cardinals $\aleph_{\omega \cdot \alpha + \omega}$ and are generated by $\langle \aleph_{\omega \cdot \alpha + k} \rangle_{0 < k}$ and the measurable limits of measurables on $\sigma_{\alpha} =_{df} \sup \{ \rho_{\omega \cdot \alpha + k} \}_k$ and are generated by $\langle \rho_{\omega \cdot \alpha + k} \rangle_{0 < k}$ where ρ_{τ} enumerates Reg_0 .
- Now need a Mathias condition for the enhanced forcing which countenances measurable limit of measurables, but (Turner) this appears quite feasible.
- These arguments extend for $L[Reg_1], \ldots, L[Reg_{\tau}], \ldots$ using generating mice in the "measurable limits of ..." hierarchy.

What next?

- Let $Reg =_{df} \{ \alpha \mid \alpha \text{ regular } \}.$
- Q. Characterise L[Reg].
- So as a first run:

```
Let Reg_0 =_{df} \{ \alpha \mid \alpha \text{ a successor cardinal} \}.
Let Reg_1 =_{df} \{ \alpha \mid \alpha \text{ inaccessible, but not a limit of inaccessibles } \}.
```

So $L[Reg_0] = L[Card]$ but $L[Reg_1]$ imports information about which limit cardinals are inaccessible in V. Etc.

 $L[Reg_1]$ can be characterised using a mouse with a measurable cardinal which is a sup of measurable limits of measurables, (so the sharp of the least inner model with a proper class of measurable limits of meas.'bles). $L[Reg_n], \ldots$ by working up this hierarchy.

The Cof_{ω} -model C^*

• Here $C^* = L[Cof_{\omega}]$.

Theorem 1 $\neg O^k \rightarrow K^* =_{df} (K)^{C^*}$ is universal; thus K^* is a simple iterate of K. **Theorem 2** If O^k exists, then it is in C^* .

• Hence $C(I) \ni C^*$.

Question. Characterise C^* ; Is it a thin model? Is $O^{sword} \in C^*$? (The latter the least mouse with a measure of Mitchell order > 0.)

Precursor to all this: results of Woodin '96

Theorem 1 Suppose that V = L[S] where S is an ω sequence of ordinals. Then GCH holds.

Theorem 4 Suppose V = L[S] where S is an ω sequence of ordinals. Then there is an ordinal $\alpha < \omega_1$ and a set $A \subset \omega$ such that $A^{\alpha-\dagger}$ does not exist.